1
|
Çetintulum Aydın B, Arslan K, Baş S, Ozan ZT, Yıldırım T, Gençer V, Macunluoğlu Atakan B. Evaluation of renal function with neutrophil gelatinase-associated lipocalin in patients with ıron deficiency anemia. Sci Rep 2025; 15:13217. [PMID: 40240782 PMCID: PMC12003898 DOI: 10.1038/s41598-025-97888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
The objective is to investigate the potential adverse effects of iron deficiency and iron deficiency anemia on renal functions by utilizing plasma Neutrophil Gelatinase-Associated Lipocalin (NGAL) levels. From September 2021 to February 2022, plasma NGAL levels, hemogram, biochemical parameters were assessed in all participants. They were divided into three groups: Group I (non-anemic iron deficiency), Group II (iron deficiency anemia), and Group III (healthy controls), with comparative analyses conducted. Group I had 38 individuals, Group II had 75 individuals, and Group III included 57 individuals. Plasma NGAL levels were higher in Groups I and II compared to Group III, with no significant difference between Groups I and II. ROC analysis revealed an AUC of 0.63 for NGAL in distinguishing Group II from Group III. No significant disparities were found in serum creatinine and glomerular filtration rate levels among the groups. A significant negative correlation was observed between plasma NGAL levels and ferritin, iron, hemoglobin, and mean corpuscular volume (MCV) levels. Plasma NGAL levels were significantly higher in adult patients with non-anemic iron deficiency and iron deficiency anemia compared to the healthy group. This suggests that elevated plasma NGAL levels in these patients might indicate renal injury due to various mechanisms.
Collapse
Affiliation(s)
- Büşra Çetintulum Aydın
- Department of Internal Medicine, Istanbul Haseki Training and Research Hospital, Istanbul, Turkey.
| | - Kadem Arslan
- Department of Internal Medicine, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Süleyman Baş
- Department of Internal Medicine, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Zeynep Tuğba Ozan
- Department of Internal Medicine, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Tekin Yıldırım
- Department of Internal Medicine, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Vedat Gençer
- Department of Nephrology, Kayseri City Hospital, Kayseri, Turkey
| | - Beyza Macunluoğlu Atakan
- Department of Internal Medicine, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Clinical and Molecular Aspects of Iron Metabolism in Failing Myocytes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081203. [PMID: 36013382 PMCID: PMC9409945 DOI: 10.3390/life12081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) is a common disease that causes significant limitations on the organism's capacity and, in extreme cases, leads to death. Clinically, iron deficiency (ID) plays an essential role in heart failure by deteriorating the patient's condition and is a prognostic marker indicating poor clinical outcomes. Therefore, in HF patients, supplementation of iron is recommended. However, iron treatment may cause adverse effects by increasing iron-related apoptosis and the production of oxygen radicals, which may cause additional heart damage. Furthermore, many knowledge gaps exist regarding the complex interplay between iron deficiency and heart failure. Here, we describe the current, comprehensive knowledge about the role of the proteins involved in iron metabolism. We will focus on the molecular and clinical aspects of iron deficiency in HF. We believe that summarizing the new advances in the translational and clinical research regarding iron deficiency in heart failure should broaden clinicians' awareness of this comorbidity.
Collapse
|
4
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
5
|
Calderón Guzmán D, Juárez Olguín H, Osnaya Brizuela N, Hernández Garcia E, Lindoro Silva M. The Use of Trace and Essential Elements in Common Clinical Disorders: Roles in Assessment of Health and Oxidative Stress Status. Nutr Cancer 2019; 71:13-20. [PMID: 30663392 DOI: 10.1080/01635581.2018.1557214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the early life, the diet of infants is mainly dominated by milk. Milk is a natural food rich in trace elements focus on essential elements. These elements are very necessary for human metabolism and since they cannot be synthesized by the body, the only source available for the humans to obtain them is by ingestion of natural food. This mini-review aims at updating the knowledge on trace elements, outlining their natural food sources, and their possible implications in common clinical disorders in early and adult life. However, it was found that consumption of food with micronutrients and trace elements may release intracellular compounds and offer oxidative protection or exacerbate oxidative damage to metabolically compromised cells.
Collapse
Affiliation(s)
- David Calderón Guzmán
- a Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Hugo Juárez Olguín
- b Laboratorio de Farmacología, INP and Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Norma Osnaya Brizuela
- a Laboratorio de Neurociencias, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Ernestina Hernández Garcia
- b Laboratorio de Farmacología, INP and Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| | - Miroslava Lindoro Silva
- b Laboratorio de Farmacología, INP and Facultad de Medicina , Universidad Nacional Autónoma de México , Mexico City , Mexico
| |
Collapse
|
6
|
Ueda N, Takasawa K. Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients 2018; 10:nu10091173. [PMID: 30150549 PMCID: PMC6163440 DOI: 10.3390/nu10091173] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Iron deficiency anemia (IDA) is a major problem in chronic kidney disease (CKD), causing increased mortality. Ferritin stores iron, representing iron status. Hepcidin binds to ferroportin, thereby inhibiting iron absorption/efflux. Inflammation in CKD increases ferritin and hepcidin independent of iron status, which reduce iron availability. While intravenous iron therapy (IIT) is superior to oral iron therapy (OIT) in CKD patients with inflammation, OIT is as effective as IIT in those without. Inflammation reduces predictive values of ferritin and hepcidin for iron status and responsiveness to iron therapy. Upper limit of ferritin to predict iron overload is higher in CKD patients with inflammation than in those without. However, magnetic resonance imaging studies show lower cutoff levels of serum ferritin to predict iron overload in dialysis patients with apparent inflammation than upper limit of ferritin proposed by international guidelines. Compared to CKD patients with inflammation, optimal ferritin levels for IDA are lower in those without, requiring reduced iron dose and leading to decreased mortality. The management of IDA should differ between CKD patients with and without inflammation and include minimization of inflammation. Further studies are needed to determine the impact of inflammation on ferritin, hepcidin and therapeutic strategy for IDA in CKD.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| | - Kazuya Takasawa
- Department of Internal Medicine, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
- Department of Internal Medicine, Public Tsurugi Hospital, Ishikawa 920-2134, Japan.
| |
Collapse
|