1
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Lee S, Itagaki A, Satoh A, Sugimoto I, Saito T, Shibukawa Y, Tatehana H. Effects of psychogenic stress on oxidative stress and antioxidant capacity at different growth stages of rats: Experimental study. PLoS One 2024; 19:e0287421. [PMID: 38653001 PMCID: PMC11038576 DOI: 10.1371/journal.pone.0287421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study examined the psychogenic stress (PS) effects on changes in oxidative stress and the antioxidant capacity of an organism at different growth stages. The experimental animals were male Wistar rats of five different ages from growth periods (GPs) to old age. The growth stages were randomly classified into control (C) and experimental (PS) groups. The PS was performed using restraint and water immersion once daily for 3 h for 4 weeks. Reactive oxygen metabolites (d-ROMs) and the biological antioxidant potential (BAP) were measured before and after the experiment. In addition, the liver and adrenal glands were removed, and the wet weight was measured. The d-ROM and BAP of all growth stages given PS increased significantly. The d-ROM in the C group without PS increased significantly in GPs while decreased significantly in old-aged rats. In addition, the BAP of the C group in GP and early adulthood were all significantly elevated. There were significant differences in organ weights between the C and PS groups at all growth stages. Oxidative stress and antioxidant capacity differed depending on the organism's developmental status and growth stage, and PS also showed different effects. In particular, the variability in oxidative stress was remarkable, suggesting that the effect of PS was more significant in the organism's immature organs.
Collapse
Affiliation(s)
- Sangun Lee
- Department of Physical Therapy, Aomori University of Health and Welfare, Aomori-shi, Aomori-ken, Japan
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Atsunori Itagaki
- Department of Physical Therapy, Aomori University of Health and Welfare, Aomori-shi, Aomori-ken, Japan
| | - Atsuko Satoh
- Faculty of Nursing, Hirosaki Gakuen University, Hirosaki-shi, Aomori-ken, Japan
| | - Issei Sugimoto
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Takumi Saito
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Yoshihiko Shibukawa
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Haruka Tatehana
- Department of Nutrition, Aomori University of Health and Welfare, Aomori-shi, Aomori-ken, Japan
| |
Collapse
|
3
|
Kitagawa Y, Maloney SK, Pool KR, Webster D, Ohkura S, Blache D, Ding L. Behavioural and physiological responses to stressors in sheep with temperament classified by genotype or phenotype. Sci Rep 2024; 14:8147. [PMID: 38584170 PMCID: PMC10999442 DOI: 10.1038/s41598-024-58959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
The single nucleotide polymorphism (SNP) rs107856856, located in the tryptophan hydroxylase-2 gene, is associated with the behavioural phenotype for sheep temperament measured at weaning. Here, we tested the association between that SNP and physiological and behavioural responses to stressors in adult sheep. Two groups of adult sheep, one with genotype A/A (calm genotype) and the other with G/G (nervous genotype) in rs107856856, were selected from 160 sheep and were exposed, twice, to an open-field arena and an isolation box test (IBT). During each repeat, the behaviour and physiological responses (cortisol, prolactin, dehydroepiandrosterone [DHEA], brain derived neurotrophic factor [BDNF], characteristics of the response of body temperature, and oxidative stress) were measured. The behavioural and physiological responses of the sheep were compared between genotypes and also between groups classified on their phenotype as assessed by their initial isolation box score ("low responders" and "high responders"). The SNP rs107856856 had some effects on the behavioural phenotype (IBT score) but no effects on the physiological response to stress (cortisol, prolactin, DHEA, BDNF, oxidative stress or changes in body temperature) in the adult sheep, probably because the sheep were exposed, and therefore had adapted, to human contact during their life.
Collapse
Affiliation(s)
- Yuri Kitagawa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, Japan
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Shane K Maloney
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kelsey R Pool
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Dane Webster
- School of Human Sciences, M309, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, Japan
| | - Dominique Blache
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Luoyang Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- School of Agriculture and Environment, M087, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
4
|
Mousavi MS, Meknatkhah S, Imani A, Geramifar P, Riazi G. Comparable assessment of adolescent repeated physical or psychological stress effects on adult cardiac performance in female rats. Sci Rep 2023; 13:16401. [PMID: 37775558 PMCID: PMC10541905 DOI: 10.1038/s41598-023-43721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Extensive evidence highlights a robust connection between various forms of chronic stress and cardiovascular disease (CVD). In today's fast-paced world, with chronic stressors abound, CVD has emerged as a leading global cause of mortality. The intricate interplay of physical and psychological stressors triggers distinct neural networks within the brain, culminating in diverse health challenges. This study aims to discern the unique impacts of chronic physical and psychological stress on the cardiovascular system, unveiling their varying potencies in precipitating CVD. Twenty-one adolescent female rats were methodically assigned to three groups: (1) control (n = 7), (2) physical stress (n = 7), and (3) psychological stress (n = 7). Employing a two-compartment enclosure, stressors were administered to the experimental rats over five consecutive days, each session lasting 10 min. After a 1.5-month recovery period post-stress exposure, a trio of complementary techniques characterized by high specificity or high sensitivity were employed to meticulously evaluate CVD. Echocardiography and single-photon emission computed tomography (SPECT) were harnessed to scrutinize left ventricular architecture and myocardial viability, respectively. Subsequently, the rats were ethically sacrificed to facilitate heart removal, followed by immunohistochemistry staining targeting glial fibrillary acidic protein (GFAP). Rats subjected to psychological stress showed a wider range of significant cardiac issues compared to control rats. This included left ventricular hypertrophy [IVSd: 0.1968 ± 0.0163 vs. 0.1520 ± 0.0076, P < 0.05; LVPWd: 0.2877 ± 0.0333 vs. 0.1689 ± 0.0057, P < 0.01; LVPWs: 0.3180 ± 0.0382 vs. 0.2226 ± 0.0121, P < 0.05; LV-mass: 1.283 ± 0.0836 vs. 1.000 ± 0.0241, P < 0.01], myocardial ischemia [21.30% vs. 32.97%, P < 0.001], and neuroinflammation. This outcome underscores the imperative of prioritizing psychological well-being during adolescence, presenting a compelling avenue to curtail the prevalence of CVD in adulthood. Furthermore, extending such considerations to individuals grappling with CVD might prospectively enhance their overall quality of life.
Collapse
Affiliation(s)
- Monireh-Sadat Mousavi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alireza Imani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Q, Xu L, Bai Y, Chen P, Xing M, Cai F, Wu Y, Song W. Intermittent hypoxia-induced enhancement of sociability and working memory associates with CNTNAP2 upregulation. Front Mol Neurosci 2023; 16:1155047. [PMID: 37089693 PMCID: PMC10118049 DOI: 10.3389/fnmol.2023.1155047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionHypoxia is an environmental risk factor for many disorders throughout life. Perinatal hypoxia contributes to autism spectrum disorder (ASD), while hypoxic conditions in the elderly facilitate memory deficits. However, the effects of hypoxia on adolescence remains elusive. CNTNAP2 is a critical molecule in ASD pathogenesis with undefined mechanisms. We investigate hypoxia’s impact on adolescence and the underlying mechanism related to CNTNAP2.MethodsThree-chamber social approach test, Y maze, Morris Water Maze and Open Field Test were applied to evaluate behavioral alterations. Immunoblotting, 5′- RACE and dual-luciferase reporter assay were performed to examine CNTNAP2 protein expression, transcription start site (TSS) of human CNTNAP2 gene and CNTNAP2 promoter activity, respectively.ResultsIntermittent hypoxia treatment improved social behaviors and working memory in adolescent mice. CNTNAP2 was increased in the brains of hypoxia-treated mice. The sequencing results identified the TSS at 518 bp upstream of the translation start site ATG. Hypoxia upregulated CNTNAP2 by interacting with functional hypoxia response elements in CNTNAP2 promoter.ConclusionIntermittent hypoxia enhanced sociability and working memory associated with CNTNAP2 upregulation. Our study provides novel insights into intermittent hypoxia’s impact on development and the interaction between genetic and environmental risk factors in ASD pathogenesis.
Collapse
Affiliation(s)
- Qing Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiye Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yili Wu,
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
- Weihong Song, ; orcid.org/0000-0001-9928-889X
| |
Collapse
|
6
|
The anxiogenic effects of adolescent psychological stress in male and female mice. Behav Brain Res 2022; 432:113963. [PMID: 35700812 DOI: 10.1016/j.bbr.2022.113963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
Adolescence is a period of transition during which there is extensive development of the brain and the hypothalamic-pituitary-adrenal axis. However, the term adolescence is broad and covers a number of important developmental periods ranging from pre-pubescence to sexual maturity. Using a predator stress model, we investigated the effects of chronic psychological stress on anxiety-like, depression-like, and social behaviours in male and female mice during early adolescence, when mice are pre-pubertal, and late adolescence, when mice are sexually mature. All stressed mice showed hyperactivity and increased anxiety-like behaviours. The anxiogenic effects were generally more pronounced in mice exposed to late, rather than early adolescent stress, but were clearly evident when stress was experienced at either timepoint. Risk assessment behaviours were also affected by the stress treatments, but the direction of these changes were sometimes sex- and age-specific. Surprisingly, mice stressed during adolescence showed no depressive-like behaviours as adults. This study provides evidence that adolescent psychological stress has pronounced long-term anxiogenic effects but that the precise behavioural phenotype differs based on sex and the sub-stage of adolescence during which the individual is exposed.
Collapse
|
7
|
Meknatkhah S, Mousavi MS, Sharif Dashti P, Azizzadeh Pormehr L, Riazi GH. The brain 3β-HSD up-regulation in response to deteriorating effects of background emotional stress: an animal model of multiple sclerosis. Metab Brain Dis 2021; 36:1253-1258. [PMID: 33721183 DOI: 10.1007/s11011-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
The brain 3β-hydroxysteroid dehydrogenase (3β-HSD), is the enzyme that catalyzes the biosynthesis of a neuroprotective factor, progesterone. The regulation of 3β-HSD in response to stress exposure in the cuprizone-induced model of Multiple Sclerosis was investigated and the reaction related to the demyelination extremity. 32 female Wistar rats divided into four groups (i.e., control group (Cont), non-stress cuprizone treated (N-CPZ), physical stress- cuprizone treated (P-CPZ) and emotional stress- cuprizone treated (E-CPZ). A witness foot-shock model used to induce background stress for 5 days. An elevated-plus maze applied to validate the stress induction. Followed by 6 weeks of cuprizone treatment, the Y-maze test performed to confirm brain demyelination. 3β-HSD gene expression as an indicator of progesterone synthesis examined. At the behavioral level, both stressed groups reflected more impaired spatial memory compared to the N-CPZ group (p < 0.01), with more severe results in the E-CPZ group (p < 0.01). The results of mRNA expression of 3β-HSD illustrated significant elevation in all cuprizone treated groups (p < 0.001) with a higher up-regulation (p < 0.001) in the E-CPZ group. Background stress -particularly emotional type- exacerbates the demyelination caused by cuprizone treatment. The brain up-regulates the 3β-HSD gene expression as a protective response relative to the myelin degradation extent.
Collapse
Affiliation(s)
- Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Monireh-Sadat Mousavi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Pouya Sharif Dashti
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Leila Azizzadeh Pormehr
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Predisposition of Neonatal Maternal Separation to Visceral Hypersensitivity via Downregulation of Small-Conductance Calcium-Activated Potassium Channel Subtype 2 (SK2) in Mice. Neural Plast 2020; 2020:8876230. [PMID: 33029124 PMCID: PMC7528131 DOI: 10.1155/2020/8876230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Visceral hypersensitivity is a common occurrence of gastrointestinal diseases such as irritable bowel syndrome (IBS), wherein early-life stress (ELS) may have a high predisposition to the development of visceral hypersensitivity in adulthood, with the specific underlying mechanism still elusive. Herein, we assessed the potential effect of small-conductance calcium-activated potassium channel subtype 2 (SK2) in the spinal dorsal horn (DH) on the pathogenesis of visceral hypersensitivity induced by maternal separation (MS) in mice. Methods Neonatal mice were subjected to the MS paradigm, an established ELS model. In adulthood, the visceral pain threshold and the abdominal withdrawal reflex (AWR) were measured with an inflatable balloon. The elevated plus maze, open field test, sucrose preference test, and forced swim test were employed to evaluate the anxiety- and depression-like behaviors. The expression levels of SK2 in the spinal DH were determined by immunofluorescence and western blotting. The mRNA of SK2 and membrane palmitoylated protein 2 (MPP2) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Electrophysiology was applied to evaluate the neuronal firing rates and SK2 channel-mediated afterhyperpolarization current (I AHP). The interaction between MPP2 and SK2 was validated by coimmunoprecipitation. Results In contrast to the naïve mice, ethological findings in MS mice revealed lowered visceral pain threshold, more evident anxiety- and depression-like behaviors, and downregulated expression of membrane SK2 protein and MPP2 protein. Moreover, electrophysiological results indicated increased neuronal firing rates and decreased I AHP in the spinal DH neurons. Nonetheless, intrathecal injection of the SK2 channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) in MS mice could reverse the electrophysiological alterations and elevate the visceral pain threshold. In the naïve mice, administration of the SK2 channel blocker apamin abated I AHP and elevated spontaneous neuronal firing rates in the spinal DH neurons, reducing the visceral pain threshold. Finally, disruption of the MPP2 expression by small interfering RNA (siRNA) could amplify visceral hypersensitivity in naïve mice. Conclusions ELS-induced visceral pain and visceral hypersensitivity are associated with the underfunction of SK2 channels in the spinal DH.
Collapse
|
9
|
Meknatkhah S, Dashti PS, Raminfard S, Rad HS, Mousavi MS, Riazi GH. The Changes in 1H-MRS Metabolites in Cuprizone-Induced Model of Multiple Sclerosis: Effects of Prior Psychological Stress. J Mol Neurosci 2020; 71:804-809. [PMID: 32915417 DOI: 10.1007/s12031-020-01702-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022]
Abstract
Stress is considered as an important risk factor in the progression and the onset of many disorders such as multiple sclerosis. However, metabolite changes as a result of demyelination under the detrimental effects of stress are not well understood. Thus, 36 female Wistar rats (i.e., groups (1) no-cuprizone (Cont), (2) no-stress + cuprizone-treated (Cup), (3) physical stress + cuprizone-treated (P-Cup), (4) psychological stress + cuprizone-treated (Psy-Cup), (5) physical stress + no-cuprizone-treated (P), (6) psychological stress + no-cuprizone-treated (Psy)) were used in this study. Following induction of repetitive stress, cuprizone treatment was carried out for 6 weeks to instigate demyelination in all groups except the control animal. Relative metabolite concentrations of the brain were investigated by single-voxel proton magnetic resonance spectroscopy (reporting N-acetyl-aspartate (NAA), glycerophosphocholine with phosphocholine (tCho) relative to total creatine (tCr)). According to 1H-MRS, rats in the Cup group indicated a reduction in NAA/ tCr (p < 0.001) as well as tCho/ tCr (p < 0.05) compared with that in the Cont group. In contrast, in both stress + cuprizone-treated groups, NAA/tCr and tCho/tCr ratios remarkably increased versus the Cup group (p < 0.001) and the Cont group (p < 0.001 for the Psy-Cup group and p < 0.05 for the P-Cup group). Both P and Psy groups revealed normal metabolite concentrations similar to the Cont group 6 weeks post stress. Seemingly, in the case of cuprizone alone, decreased level of metabolites is mainly relevant to neuronal cell impairments. Meanwhile, as a result of oxidative stress enhancement due to stress exposure, oligodendrocyte becomes the main victim indicating the increased level of metabolite ratios.
Collapse
Affiliation(s)
- Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Pouya Sharif Dashti
- College of Engineering, Faculty of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Samira Raminfard
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Saligheh Rad
- Quantitative Medical Imaging Systems Group (QMISG) Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh-Sadat Mousavi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|