1
|
Gupta V, Srivastava R. Ashwagandha Diminishes Hippocampal Apoptosis Induced by Microwave Radiation by Acetylcholinesterase Dependent Neuro-Inflammatory Pathway in Male Coturnix coturnix Japonica. Neurochem Res 2024; 49:1687-1702. [PMID: 38506951 DOI: 10.1007/s11064-024-04127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Microwave radiation (MWR) has been linked to neurodegeneration by inducing oxidative stress in the hippocampus of brain responsible for learning and memory. Ashwagandha (ASW), a medicinal plant is known to prevent neurodegeneration and promote neuronal health. This study investigated the effects of MWR and ASW on oxidative stress and cholinergic imbalance in the hippocampus of adult male Japanese quail. One control group received no treatment, the second group quails were exposed to MWR at 2 h/day for 30 days, third was administered with ASW root extract orally 100 mg/day/kg body weight and the fourth was exposed to MWR and also treated with ASW. The results showed that MWR increased serum corticosterone levels, disrupted cholinergic balance and induced neuro-inflammation. This neuro-inflammation further led to oxidative stress, as evidenced by decreased activity of antioxidant enzymes SOD, CAT and GSH. MWR also caused a significant decline in the nissil substances in the hippocampus region of brain indicating neurodegeneration through oxidative stress mediated hippocampal apoptosis. ASW, on the other hand, was able to effectively enhance the cholinergic balance and subsequently lower inflammation in hippocampus neurons. This suggests that ASW can protect against the neurodegenerative effects of MWR. ASW also reduced excessive ROS production by increasing the activity of ROS-scavenging enzymes. Additionally, ASW prevented neurodegeneration through decreased expression of caspase-3 and caspase-7 in hippocampus, thus promoting neuronal health. In conclusion, this study showed that MWR induces apoptosis and oxidative stress in the brain, while ASW reduces excessive ROS production, prevents neurodegeneration and promotes neuronal health.
Collapse
Affiliation(s)
- Vaibhav Gupta
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
2
|
Chen L, Li X, Wu Y, Wang J, Pi J. Differential analysis of ovarian tissue between high and low-yielded laying hens in the late laying stage and the effect of LECT2 gene on follicular granulosa cells proliferation. Mol Biol Rep 2024; 51:240. [PMID: 38300380 DOI: 10.1007/s11033-024-09260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
The ovaries of high-yield laying hens exhibited signs of aging beyond 400 days of age, subsequently resulting in a decline in both egg production and egg quality. Oxidative stress, characterized by an increase in the production of reactive oxygen species (ROS), stands as one of the principal processes contributing to ovarian aging. Elevated ROS levels are implicated in the induction of apoptosis in granulosa cells (GCs), provoking mitochondrial impairment, and diminishing the capacity of the antioxidant defense system. This investigation stratified laying hens into two distinct groups, predicated upon their egg production levels: high-yield hens (HH) and low-yield hens (LL). The study focused on evaluating oxidative stress markers and identifying differentially expressed genes between these two groups. The findings revealed that the LL group exhibited follicular atresia, mitochondrial disruptions, and apoptotic occurrences in ovarian GCs. Notably, ROS levels, Malondialdehyde (MDA) concentrations, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations in ovarian tissue and follicular GCs were substantially higher in the HH group. Furthermore, the RNA-sequencing results unveiled differential expression of the LECT2 gene between the HH and LL groups. Consequently, an overexpression vector for the LECT2 gene was successfully constructed and introduced into GCs. The quantitative polymerase chain reaction (QPCR) analysis exhibited significant downregulation (p < 0.01) of key apoptotic genes such as Caspase-3 and C-myc and significant upregulation (p < 0.01) of BCL2 following the overexpression of the LECT2 gene in GCs. In conclusion, oxidative stress emerges as a pivotal factor influencing the laying traits of both high and low-yield laying hens. The accumulation of reactive oxygen species (ROS) within the ovaries precipitates apoptosis in GCs, subsequently leading to follicular atresia and a reduction in egg production. Furthermore, we employed RNA sequencing technology to examine the ovarian matrix tissue in high and low laying hens during the late phase of egg laying. Our analysis revealed a substantial upregulation of the LECT2 gene in the ovarian matrix tissue of high laying hens. This observation implies that the LECT2 gene exerts a pivotal influence on driving the proliferation and differentiation of follicular GCs, thereby exerting a crucial regulatory role in follicular development.
Collapse
Affiliation(s)
- Lin Chen
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China
- College of Animal Science, Yangtze University, Jingzhou, 434000, China
| | - Xianqiang Li
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China
- College of Animal Science, Yangtze University, Jingzhou, 434000, China
| | - Yan Wu
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China.
| | - Jiaxiang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434000, China
| | - Jinsong Pi
- Animal Husbandry and Veterinary Research Institute, Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Sciences, Wuhan, 430000, China
| |
Collapse
|
3
|
Grzegorzewska AK, Wolak D, Hrabia A. Effect of tamoxifen treatment on catalase (CAT) and superoxide dismutase (SOD) expression and localization in the hen oviduct. Theriogenology 2024; 214:73-80. [PMID: 37862940 DOI: 10.1016/j.theriogenology.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The imbalance between free reactive oxygen species (ROS) generation and removal (e.g., by antioxidative enzymes) leads to the damage of important biomolecules and cells. Earlier studies in hens showed that treatment with tamoxifen (TMX; estrogen receptor inhibitor) modulates oxidative stress and causes the reproductive system regression realized by cell apoptosis. The aim of the present study was, therefore, to examine the expression and immunolocalization of the key enzymatic antioxidants, i.e. catalase (CAT) and superoxide dismutase (SOD), in the chicken oviduct following TMX treatment. Laying hens were treated daily with TMX until a pause in egg-laying occurred and then euthanized on day 8 of the experiment. Quantitative real-time PCR and western blot analyses showed the presence of CAT and SOD transcripts and proteins, respectively, in all oviductal segments, i.e., the infundibulum, magnum, isthmus, shell gland and vagina. In control hens (laying), the mRNA expression of CAT was the highest in the shell gland, lower in the isthmus and the lowest in other oviductal parts, whereas protein expression was the highest in the magnum, lower in the isthmus and the lowest in other segments. The SOD transcript and protein abundances only were lower in the magnum than in other segments. Immunoreactive CAT and SOD products were localized in all layers of the oviductal wall, but the intensity of staining depended on the cell type. TMX treatment affected CAT and SOD expression and the effect of TMX depended on gene, protein, cell type and oviductal part. Generally, CAT expression was elevated, while SOD expression was decreased under TMX treatment. These results point to the importance of CAT and SOD in the maintenance of proper oviduct health and function. Changes in ROS scavenging enzymes after estrogen receptor blockage indicate the significance of estrogen in the regulation of oxidative status in the avian oviduct.
Collapse
Affiliation(s)
- Agnieszka K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland.
| |
Collapse
|
4
|
Liguori G, Tafuri S, Pelagalli A, Ali’ S, Russo M, Mirabella N, Squillacioti C. G Protein-Coupled Estrogen Receptor (GPER) and ERs Are Modulated in the Testis-Epididymal Complex in the Normal and Cryptorchid Dog. Vet Sci 2024; 11:21. [PMID: 38250927 PMCID: PMC10820011 DOI: 10.3390/vetsci11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
There is growing evidence by the literature that the unbalance between androgens and estrogens is a relevant condition associated with a common canine reproductive disorder known as cryptorchidism. The role of estrogens in regulating testicular cell function and reproductive events is supposedly due to the wide expression of two nuclear estrogen receptors (ERs), ER-alpha and ER-beta and a trans-membrane G protein-coupled estrogen receptor (GPER) in the testis. In this study, immunohistochemistry, Western blotting and qRT-PCR were used to assess the distribution and expression of GPER in the testis-epididymal complex in the normal and cryptorchid dog. ER-alpha and ER-beta were also evaluated to better characterize the relative abundances of all three receptors. In addition, in these tissues, the expression level of two proteins as SOD1 and Nrf2 normally associated with oxidative stress was investigated to evaluate a possible relationship with ERs. Our data revealed changes in the distribution and expression of the GPER between the normal and cryptorchid dog. In particular, dogs affected by cryptorchidism showed an upregulation of GPER at level of the examined reproductive tract. Also considering the obtained result of a modulation of SOD1 and Nrf2 expression, we could hypothesize the involvement of GPER in the cryptorchid condition. Further studies are, however, necessary to characterize the role of GPER and its specific signaling mechanisms.
Collapse
Affiliation(s)
- Giovanna Liguori
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
- Department of Prevention, ASL FG, Piazza Pavoncelli 11, 71121 Foggia, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, 80137 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| | - Sabrina Ali’
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Marco Russo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Naples, Italy; (G.L.); (S.T.); (S.A.); (M.R.); (N.M.); (C.S.)
| |
Collapse
|
5
|
Khan A, Kango N, Srivastava R. Impact of Dietary Probiotics on the Immune and Reproductive Physiology of Pubertal Male Japanese Quail (Coturnix coturnix japonica) Administered at the Onset of Pre-Puberty. Probiotics Antimicrob Proteins 2024:10.1007/s12602-023-10209-9. [PMID: 38170389 DOI: 10.1007/s12602-023-10209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Fertility in males is dependent on the proper production of sperms involving the synchronization of numerous factors like oxidative stress, inflammatory processes, and hormonal regulation. Inflammation associated with oxidative stress is also known to impair sperm function. Nutritional factors like probiotics and prebiotics have the potential benefits to modulate these factors which may enhance male fertility. In the present study, immature male Japanese quail at the beginning of 3rd week were administered with Lactobacillus rhamnosus (L), Bifidobacterium longum (B), and mannan-oligosaccharides (M) through dietary supplementation in individual groups as well as in combinations like LB and MLB. Markers of oxidative stress including SOD and catalase were examined by native PAGE; inflammatory biomarkers (IL-1β, IL-10, and NFκB), apoptotic markers (caspase 3 and caspase 7), steroidal hormones, and their receptors estrogen receptor alpha (ERα) and beta (ERβ) were assessed in testis. The study reveals that dietary supplementation of 1% L, B, and M in combination significantly and positively increases the overall growth of immature male quail specifically testicular weight and gonadosomatic index (GSI). Furthermore, significant improvement in testicular cell size; increased steroidal hormones like testosterone, FSH, and LH levels; increase in SOD, catalase enzymes; decrease in apoptotic factors Caspase 3, Caspase 7 and immune system strength observed indicated by a decrease in expression of IL-1β, NFκB; and increase of IL-10 in testis when LBM was used in combination. These variations are attributed to the increase in testicular estrogen receptors alpha and beta, facilitated by the neuroendocrine gonadal axis, ultimately leading to improved male fertility. It can be concluded that the dietary supplementation in combination with L, B, and M enhances male fertility in immature quail by increased expression of estrogen receptors via gut microbiota modulation. It also sheds light on the potential use of these nutritional factors in avian species as therapeutic interventions to overcome low fertility problems in quail thereby benefitting the poultry industry.
Collapse
Affiliation(s)
- Aamir Khan
- Avian Reproductive Physiology & Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Naveen Kango
- Department of Microbiology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, U.P., 211002, India.
| |
Collapse
|
6
|
Baghel K, Niranjan MK, Srivastava R. Withania somnifera inhibits photorefractoriness which triggers neuronal apoptosis in both pre-optic and paraventricular hypothalamic area of Coturnix coturnix japonica: involvement of oxidative stress induced p53 dependent Caspase-3 mediated low immunoreactivity of estrogen receptor alpha. Photochem Photobiol Sci 2023; 22:2205-2218. [PMID: 37266906 DOI: 10.1007/s43630-023-00442-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Light has a very important function in the regulation of the normal physiology including the neuroendocrine system, biological rhythms, cognitive behavior, etc. The variation in photoperiod acts as a stressor due to imbalance in endogenous hormones. Estrogen and its receptors ER alpha and beta play a vital role in the control of stress response in birds. The study investigates the estrogenic effects of a well-known medicinal plant Withania somnifera (WS), mediated by estrogen receptor alpha (ERα) in the hypothalamic pre-optic area (POA) and paraventricular nuclei (PVN). Further the study elucidates its anti-oxidants and anti-apoptotic activities in the brain of Japanese quail. To validate this hypothesis, mature male quails were exposed to long day length for 3 months and then transferred to intermediate day length to become photorefractory (PR) while controls were still continued under long daylength. Supplementation of WS root extract in PR quail increases plasma estrogen and lowers corticosterone. Further, in PR quail the variation in light downregulates immunoreactivity of ERα, oxidative stress and antioxidant enzyme activities i.e. superoxide dismutase and catalase in the brain. Neuronal apoptosis was observed in the POA and PVN of PR quail as indicated by the abundant expression of Caspase-3 and p53 which reduces after the administration of WS root extract. The neuronal population also found to decrease in PR although it increased in WS administered quails. Further, the study concluded that change in photoperiod from 3 months exposure of 16L: 8D to 13.5L: 10.5D directly activates neuronal apoptosis via expression of Caspase3 and p53 expression in the brain and increases neuronal and gonadal oxidative stress while WS root extract reverses them via enhanced estrogen and its receptor ERα expression in the hypothalamic pre-optic and PVN area of Japanese quail.
Collapse
Affiliation(s)
- Kalpana Baghel
- Avian Reproductive and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | | | - Rashmi Srivastava
- Department of Zoology, University of Allahabad, Prayagraj, UP, 211002, India.
| |
Collapse
|
7
|
Kosaruk W, Brown JL, Towiboon P, Punyapornwithaya V, Pringproa K, Thitaram C. Measures of Oxidative Status Markers in Relation to Age, Sex, and Season in Sick and Healthy Captive Asian Elephants in Thailand. Animals (Basel) 2023; 13:ani13091548. [PMID: 37174585 PMCID: PMC10177462 DOI: 10.3390/ani13091548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress is a pathological condition that can have adverse effects on animal health, although little research has been conducted on wildlife species. In this study, blood was collected from captive Asian elephants for the assessment of five serum oxidative status markers (reactive oxygen species (ROS) concentrations; malondialdehyde, MDA; albumin; glutathione peroxidase, GPx; and catalase) in healthy (n = 137) and sick (n = 20) animals. Health problems consisted of weakness, puncture wounds, gastrointestinal distress, eye and musculoskeletal problems, and elephant endotheliotropic herpesvirus hemorrhagic disease (EEHV-HD). Fecal samples were also collected to assess glucocorticoid metabolites (fGCMs) as a measure of stress. All data were analyzed in relation to age, sex, sampling season, and their interactions using generalized linear models, and a correlation matrix was constructed. ROS and serum albumin concentrations exhibited the highest concentrations in aged elephants (>45 years). No sex differences were found for any biomarker. Interactions were observed for age groups and seasons for ROS and catalase, while GPx displayed a significant interaction between sex and season. In pairwise comparisons, significant increases in ROS and catalase were observed in summer, with higher ROS concentrations observed only in the adult female group. Lower catalase activity was exhibited in juvenile males, subadult males, adult females, and aged females compared to subadult and adult elephants (males and females) in winter and the rainy season. There was a positive association between catalase activity and fGCMs (r = 0.23, p < 0.05), and a number of red blood cell parameters were positively associated with several of these biomarkers, suggesting high oxidative and antioxidative activity covary in red cells (p < 0.05). According to health status, elephants with EEHV-HD showed the most significant changes in oxidative stress markers, with MDA, GPx, and catalase being higher and albumin being lower than in healthy elephants. This study provides an analysis of understudied health biomarkers in Asian elephants, which can be used as additional tools for assessing the health condition of this species and suggests age and season may be important factors in data interpretation.
Collapse
Affiliation(s)
- Worapong Kosaruk
- Doctoral Degree Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Janine L Brown
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA
| | - Patcharapa Towiboon
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kidsadagon Pringproa
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai 50100, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
8
|
Chatterjee N, Kim C, Im J, Kim S, Choi J. Mixture and individual effects of benzene, toluene, and formaldehyde in zebrafish (Danio rerio) development: Metabolomics, epigenetics, and behavioral approaches. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104031. [PMID: 36460283 DOI: 10.1016/j.etap.2022.104031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
In this study, we aimed to investigate the potential hazards of volatile organic compounds (VOCs) on the development of zebrafish. To this end, zebrafish embryos were exposed in two different windows, either alone or in a mixture with VOCs (benzene, toluene, and formaldehyde) [EW1: 4 ± 2 h post-fertilization (hpf) to 24 hpf and EW2: 24 ± 2 hpf to 48 hpf]. Alterations in global DNA methylation and related gene expression, behavioral responses, and stress-related gene expression were observed. In addition to these endpoints, non-targeted NMR-based global metabolomics followed by pathway analysis showed significant changes in the metabolism of various amino acids during VOC exposure. Regardless of the analyzed endpoints, toluene was the most toxic chemical when exposed individually and possibly played the most pivotal role in the mixture treatment conditions. In conclusion, our data show that exposure to VOCs at embryonic developmental stages causes physiological perturbations and adverse outcomes at later life stages.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Chanhee Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, South Korea.
| |
Collapse
|
9
|
Dong Y, Zhang K, Han M, Miao Z, Liu C, Li J. Low Level of Dietary Organic Trace Minerals Improved Egg Quality and Modulated the Status of Eggshell Gland and Intestinal Microflora of Laying Hens During the Late Production Stage. Front Vet Sci 2022; 9:920418. [PMID: 35847638 PMCID: PMC9278061 DOI: 10.3389/fvets.2022.920418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to investigate the effects of dietary organic trace minerals on egg quality and intestinal microflora of laying hens during the late production stage. In total, 1,080 Jinghong-1 laying hens aged 57 weeks were randomly assigned to five treatment groups: CON, basal diet containing about 6, 29, 49, and 308 mg·kg−1 of Cu, Mn, Zn, and Fe; IT100, basal diet supplemented with 10, 80, 80, and 60 mg·kg−1 of Cu, Mn, Zn, and Fe (each as inorganic sulfates), respectively; OT20, basal diet supplemented with 2, 16, 16, and 12 mg·kg−1 of Cu, Mn, Zn, and Fe (each as organic trace minerals chelated with lysine and methionine in the ratio of 2:1 amino acid: organic trace minerals), respectively; OT30, basal diet supplemented with 3, 24, 24, and 18 mg·kg−1 of organic Cu, Mn, Zn, and Fe, respectively; and OT50, basal diet supplemented with 5, 40, 40, and 30 mg·kg−1 of organic Cu, Mn, Zn, and Fe, respectively. Overall, OT20, OT30, and OT50 had equal or higher potential to promote Cu, Mn, Zn, and Fe deposition in egg yolks compared with IT100. In addition, OT50 enhanced the eggshell breaking strength and the antioxidant status of the eggshell gland. Cecal microbiota, including Barnesiellaceae and Clostridia, were significantly decreased in IT100- and OT50-treated hens compared with the CON group. Clostridia UCG-014 was negatively correlated with eggshell weight and OCX-32. In conclusion, reduced supplementation of organic trace minerals can improve the eggshell quality and trace mineral deposition, possibly by modulating genes involved in the eggshell formation in the eggshell gland and by controling of the potentially harmful bacteria Barnesiellaceae and Clostridiales in the cecum. Inorganic trace minerals may be effectively replaced by low level of complex organic trace minerals in laying hens during the late production stage.
Collapse
Affiliation(s)
- Yuanyang Dong
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Keke Zhang
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Han
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Miao
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Ci Liu
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Jianhui Li
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
10
|
Liver Transcriptome Response to Heat Stress in Beijing You Chickens and Guang Ming Broilers. Genes (Basel) 2022; 13:genes13030416. [PMID: 35327970 PMCID: PMC8953548 DOI: 10.3390/genes13030416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Heat stress is one of the most prevalent issues in poultry production that reduces performance, robustness, and economic gains. Previous studies have demonstrated that native chickens are more tolerant of heat than commercial breeds. However, the underlying mechanisms of the heat tolerance observed in native chicken breeds remain unelucidated. Therefore, we performed a phenotypical, physiological, liver transcriptome comparative analysis and WGCNA in response to heat stress in one native (Beijing You, BY) and one commercial (Guang Ming, GM) chicken breed. The objective of this study was to evaluate the heat tolerance and identify the potential driver and hub genes related to heat stress in these two genetically distinct chicken breeds. In brief, 80 BY and 60 GM, 21 days old chickens were submitted to a heat stress experiment for 5 days (33 °C, 8 h/day). Each breed was divided into experimental groups of control (Ctl) and heat stress (HS). The results showed that BY chickens were less affected by heat stress and displayed reduced DEGs than GM chickens, 365 DEGs and 382 DEGs, respectively. The transcriptome analysis showed that BY chickens exhibited enriched pathways related to metabolism activity, meanwhile GM chickens’ pathways were related to inflammatory reactions. CPT1A and ANGPTL4 for BY chickens, and HSP90B1 and HSPA5 for GM chickens were identified as potential candidate genes associated with HS. The WGCNA revealed TLR7, AR, BAG3 genes as hub genes, which could play an important role in HS. The results generated in this study provide valuable resources for studying liver transcriptome in response to heat stress in native and commercial chicken lines.
Collapse
|
11
|
Baghel K, Srivastava R. Stress and steroid interaction modulates expression of estrogen receptor alpha in the brain, pituitary, and testes of immature Gallus gallus domesticus. Stress 2021; 24:931-944. [PMID: 34423719 DOI: 10.1080/10253890.2021.1965119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In nature, food availability stimulates hypothalamo-pituitary-gonadal (HPG) axis while its scarcity induces stress, which further stimulates hypothalamo-pituitary-adrenal (HPA) axis producing a detrimental effect on the avian reproductive physiology. The present experiment was designed to examine the interaction of stress like food restriction and estradiol on male reproductive physiology with special emphasis on estrogen receptor alpha (ERα) as these play crucial role in reproduction. To achieve this, 60 day old White Leghorn immature cockrels were taken and divided into four groups (n = 8 per group). One group was provided with food and water ad libitum. Second group was food restricted (FR) for 9 h/day after 5 days, third and fourth were administered with estradiol benzoate (EB 0.5 mg/100g/day) for 12 days. Fourth group was FR for 9 h/day after 5 days of EB treatment till last day of experiment (EB + FR). Immunofluorescent localization of ERα was principally in the pre-optic area and paraventricular nuclei of hypothalamus and in anterior pituitary gland. ERα expression was highly reduced (from 40 AU to 20 AU) after FR in testis but it increased (50 AU) after EB administration, EB + FR reflects a diminishing pattern in the increment after EB. FR decreased plasma estradiol while EB increased it. Increased plasma corticosterone, hydrogen peroxide, malondialdehyde, and decreased anti-oxidant enzymes in brain and testis of all groups indicate oxidative stress in the HPG axis. The increased ERα after EB and a decrease with FR and EB + FR support their reproductive function. Estrogen and its receptor alpha are responsible for maintaining epithelial morphology but FR along with EB administration modulates the testicular development by significantly decreasing its size (p<.0001) and seminiferous tubules (p<.0001) and no sperm formation via highly reduced expression of ir-ERα in HPG axis. Our findings led us to conclude that stress like FR and estradiol induces testicular regression immature male chickens by modulating ir-ERα expression in the HPG axis thereby resulting in reduction in reproductive physiology.
Collapse
Affiliation(s)
- Kalpana Baghel
- Department of Zoology, School of Biological Sciences, Avian Reproductive Physiology & Endocrinology Laboratory, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rashmi Srivastava
- Department of Zoology, School of Biological Sciences, Avian Reproductive Physiology & Endocrinology Laboratory, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
12
|
Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals (Basel) 2021; 11:ani11072152. [PMID: 34359280 PMCID: PMC8300725 DOI: 10.3390/ani11072152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Estrogens are a group of steroid hormones that recently have gained even more attention in the eyes of scientists. There is an ongoing discussion in the scientific community about their relevance as environmental contaminants and the danger they pose to animal health and welfare. In available literature we can find many examples of their negative effects and mechanisms that are involved with such phenomena. Abstract Nowadays, there is a growing interest in environmental pollution; however, knowledge about this aspect is growing at an insufficient pace. There are many potential sources of environmental contamination, including sex hormones—especially estrogens. The analyzed literature shows that estrone (E1), estradiol (E2), estriol (E3), and synthetic ethinyloestradiol (EE2) are the most significant in terms of environmental impact. Potential sources of contamination are, among others, livestock farms, slaughterhouses, and large urban agglomerations. Estrogens occurring in the environment can negatively affect the organisms, such as animals, through phenomena such as feminization, dysregulation of natural processes related to reproduction, lowering the physiological condition of the organisms, disturbances in the regulation of both proapoptotic and anti-apoptotic processes, and even the occurrence of neoplastic processes thus drastically decreasing animal welfare. Unfortunately, the amount of research conducted on the negative consequences of their impact on animal organisms is many times smaller than that of humans, despite the great richness and diversity of the fauna. Therefore, there is a need for further research to help fill the gaps in our knowledge.
Collapse
|
13
|
Egbuniwe IC, Uchendu CN, Obidike IR. Ameliorative effects of betaine and ascorbic acid on endocrine and erythrocytic parameters of sexually-maturing female Japanese quails during the dry season. J Therm Biol 2021; 96:102812. [PMID: 33627289 DOI: 10.1016/j.jtherbio.2020.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/08/2020] [Accepted: 12/12/2020] [Indexed: 01/02/2023]
Abstract
This study investigated the ameliorative effects of betaine and ascorbic acid on some endocrine and erythrocytic parameters in female Japanese quails (Coturnix coturnix japonica) reared during the dry season. A total of 372 fourteen- day-old female quails sourced commercially was kept in cages for 56 days. After seven days acclimation, all birds were weighed and allotted by complete random design to four groups with 3 replicates per group. Every group having 93 quails, comprised of 31 birds per replicate. Experimental groups were birds fed: Control (basal); ascorbic acid (AA), at 200 mg/Kg; betaine (BET) at 2 g/kg and combination of AA (200 mg/Kg) + BET (2 g/kg) of diets. Daily dry-bulb temperature (DBT), relative humidity (RH) and temperature-humidity index (THI) measured at 08:00 h, 13:00 h and 17:00 h fluctuated widely and exceeded the zone of thermal comfort for Japanese quails. Serum levels of catalase (CAT), reduced glutathione (GSH), cortisol, sex hormones (luteinizing hormone, LH and estradiol) and erythrocyte parameters (packed cell volume, PCV; red blood count, RBC; haemoglobin concentration, Hb; mean corpuscular volume (MCV), hemoglobin (MCH) were obtained at 28, 49 and 70 days of age. In female quails, AA ± BET increased (P < 0.05) CAT and GSH, but decreased (P < 0.05) cortisol levels when compared with control values at varying ages. There were higher (P < 0.05) values of LH in quails fed dietary AA + BET (28 and 49 day-old) and estradiol in those which consumed either BET or AA + BET (28, 49 and 70 day-old) and AA (at 70 day-old). At 49 day-old, either BET or AA + BET increased (P < 0.05) RBC count, but lowered (P < 0.05) MCV and MCH. In conclusion, betaine and ascorbic acid supplementation improved activities of serum sex and stress hormones, and erythrocytic parameters of Japanese quails during the dry season.
Collapse
Affiliation(s)
| | - Chukwuka Nwocha Uchendu
- Department of Veterinary Physiology and Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
14
|
Baghel K, Niranjan MK, Srivastava R. Water and Food restriction decreases immunoreactivity of oestrogen receptor alpha and antioxidant activity in testes of sexually mature Coturnix coturnix japonica. J Anim Physiol Anim Nutr (Berl) 2020; 104:1738-1747. [PMID: 32483881 DOI: 10.1111/jpn.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/13/2023]
Abstract
Food and water are closely associated with reproductive willingness in vertebrates. These are important for animals and their non-availability act as stressors which decrease sex steroid secretion suppressing reproductive behaviour. Oestrogen plays a crucial role in reproduction via its receptors alpha (ERα) and beta (ERβ). This study tested the hypothesis that ERα in testes of male Japanese quail is regulated during water and food deprivations. The present study reveals that both water and food deprivations cause oxidative stress and subsequently decrease catalase and superoxide dismutase activity, while these increase malondialdehyde and hydrogen peroxide. Both deprivations reduce plasma oestradiol whereas elevate corticosterone level. The immunofluorescent localization of ERα in the testes occurs predominantly in the seminiferous tubules of control while reduces after both food and water deprivations. All types of spermatogenic cells were seen in control testis, while after water and food deprivations size of seminiferous tubules and spermatogenic cells population decreased. Scanning electron microscopic study exhibited fully mature sperms in clusters with head and elongated flagellum, whereas after water deprivation maximum sperms were distorted, scattered with highly reduced head. On food deprivation, only few sperms were seen with head and tail. Thus, taking into account the localization of ERα in testis, it is obvious that oestrogens produced locally are involved in regulation of spermatogenesis and spermiogenesis during stress.
Collapse
Affiliation(s)
- Kalpana Baghel
- Avian Reproductive Physiology and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Mukesh K Niranjan
- Avian Reproductive Physiology and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Rashmi Srivastava
- Avian Reproductive Physiology and Endocrinology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|