1
|
Zhao X, Chae Y, Smith D, Chen V, DeFelipe D, Sokol JW, Sadangi A, Tschida K. Short-term social isolation acts on hypothalamic neurons to promote social behavior in a sex- and context-dependent manner. eLife 2025; 13:RP94924. [PMID: 40035330 DOI: 10.7554/elife.94924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Social animals, including both humans and mice, are highly motivated to engage in social interactions. Short-term social isolation promotes social behavior, but the neural circuits through which it does so remain incompletely understood. Here, we sought to identify neurons that promote social behavior in single-housed female mice, which exhibit increased rates of social investigation, social ultrasonic vocalizations (USVs), and mounting during same-sex interactions that follow a period of short-term (3 days) isolation. We first used immunostaining for the immediate early gene Fos to identify a population of neurons in the preoptic hypothalamus (POA) that increase their activity in single-housed females following same-sex interactions (POAsocial neurons) but not in single-housed females that did not engage in social interactions. TRAP2-mediated chemogenetic silencing of POAsocial neurons in single-housed females significantly attenuates the effects of short-term isolation on social investigation, USV production, and mounting. In contrast, caspase-mediated ablation of POAsocial neurons in single-housed females robustly attenuates mounting but does not decrease social investigation or USV production. Optogenetic activation of POAsocial neurons in group-housed females promotes social investigation and USV production but does not recapitulate the effects of short-term isolation on mounting. To understand whether a similar population of POAsocial neurons promotes social behavior in single-housed males, we performed Fos immunostaining in single-housed males following either same-sex or opposite-sex social interactions. These experiments revealed a population of POA neurons that increase Fos expression in single-housed males following opposite-sex, but not same-sex, interactions. Chemogenetic silencing of POAsocial neurons in single-housed males during interactions with females reduces mounting but does not affect social investigation or USV production. These experiments identify a population of hypothalamic neurons that promote social behavior following short-term isolation in a sex- and social context-dependent manner.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, United States
| | - Yurim Chae
- Department of Psychology, Cornell University, Ithaca, United States
| | - Destiny Smith
- Department of Psychology, Cornell University, Ithaca, United States
| | - Valerie Chen
- Department of Psychology, Cornell University, Ithaca, United States
| | - Dylan DeFelipe
- Department of Psychology, Cornell University, Ithaca, United States
| | - Joshua W Sokol
- Department of Psychology, Cornell University, Ithaca, United States
| | - Archana Sadangi
- Department of Psychology, Cornell University, Ithaca, United States
| | | |
Collapse
|
2
|
Madrid JE, Pranic NM, Chu S, Bergstrom JJD, Singh R, Rabinovich J, Lopez KA, Ophir AG, Tschida KA. Effects of short-term isolation on social behaviors in prairie voles. PLoS One 2024; 19:e0313172. [PMID: 39527561 PMCID: PMC11554233 DOI: 10.1371/journal.pone.0313172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Social isolation affects the brain and behavior in a variety of animals, including humans. Studies in traditional laboratory rodents, including mice and rats, have supported the idea that short-term social isolation promotes affiliative social behaviors, while long-term isolation promotes anti-social behaviors, including increased aggression. Whether the effects of isolation on the social behaviors of mice and rats generalize to other rodents remains understudied. In the current study, we characterized the effects of short-term (3-days) social isolation on the social behaviors of adult prairie voles (Microtus ochrogaster) during same-sex and opposite-sex social interactions. Our experiments revealed that short-term isolation did not affect rates of ultrasonic vocalizations or time spent in non-aggressive social behaviors and huddling during same-sex and opposite-sex interactions. Unexpectedly, although short-term isolation also did not affect time spent in resident-initiated and mutually-initiated aggressive behavior, we found that short-term isolation increased time spent in visitor-initiated aggression during male-male interactions. Our findings highlight the importance of comparative work across species and the consideration of social context to understand the diverse ways in which social isolation can impact social behavior.
Collapse
Affiliation(s)
- Jesus E. Madrid
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Nicole M. Pranic
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Chu
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | | | - Rhea Singh
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Joclin Rabinovich
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Kaycee Arias Lopez
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Alexander G. Ophir
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Tschida
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
3
|
Wikanthi LSS, Forsström J, Ewaldsson B, Palsdottir V, Admyre T. Improved Memory and Lower Stress Levels in Male Mice Co-Housed with Ovariectomized Female Mice. Animals (Basel) 2024; 14:1503. [PMID: 38791720 PMCID: PMC11117350 DOI: 10.3390/ani14101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Aggressiveness, expressed by fighting, is a frequent problem in group-housed laboratory male mice and results in increased stress, injury, and death. One way to prevent fighting is by pairing the male mice with ovariectomized female mice to provide a compatible companion. However, the effect of these housing conditions remains unclear. Therefore, we aimed to evaluate behavior and stress levels in two different housing conditions, pair-housed with an ovariectomized female and group-housed with other males. Behavioral tests were performed to assess stress and anxiety-like behavior. Moreover, the corticosterone levels in plasma were measured by ELISA. Based on home cage behavior assessment, pair-housed male mice showed no signs of fighting, not even after isolation and regrouping. Our results also showed that the pair-housed males had a better memory and demonstrated less anxiety-like behavior. Subsequently, the pair-housed male mice had a larger reduction in corticosterone levels compared to group-housed males. Overall, pair-housing reduced anxiety-like behavior and stress levels in male mice compared to standard group-housing.
Collapse
Affiliation(s)
- Layung Sekar Sih Wikanthi
- Department of Animal Science and Technology, Clinical Pharmacology&Safety Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden; (L.S.S.W.); (B.E.)
| | - Johan Forsström
- Department of Translational Genomics, Discovery Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden; (J.F.); (V.P.)
| | - Birgit Ewaldsson
- Department of Animal Science and Technology, Clinical Pharmacology&Safety Science, R&D, AstraZeneca, 43183 Gothenburg, Sweden; (L.S.S.W.); (B.E.)
| | - Vilborg Palsdottir
- Department of Translational Genomics, Discovery Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden; (J.F.); (V.P.)
| | - Therése Admyre
- Department of Translational Genomics, Discovery Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden; (J.F.); (V.P.)
| |
Collapse
|
4
|
Lopez K, Baker MR, Toth M. Single cell transcriptomic representation of social dominance in prefrontal cortex and the influence of preweaning maternal and postweaning social environment. Sci Rep 2024; 14:2206. [PMID: 38272981 PMCID: PMC10810822 DOI: 10.1038/s41598-024-52200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Social dominance encompasses winning dyadic contests and gaining priority access to resources and reproduction. Dominance is influenced by environmental factors, particularly during early postnatal life and adolescence. A disinhibitory medial prefrontal cortex (mPFC) microcircuit has been implicated in the expression of dominance in the "tube test" social competition paradigm in mice, but the neuroplasticity underlying dominance is not known. We previously reported that male pups raised by physically active (wheel-running, as opposed to sedentary) dams exhibit tube test dominance and increased reproductive fitness, and here we show that social isolation from weaning also increases dominance. By using single cell transcriptomics, we tested if increased dominance in these models is associated with a specific transcriptional profile in one or more cell-types in the mPFC. The preweaning maternal effect, but not postweaning social isolation, caused gene expression changes in pyramidal neurons. However, both the effect of maternal exercise and social isolation induced the coordinated downregulation of synaptic channel, receptor, and adhesion genes in parvalbumin positive (PV) interneurons, suggesting that development of dominance is accompanied by impaired PV interneuron-mediated inhibition of pyramidal cells. This study may help understand environmentally induced transcriptional plasticity in the PFC and its relationship to tube test dominance.
Collapse
Affiliation(s)
- Katherine Lopez
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Madelyn R Baker
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Guimarães DM, Valério-Gomes B, Vianna-Barbosa RJ, Oliveira W, Neves GÂ, Tovar-Moll F, Lent R. Social isolation leads to mild social recognition impairment and losses in brain cellularity. Brain Struct Funct 2023; 228:2051-2066. [PMID: 37690044 DOI: 10.1007/s00429-023-02705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.
Collapse
Affiliation(s)
- Daniel Menezes Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Robarts Research Institute, University of Western Ontario, London, Canada.
| | - Bruna Valério-Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Washington Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Ângela Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute of Research and Education, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Heng V, Zigmond M, Smeyne RJ. Neuroanatomical and neurochemical effects of prolonged social isolation in adult mice. Front Neuroanat 2023; 17:1190291. [PMID: 37662476 PMCID: PMC10471319 DOI: 10.3389/fnana.2023.1190291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction As social animals, our health depends in part on interactions with other human beings. Yet millions suffer from chronic social isolation, including those in nursing/assisted living facilities, people experiencing chronic loneliness as well as those in enforced isolation within our criminal justice system. While many historical studies have examined the effects of early isolation on the brain, few have examined its effects when this condition begins in adulthood. Here, we developed a model of adult isolation using mice (C57BL/6J) born and raised in an enriched environment. Methods From birth until 4 months of age C57BL/6J mice were raised in an enriched environment and then maintained in that environment or moved to social isolation for 1 or 3 months. We then examined neuronal structure and catecholamine and brain derived neurotrophic factor (BDNF) levels from different regions of the brain, comparing animals from social isolation to enriched environment controls. Results We found significant changes in neuronal volume, dendritic length, neuronal complexity, and spine density that were dependent on brain region, sex, and duration of the isolation. Isolation also altered dopamine in the striatum and serotonin levels in the forebrain in a sex-dependent manner, and also reduced levels of BDNF in the motor cortex and hippocampus of male but not female mice. Conclusion These studies show that isolation that begins in adulthood imparts a significant change on the homeostasis of brain structure and chemistry.
Collapse
Affiliation(s)
- Vibol Heng
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael Zigmond
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard Jay Smeyne
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Walton NL, Antonoudiou P, Barros L, Dargan T, DiLeo A, Evans-Strong A, Gabby J, Howard S, Paracha R, Sánchez EJ, Weiss GL, Kong D, Maguire JL. Impaired Endogenous Neurosteroid Signaling Contributes to Behavioral Deficits Associated With Chronic Stress. Biol Psychiatry 2023; 94:249-261. [PMID: 36736870 PMCID: PMC10363189 DOI: 10.1016/j.biopsych.2023.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic stress is a major risk factor for psychiatric illnesses, including depression. However, the pathophysiological mechanisms whereby stress leads to mood disorders remain unclear. Allopregnanolone acts as a positive allosteric modulator preferentially on δ subunit-containing GABAA (gamma-aminobutyric acid A) receptors. Accumulating clinical and preclinical evidence supports the antidepressant effects of exogenous administration of allopregnanolone analogs; yet, the role of endogenous allopregnanolone in the pathophysiology of depression remains unknown. METHODS We utilized a chronic unpredictable stress (CUS) mouse model, followed by behavioral and biochemical assays, to examine whether altered neurosteroid signaling contributes to behavioral outcomes following CUS. We subsequently performed in vivo CRISPR (clustered regularly interspaced short palindromic repeats) knockdown of rate-limiting enzymes involved in allopregnanolone synthesis, 5α-reductase type 1 and 2 (5α1/2), in addition to lentiviral overexpression of 5α1/2 in the basolateral amygdala (BLA) of mice that underwent CUS to assess the impact of 5α1/2 on behavioral outcomes. RESULTS The expression of δ subunit-containing GABAA receptors and endogenous levels of allopregnanolone were reduced in the BLA following CUS. Treatment with an exogenous allopregnanolone analog, SGE-516, was sufficient to increase allopregnanolone levels in the BLA following CUS. Knockdown of 5α1/2 in the BLA mimicked the behavioral outcomes associated with CUS. Conversely, overexpression of 5α1/2 in the BLA improved behavioral outcomes following CUS. CONCLUSIONS Our findings demonstrate that chronic stress impairs endogenous neurosteroid signaling in the BLA, which is sufficient to induce behavioral deficits. Further, these studies suggest that allopregnanolone-based treatments may directly target the underlying pathophysiology of mood disorders suggesting that targeting endogenous neurosteroidogenesis may offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Najah L Walton
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Pantelis Antonoudiou
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lea Barros
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Biology, Hamilton College, Clinton, New York
| | - Tauryn Dargan
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Alyssa DiLeo
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Aidan Evans-Strong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Jenah Gabby
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Louis Stokes Alliance for Minority Participation, Tufts University, Medford, Massachusetts
| | - Samantha Howard
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rumzah Paracha
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Edgardo J Sánchez
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Building Diversity in Biomedical Sciences Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Chemistry, University of Puerto Rico, Cayey, Puerto Rico
| | - Grant L Weiss
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Dong Kong
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts; Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
8
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
9
|
George A, Padilla-Coreano N, Opendak M. For neuroscience, social history matters. Neuropsychopharmacology 2023; 48:979-980. [PMID: 36922626 PMCID: PMC10209051 DOI: 10.1038/s41386-023-01566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Anne George
- Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Nancy Padilla-Coreano
- Evelyn F. & William McKnight Brain Institute and Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Gallo AT, Addis S, Martyn V, Ramanathan H, Wilkerson GK, Bennett KS, Hood SD, Stampfer H, Hulse GK. The role of flumazenil in generalised anxiety disorder: a pilot naturalistic open-label study with a focus on treatment resistance. Ther Adv Psychopharmacol 2023; 13:20451253231156400. [PMID: 36937113 PMCID: PMC10021101 DOI: 10.1177/20451253231156400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Background Anxiety disorders are highly prevalent and chronic disorders with treatment resistance to current pharmacotherapies occurring in approximately one in three patients. It has been postulated that flumazenil (FMZ) is efficacious in the management of anxiety disorders via the removal of α4β2δ gamma-aminobutyric acid A receptors. Objective To assess the safety and feasibility of continuous low-dose FMZ infusions for the management of generalised anxiety disorder (GAD) and collect preliminary efficacy data. Design Uncontrolled, open-label pilot study. Method Participants had a primary diagnosis of generalised anxiety disorder (GAD) and received two consecutive subcutaneous continuous low-dose FMZ infusions. Each infusion contained 16 mg of FMZ and was delivered over 96 ± 19.2 h. The total dose of FMZ delivered was 32 mg over approximately 8 days. Sodium valproate was given to participants at risk of seizure. The primary outcome was the change in stress and anxiety subscale scores on the Depression Anxiety Stress Scale-21 between baseline, day 8, and day 28. Results Nine participants with a primary diagnosis of GAD were treated with subcutaneous continuous low-dose FMZ infusions; seven participants met the criteria for treatment resistance. There was a significant decrease in anxiety and stress between baseline and day 8 and baseline and day 28. There was also a significant improvement in subjective sleep quality from baseline to day 28 measured by the Jenkins Sleep Scale. No serious adverse events occurred. Conclusion This study presents preliminary results for subcutaneous continuous low-dose FMZ's effectiveness and safety in GAD. The findings suggest that it is a safe, well-tolerated, and feasible treatment option in this group of patients. Future randomised control trials are needed in this field to determine the efficacy of this treatment.
Collapse
Affiliation(s)
| | - Stephen Addis
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| | - Vlad Martyn
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| | - Hishani Ramanathan
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Grace K Wilkerson
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Kellie S Bennett
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Sean D Hood
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Hans Stampfer
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Medical School, The
University of Western Australia, Nedlands, WA, Australia
- School of Medical and Health Sciences, Edith
Cowan University, Joondalup, WA, Australia
- Fresh Start Recovery Programme, Subiaco, WA,
Australia
| |
Collapse
|
11
|
Long-Term Management of Generalised Anxiety Disorder with Low-Dose Continuous Infusions of Flumazenil: A Case Series. Behav Sci (Basel) 2022; 12:bs12110430. [DOI: 10.3390/bs12110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Generalised anxiety disorder (GAD) is a common anxiety disorder associated with social and occupational impairment. Recently, a theory was postulated that dysfunctional gamma aminobutyric acid type A receptors (GABAA) are implicated in anxiety symptomology, which could be corrected by flumazenil, an antagonist at the benzodiazepine binding site on the GABAA receptor. Method: Participants had a primary diagnosis of GAD and were treated initially with an eight-day continuous low-dose flumazenil infusion (total 32 mg at a rate of 4 mg/24 h). Some participants were re-treated with a further four- or eight-day infusion. Treatment response was measured as a 50% reduction in anxiety or stress scores on the Depression Anxiety Stress Scale—21 (DASS-21). Remission was measured as scores ≤3 or ≤7 on the anxiety and stress subscales of the DASS-21, respectively. Results: Eight cases are reported. All cases met the criteria for treatment response on the anxiety and stress subscale of the DASS-21. Remission was achieved in seven participants on the anxiety subscale and in five on the stress subscale. No changes in hepatic, renal, or haematological function were likely attributed to flumazenil. Conclusion: Data suggest that low-dose continuous flumazenil infusion manages GAD symptoms and is safe. Although these results are promising, future randomised control trials are required to confirm these results.
Collapse
|
12
|
Tordjman S. Aggressive behavior: A language to be understood. Encephale 2022; 48 Suppl 1:S4-S13. [DOI: 10.1016/j.encep.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
|
13
|
Wang ZY, McKenzie-Smith GC, Liu W, Cho HJ, Pereira T, Dhanerawala Z, Shaevitz JW, Kocher SD. Isolation disrupts social interactions and destabilizes brain development in bumblebees. Curr Biol 2022; 32:2754-2764.e5. [PMID: 35584698 PMCID: PMC9233014 DOI: 10.1016/j.cub.2022.04.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Social isolation, particularly in early life, leads to deleterious physiological and behavioral outcomes. Here, we leverage new high-throughput tools to comprehensively investigate the impact of isolation in the bumblebee, Bombus impatiens, from behavioral, molecular, and neuroanatomical perspectives. We reared newly emerged bumblebees in complete isolation, in small groups, or in their natal colony, and then analyzed their behaviors while alone or paired with another bee. We find that when alone, individuals of each rearing condition show distinct behavioral signatures. When paired with a conspecific, bees reared in small groups or in the natal colony express similar behavioral profiles. Isolated bees, however, showed increased social interactions. To identify the neurobiological correlates of these differences, we quantified brain gene expression and measured the volumes of key brain regions for a subset of individuals from each rearing condition. Overall, we find that isolation increases social interactions and disrupts gene expression and brain development. Limited social experience in small groups is sufficient to preserve typical patterns of brain development and social behavior.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Grace C McKenzie-Smith
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Weijie Liu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Hyo Jin Cho
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Talmo Pereira
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zahra Dhanerawala
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua W Shaevitz
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Kashash Y, Smarsh G, Zilkha N, Yovel Y, Kimchi T. Alone, in the dark: The extraordinary neuroethology of the solitary blind mole rat. eLife 2022; 11:78295. [PMID: 35674717 PMCID: PMC9177142 DOI: 10.7554/elife.78295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
On the social scale, the blind mole rat (BMR; Spalax ehrenbergi) is an extreme. It is exceedingly solitary, territorial, and aggressive. BMRs reside underground, in self-excavated tunnels that they rarely leave. They possess specialized sensory systems for social communication and navigation, which allow them to cope with the harsh environmental conditions underground. This review aims to present the blind mole rat as an ideal, novel neuroethological model for studying aggressive and solitary behaviors. We discuss the BMR's unique behavioral phenotype, particularly in the context of 'anti-social' behaviors, and review the available literature regarding its specialized sensory adaptations to the social and physical habitat. To date, the neurobiology of the blind mole rat remains mostly unknown and holds a promising avenue for scientific discovery. Unraveling the neural basis of the BMR's behavior, in comparison to that of social rodents, can shed important light on the underlying mechanisms of psychiatric disorders in humans, in which similar behaviors are displayed.
Collapse
Affiliation(s)
- Yael Kashash
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Grace Smarsh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.,School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noga Zilkha
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Kimchi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Stryjek R, Modlinska K. Pre-exposure via wire-mesh partition reduces intraspecific aggression in male, wild-type Norway rats. Anim Welf 2022. [DOI: 10.7120/09627286.31.2.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There are instances when animals are introduced and expected to live alongside unfamiliar conspecifics within zoos, laboratories and wildlife sanctuaries. These pairings of unfamiliar animals may result in stress, trauma, or even death, in addition to reduced confidence in data resulting
from these subjects. For species that communicate relatedness, sex, social status, and emotional state through olfactory cues (eg pheromones), one means of counteracting aggression may involve a period of partial separation — where animals are close enough to become acquainted —
while a permeable barrier maintains separation. For our study, we evaluated the use of a novel, autoclavable, wire-mesh partition to separate potential aggressors. We tested different pairs of 24 wild-type male Norway rats (Rattus norvegicus), previously kept in social isolation for
seven days. Each control pair were merged directly into one cage, while pairs from the experimental groups underwent three pre-exposure sessions that lasted two to four days. We used continuous video recordings to assess five common threat displays: lateral threat, keep down, upright posture,
chase, and clinch attack. We used two types of bedding: new (unscented) bedding and recently used bedding that conveyed scents from both merged rats. We found that rats subjected to pre-exposure demonstrated lower aggression levels across three of the five metrics (lateral threats, upright
postures, and keep downs). We conclude that permeable partitions show promise as a humane mechanism to mix new individuals into preexisting colonies. Further research may explore whether partitions could be helpful with other species that communicate social information by pheromones or direct
visual inspection.
Collapse
Affiliation(s)
- R Stryjek
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - K Modlinska
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Involvement of DR→mPFC 5-HTergic neural projections in changes of social exploration behaviors caused by adult chronic social isolation in mice. Brain Res Bull 2022; 186:16-26. [DOI: 10.1016/j.brainresbull.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
17
|
Allweyer M, Emde M, Bähr I, Spielmann J, Bieramperl P, Naujoks W, Kielstein H. Investigation of Behavior and Plasma Levels of Corticosterone in Restrictive- and Ad Libitum-Fed Diet-Induced Obese Mice. Nutrients 2022; 14:nu14091746. [PMID: 35565711 PMCID: PMC9100467 DOI: 10.3390/nu14091746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Diet-induced obesity (DIO) mice models are commonly used to investigate obesity-related health problems. Until now, only sparse data exist on the influence of DIO on behavior and stress hormones in mice. The present study investigates high-fat DIO with two different feeding regimes on behavioral parameters in mice. Various behavioral tests (open field, elevated plus maze, social interaction, hotplate) were performed with female BALB/c and male C57BL/6 mice after a feeding period of twelve weeks (restrictive vs. ad libitum and normal-fat diet vs. high-fat diet) to investigate levels of anxiety and aggression. BALB/c mice were DIO-resistant and therefore the prerequisite for the behavior analyses was not attained. C57BL/6 mice fed a high-fat diet had a significantly higher body weight and fat mass compared to C57BL/6 mice fed a control diet. Interestingly, the DIO C57BL/6 mice showed no changes in their aggression- or anxiety-related behavior but showed a significant change in the anxiety index. This was probably due to a lower activity level, as other ethological parameters did not show an altered anxiety-related behavior. In the ad libitum-fed DIO group, the highest corticosterone level was detected. Changes due to the feeding regime (restrictive vs. ad libitum) were not observed. These results provide a possible hint to a bias in the investigation of DIO-related health problems in laboratory animal experiments, which may be influenced by the lower activity level.
Collapse
|
18
|
Abstract
BACKGROUND Anxiety disorders are highly prevalent affecting up to 33.7% of people over a lifetime. Although many treatment options are available, they are often associated with unacceptable side-effect profiles and approximately one in three patients are treatment resistant. Allopregnanolone, a neuroactive steroid acting as a positive allosteric modulator at the GABAA receptor, is synthesised in response to stress and acts to negatively modulate the hypothalamic-pituitary-adrenal axis. FINDINGS After chronic exposure to and withdrawal from allopregnanolone, an increase in α4β2δ GABAA receptors results in a reduced inhibitory effect of allopregnanolone, resulting in decreased inhibition and, therefore, increased neuronal excitability. The relationship between allopregnanolone and increased α4β2δ GABAA receptors has been demonstrated in animal models during methamphetamine withdrawal and puberty, events both associated with stress. The effect of allopregnanolone during these events is anxiogenic, a paradoxical action to its usual anxiolytic effects. Flumazenil, the GABAA receptor antagonist, has been shown to cause receptor internalisation of α4β2δ GABAA receptors, which may results in anxiolysis. CONCLUSION We propose that chronic stress and chronic exposure to and withdrawal from allopregnanolone in anxiety disorders result in alterations in GABAA receptor function, which can be corrected by flumazenil. As such, flumazenil may exhibit anxiolytic properties in patients with increased α4β2δ GABAA receptor expression.
Collapse
Affiliation(s)
- Alexander T Gallo
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary K Hulse
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Fresh Start Recovery Programme, Subiaco, WA, Australia
| |
Collapse
|
19
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
20
|
Developmental Shifts in Amygdala Activity during a High Social Drive State. J Neurosci 2021; 41:9308-9325. [PMID: 34611026 DOI: 10.1523/jneurosci.1414-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Amygdala abnormalities characterize several psychiatric disorders with prominent social deficits and often emerge during adolescence. The basolateral amygdala (BLA) bidirectionally modulates social behavior and has increased sensitivity during adolescence. We tested how an environmentally-driven social state is regulated by the BLA in adults and adolescent male rats. We found that a high social drive state caused by brief social isolation increases age-specific social behaviors and increased BLA neuronal activity. Chemogenetic inactivation of BLA decreased the effect of high social drive on social engagement. High social drive preferentially enhanced BLA activity during social engagement; however, the effect of social opportunity on BLA activity was greater during adolescence. While this identifies a substrate underlying age differences in social drive, we then determined that high social drive increased BLA NMDA GluN2B expression and sensitivity to antagonism increased with age. Further, the effect of a high social drive state on BLA activity during social engagement was diminished by GluN2B blockade in an age-dependent manner. These results demonstrate the necessity of the BLA for environmentally driven social behavior, its sensitivity to social opportunity, and uncover a maturing role for BLA and its GluN2B receptors in social engagement.SIGNIFICANCE STATEMENT Social engagement during adolescence is a key component of healthy development. Social drive provides the impetus for social engagement and abnormalities underlie social symptoms of depression and anxiety. While adolescence is characterized by transitions in social drive and social environment sensitivity, little is known about the neural basis for these changes. We found that amygdala activity is uniquely sensitive to social environment during adolescence compared with adulthood, and is required for expression of heightened social drive. In addition, the neural substrates shift toward NMDA dependence in adulthood. These results are the first to demonstrate a unique neural signature of higher social drive and begin to uncover the underlying factors that heighten social engagement during adolescence.
Collapse
|
21
|
Coping with prisons? COVID-19 and the functioning of the Polish prison system. Int J Prison Health 2021. [DOI: 10.1108/ijph-09-2020-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
This paper aims to explain the phenomenon of low incidence of COVID-19 in Polish prisons. This paper addresses three questions: was the Polish prison system ready to respond to the threats posed by COVID-19; what action has it taken in this regard; and with what effect?
Design/methodology/approach
An analysis of the current condition of the Polish prison system was undertaken focusing on items that were the focus of prisoners’ complaints, the interventions of the Ombudsman and the bulletins of the Central Board of the Prison Service. This analysis has been juxtaposed with the opinions of experts in epidemiology and medicine and changes introduced in the law relating to prisoners.
Findings
During the COVID-19 epidemic – despite serious chronic problems in the Polish penitentiary system – the statistics indicated that 24 individuals were infected and no deaths occurred. When compared to the statistics of non-prison cases, this result is extremely low.
Research limitations/implications
Given the newness of the problem, the conflicts of different interests, the “double” isolation of prisons (penal and epidemiological) and the reluctance of the prison administration to provide information about what is happening behind prison walls, researchers must rely on statistics and subjective contacts with prisoners, for example, by investigating their complaints.
Practical implications
As a result of the research, the author believes that the transparency of institutions such as prisons should be ensured, primarily expressed in the provision of information to both prisoners and the public relating to methods adopted to prevent epidemics in the context of prison and prisoners.
Originality/value
The value of this paper is to show how prisons have managed in a new, exceptional situation to balance the right to health and personal safety of prisoners and warders, with the right to contact with the outside world and humane living conditions in a closed and doubly isolated space. The findings presented will add value to the knowledge and effectiveness of the prison administration’s reaction and response to an emergency such as an epidemic.
Collapse
|
22
|
Acute cannabidiol treatment attenuates ethanol-induced place preference and reduces aggressivity in group-housed male rats. Pharmacol Biochem Behav 2021; 211:173290. [PMID: 34662589 DOI: 10.1016/j.pbb.2021.173290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Alcohol abuse is a widespread cause of aggressive and impulsive behaviors that impact the users as well as their entourage. However, only a few medications are effective. Recently, cannabidiol has been reported to improve mood disorders and recovery from substance abuse, yet the psychopharmacologic effects of cannabidiol in ethanol-induced drug reward and aggressivity remain unexplored. In the present study, we investigated the effects of cannabidiol on ethanol-induced place preference and aggressivity in individually and group-housed male rats using the conditioned place preference test, and intruder evoc aggression test, respectively. The obtained results showed that ethanol significantly increased locomotor activity, induced conditioned place preference in all animals, and, specifically, increased aggressivity in individually housed rats. These behavioural impairments induced by ethanol were associated with decreased glucocorticoid and mineralocorticoid receptors transcription in the prefrontal cortex. Notwithstanding, cannabidiol at a dose of 10 mg/kg significantly inhibited Et-OH-induced place preference in group-housed, but not in individually housed rats, and markedly inhibited the aggressive behaviour. These findings suggest that ethanol-induced behavioural impairments are dependent on the housing condition that may affect corticosterone receptors expression and subsequently the animal responsivity to cannabidiol treatment.
Collapse
|
23
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
24
|
Zhao X, Ziobro P, Pranic NM, Chu S, Rabinovich S, Chan W, Zhao J, Kornbrek C, He Z, Tschida KA. Sex- and context-dependent effects of acute isolation on vocal and non-vocal social behaviors in mice. PLoS One 2021; 16:e0255640. [PMID: 34469457 PMCID: PMC8409668 DOI: 10.1371/journal.pone.0255640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Humans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter. To address these questions, we characterized the effects of acute (3-day) social isolation on the vocal and non-vocal social behaviors of male and female mice during same-sex and opposite-sex social interactions. Our experiments uncovered pronounced effects of acute isolation on social interactions between female mice, while revealing more subtle effects on the social behaviors of male mice during same-sex and opposite-sex interactions. Our findings advance the study of same-sex interactions between female mice as an attractive paradigm to investigate neural mechanisms through which acute isolation enhances social motivation and promotes social behavior.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Nicole M. Pranic
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Chu
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Rabinovich
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - William Chan
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Jennifer Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Caroline Kornbrek
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Zichen He
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Tschida
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Novoa J, Rivero CJ, Pérez-Cardona EU, Freire-Arvelo JA, Zegers J, Yarur HE, Santiago-Marerro IG, Agosto-Rivera JL, González-Pérez JL, Gysling K, Segarra AC. Social isolation of adolescent male rats increases anxiety and K + -induced dopamine release in the nucleus accumbens: Role of CRF-R1. Eur J Neurosci 2021; 54:4888-4905. [PMID: 34097788 DOI: 10.1111/ejn.15345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Early life adversity can disrupt development leading to emotional and cognitive disorders. This study investigated the effects of social isolation after weaning on anxiety, body weight and locomotion, and on extracellular dopamine (DA) and glutamate (GLU) in the nucleus accumbens (NAc) and their modulation by corticotropin releasing factor receptor 1. On the day of weaning, male rats were housed singly or in groups for 10 consecutive days. Anxiety-like behaviors were assessed by an elevated plus maze (EPM) and an open field test (OF). Neurotransmitter levels were measured by in vivo microdialysis. Single-housed rats spent less time, and entered more, into the closed arms of an EPM than group-housed rats. They also spent less time in the center of an OF, weighed more and showed greater locomotion. In the NAc, no differences in CRF, or in basal extracellular DA or GLU between groups, were observed. A depolarizing stimulus increased DA release in both groups but to higher levels in isolated rats, whereas GLU increased only in single-housed rats. Blocking CRF-R1 receptors with CP-154,526 decreased DA release in single-housed but not in group-housed rats. The corticotropin releasing factor receptor type 1 receptor antagonist also decreased GLU in group-housed animals. These results show that isolating adolescent rats increases anxiety, body weight and ambulation, as well as the sensitivity of dopaminergic neurons to a depolarizing stimulus. This study provides further evidence of the detrimental effects of social isolation during early development and indicates that dysregulation of the CRF system in the NAc may contribute to the pathologies observed.
Collapse
Affiliation(s)
- Javier Novoa
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos J Rivero
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Enrique U Pérez-Cardona
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jaime A Freire-Arvelo
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Héctor E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Jorge L González-Pérez
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Annabell C Segarra
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
26
|
Zilkha N, Sofer Y, Kashash Y, Kimchi T. The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation. Curr Opin Neurobiol 2021; 68:137-151. [PMID: 33910083 PMCID: PMC8528716 DOI: 10.1016/j.conb.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kashash
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
27
|
HIV-1 Tat Protein Promotes Neuroendocrine Dysfunction Concurrent with the Potentiation of Oxycodone's Psychomotor Effects in Female Mice. Viruses 2021; 13:v13050813. [PMID: 33946474 PMCID: PMC8147167 DOI: 10.3390/v13050813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with neuroendocrine dysfunction which may contribute to co-morbid stress-sensitive disorders. The hypothalamic-pituitary-adrenal (HPA) or -gonadal (HPG) axes are perturbed in up to 50% of HIV patients. The mechanisms are not known, but we have found the HIV-1 trans-activator of transcription (Tat) protein to recapitulate the clinical phenotype in male mice. We hypothesized that HPA and/or HPG dysregulation contributes to Tat-mediated interactions with oxycodone, an opioid often prescribed to HIV patients, in females. Female mice that conditionally-expressed the Tat1-86 protein [Tat(+) mice] or their counterparts that did not [Tat(-) control mice] were exposed to forced swim stress (or not) and behaviorally-assessed for motor and anxiety-like behavior. Some mice had glucocorticoid receptors (GR) or corticotropin-releasing factor receptors (CRF-R) pharmacologically inhibited. Some mice were ovariectomized (OVX). As seen previously in males, Tat elevated basal corticosterone levels and potentiated oxycodone's psychomotor activity in females. Unlike males, females did not demonstrate adrenal insufficiency and oxycodone potentiation was not regulated by GRs or CRF-Rs. Rather OVX attenuated Tat/oxycodone interactions. Either Tat or oxycodone increased anxiety-like behavior and their combination increased hypothalamic allopregnanolone. OVX increased basal hypothalamic allopregnanolone and obviated Tat or oxycodone-mediated fluctuations. Together, these data provide further evidence for Tat-mediated dysregulation of the HPA axis and reveal the importance of HPG axis regulation in females. HPA/HPG disruption may contribute vulnerability to affective and substance use disorders.
Collapse
|
28
|
Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021; 184:1500-1516. [PMID: 33691140 PMCID: PMC8580010 DOI: 10.1016/j.cell.2021.02.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Social homeostasis is the ability of individuals to detect the quantity and quality of social contact, compare it to an established set-point in a command center, and adjust the effort expended to seek the optimal social contact expressed via an effector system. Social contact becomes a positive or negative valence stimulus when it is deficient or in excess, respectively. Chronic deficits lead to set-point adaptations such that reintroduction to the previous optimum is experienced as a surplus. Here, we build upon previous models for social homeostasis to include adaptations to lasting changes in environmental conditions, such as with chronic isolation.
Collapse
Affiliation(s)
- Christopher R Lee
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kay M Tye
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Nikbakhsh R, Nikbakhsh R, Radmard M, Tafazolimoghadam A, Haj-Mirzaian A, Pirri F, Noormohammady P, Sabouri M, Shababi N, Ziai SA, Dehpour AR. The possible role of nitric oxide in anti-convulsant effects of Naltrindole in seizure-induced by social isolation stress in male mice. Biomed Pharmacother 2020; 129:110453. [DOI: 10.1016/j.biopha.2020.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
|
30
|
Silva J, Shao AS, Shen Y, Davies DL, Olsen RW, Holschneider DP, Shao XM, Liang J. Modulation of Hippocampal GABAergic Neurotransmission and Gephyrin Levels by Dihydromyricetin Improves Anxiety. Front Pharmacol 2020; 11:1008. [PMID: 32742262 PMCID: PMC7364153 DOI: 10.3389/fphar.2020.01008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are the most common mental illness in the U.S. and are estimated to consume one-third of the country’s mental health spending. Although anxiolytic therapies are available, many patients exhibit treatment-resistance, relapse, or substantial side effects. An urgent need exists to explore the underlying mechanisms of chronic anxiety and to develop alternative therapies. Presently, we identified dihydromyricetin (DHM), a flavonoid that has anxiolytic properties in a mouse model of isolation-induced anxiety. Socially isolated mice demonstrated increased anxiety levels and reduced exploratory behavior measured by elevated plus-maze and open-field tests. Socially isolated mice showed impaired GABAergic neurotransmission, including reduction in GABAA receptor-mediated extrasynaptic tonic currents, as well as amplitude and frequency of miniature inhibitory postsynaptic currents measured by whole-cell patch-clamp recordings from hippocampal slices. Furthermore, intracellular ATP levels and gephyrin expression decreased in anxious animals. DHM treatment restored ATP and gephyrin expression, GABAergic transmission and synaptic function, as well as decreased anxiety-like behavior. Our findings indicate broader roles for DHM in anxiolysis, GABAergic neurotransmission, and synaptic function. Collectively, our data suggest that reduction in intracellular ATP and gephyrin contribute to the development of anxiety, and represent novel treatment targets. DHM is a potential candidate for pharmacotherapy for anxiety disorders.
Collapse
Affiliation(s)
- Joshua Silva
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Amy S Shao
- Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yi Shen
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| | - Richard W Olsen
- Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Daniel P Holschneider
- Psychiatry and The Behavioral Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xuesi M Shao
- Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jing Liang
- Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy, Los Angeles, CA, United States
| |
Collapse
|
31
|
Murata K, Li F, Shinguchi K, Ogata M, Fujita N, Takahashi R. Yokukansankachimpihange Improves the Social Isolation-Induced Sleep Disruption and Allopregnanolone Reduction in Mice. Front Nutr 2020; 7:8. [PMID: 32118027 PMCID: PMC7026005 DOI: 10.3389/fnut.2020.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Yokukansankachimpihange (YKSCH), a traditional Japanese medicine composed of 9 crude drugs, is designed to improve neurosis, insomnia in adults, and night crying in children. YKSCH has been reported to improve diurnal rhythm in patients with Alzheimer's disease and prolong the total sleeping time in healthy subjects. However, little is known about how YKSCH alleviates sleep disorders. Here, we investigated whether and how YKSCH treatment affected sleep latency and duration in group-housed and socially isolated mice. Male ddy mice were treated with YKSCH [1,500 mg/kg, per os (p.o.)] in group-housed or socially isolated conditions for 3-4 weeks. After the last injection, mice were intraperitoneally (i.p.) administered with pentobarbital (60 mg/kg) and the sleep latency and duration was evaluated. The results show that pretreatment with YKSCH had no effect on sleep latency or duration in group-housed mice. However, YKSCH treatment significantly improved the reduced sleep duration in socially isolated mice. This effect of YKSCH was inhibited by the administration of bicuculline (3 mg/kg, i.p.), a GABAA receptor antagonist. Furthermore, we showed that YKSCH treatment improved the decrease in allopregnanolone content and its synthase expression levels in the olfactory bulb. These results suggest that YKSCH treatment improved social isolation stress-induced insomnia via the GABAergic pathway and that the mechanism of action of YKSCH is partly due to improvement of allopregnanolone levels of expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma, Ltd., Takaoka, Japan
| |
Collapse
|
32
|
Kosel F, Hamilton JS, Harrison SL, Godin V, Franklin TB. Reduced social investigation and increased injurious behavior in transgenic 5xFAD mice. J Neurosci Res 2020; 99:209-222. [PMID: 31912571 DOI: 10.1002/jnr.24578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Social withdrawal and agitation/aggression are common behavioral and psychological symptoms of dementia presented by Alzheimer's disease (AD) patients, with males exhibiting more aggressive behaviors than females. Some transgenic mouse models of AD also exhibit social withdrawal and aggression, but many of these models only recapitulate the early stages of the disease. By comparison, the 5xFAD mouse model of AD exhibits rapid, progressive neurodegeneration, and is suitable for modeling cognitive and behavioral deficits at early, mid-, and late-stage disease progression. Anecdotal reports suggest that transgenic 5xFAD males exhibit high levels of aggression compared to wild-type controls, but to date, indirect genetic effects in this strain have not been studied. We measured home-cage behaviors in 5xFAD males housed in three different group-housing conditions (transgenic-only, wild-type only, and mixed-genotype) and social approach behaviors when exposed to a novel free-roaming or restrained, wild-type or transgenic conspecific. Transgenic-only home cages required earlier separation due to injuries arising from aggression compared to wild-type-only or mixed-genotype cages, despite no obvious increase in the frequency of aggressive behaviors. Transgenic 5xFAD males and females also spent less time investigating free-roaming conspecifics compared to wild-type controls, but they showed normal investigation of restrained conspecifics; the genotype of the conspecific did not affect approach behavior, and there was no aggression observed in transgenic males. These findings provide evidence in an animal model that amyloid pathology ultimately leads to avoidance of novel social stimuli, and that frequent interactions between individuals exhibiting an AD phenotype further exacerbates aggressive behaviors.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Jacob S Hamilton
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Sarah L Harrison
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Victoria Godin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
33
|
Piña-Andrade S, Ramos G, Cárdenas-León M, Martínez A, Romero-Morales L, Martínez-Torres M, Cedillo-Ildefonso B, Luis J. Testosterone dependent territorial aggression is modulated by cohabitation with a female in male Mongolian gerbils (Meriones unguiculatus). Horm Behav 2020; 117:104611. [PMID: 31669747 DOI: 10.1016/j.yhbeh.2019.104611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/26/2019] [Accepted: 10/04/2019] [Indexed: 11/30/2022]
Abstract
Most mammal studies on the neuroendocrine mechanisms of territorial aggression have demonstrated that testosterone (T) is required for the display of territorial aggression. However, the relationship between T and aggression is more complex and may be modulated by social factor. The aim of this study was to determine the role of T in territorial aggression in the Mongolian gerbil (Meriones unguiculatus), and the effect of social factors on the modulation of this behavior. The relationship between T and territorial aggression was analyzed using castration and T replacement in two social contexts: male-male and male-female cohabitation. Plasma T concentrations in males of all groups were quantified by radioimmunoassay (RIA). T concentrations were compared using two-way ANOVA. Only sham-castrated and castrated males with T replacement in male-female cohabitation showed aggression, whereas castrated gerbils in the same condition were not aggressive. This indicates that T is the hormone that maintains territorial aggression, but mating is a modulator stimulus. The modulator effect of mating in territorial aggression was associated with an increase in T, but it seems that other mechanisms are involved in the regulation of this behavior, since castrated males with T replacement in the male-male cohabitation did not exhibit aggression, although they had T concentrations as high as these males that received the same treatment, but that cohabited with a female. These results suggest that T is involved in the mechanisms that regulate territorial aggression in the male Mongolian gerbil, and that the cohabitation with a female modulates this behavior.
Collapse
Affiliation(s)
- Sonia Piña-Andrade
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México
| | - Guillermo Ramos
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México.
| | - Mario Cárdenas-León
- Laboratorio de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, México.
| | - Ana Martínez
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México
| | - Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México.
| | - Benita Cedillo-Ildefonso
- Laboratorio de Psicología Experimental, FES Iztacala, Universidad Nacional Autónoma de México, México
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, México.
| |
Collapse
|
34
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
35
|
Fei XY, Liu S, Sun YH, Cheng L. Social isolation improves the performance of rodents in a novel cognitive flexibility task. Front Zool 2019; 16:43. [PMID: 31788010 PMCID: PMC6858689 DOI: 10.1186/s12983-019-0339-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 01/16/2023] Open
Abstract
Background Social isolation, i.e., the deprivation of social contact, is a highly stressful circumstance that affects behavioral and functional brain development in social animals. Cognitive flexibility, one of the essential executive brain function that facilitates survival problem solving, was reported to be impaired after social isolation rearing. However, most of the previous studies have focused on the constrained aspect of flexibility and little is known about the unconstrained aspect. In the present study, the unconstrained cognitive flexibility of Kunming mice (Mus musculus, Km) reared in isolation was examined by a novel digging task. The exploratory behavior of the mice was also tested utilizing the hole-board and elevated plus maze tests to explain the differences in cognitive flexibility between the mice reared socially and in isolation. Results The results demonstrated that the isolated mice had a higher success rate in solving the novel digging problem and showed a higher rate of exploratory behavior compared with the controls. Linear regression analysis revealed that the time it took the mice to solve the digging problem was negatively associated with exploratory behavior. Conclusions The data suggest that social isolation rearing improves unconstrained cognitive flexibility in mice, which is probably related to an increase in their exploratory behavior. Such effects may reflect the behavioral and cognitive evolutionary adaptations of rodents to survive under complex and stressful conditions.
Collapse
Affiliation(s)
- Xin-Yuan Fei
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| | - Sha Liu
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| | - Yan-Hong Sun
- 2Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, 430207 China
| | - Liang Cheng
- 1School of Psychology & Key Laboratory of Adolescent Cyberpsycology and Behavior (CCNU) of Ministry of Education, Central China Normal University, Wuhan, 430079 China
| |
Collapse
|
36
|
Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology (Berl) 2019; 236:3625-3639. [PMID: 31346653 DOI: 10.1007/s00213-019-05335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Motivations for alcohol consumption often focus on ethanol's purported prosocial effects: social enhancement and reduction of socially focused anxiety. Despite substantial research supporting prosocial effects, contrary research exists demonstrating alcohol-elicited antisocial and asocial behaviours. Additionally, evidence typically fails to delineate whether alcohol-induced prosocial effects are due to alcohol expectancies or pharmacological actions of ethanol. Studies exploring ethanol's pharmacological effects on social behaviour and factors that modulate apparent contradictory prosocial versus asocial effects are lacking. OBJECTIVES This study investigated whether factors of age, ethanol dose and social fear modulate ethanol-induced pharmacological effects on sociability and social anxiety-like avoidance. METHODS Experiments examined the acute effects of ethanol doses (0, 0.25, 0.8, 1.6 g/kg; i.p.) in adult (10-week-old) and adolescent (PND 31-33) C57BL/6J male mice on social interaction using a social fear conditioning paradigm. Control experiments assessed whether ethanol-induced effects were social-specific. RESULTS In adult mice, no specific effects of ethanol on social avoidance were observed at any dose. However, high-dose ethanol (1.6 g/kg) suppressed social approach in all adult mice. In contrast, low-dose ethanol (0.25 g/kg) alleviated social avoidance in adolescent mice and no social suppression was observed at higher ethanol doses. Thus, higher doses of ethanol impair social behaviour in adult mice, whereas lower doses specifically alleviate social anxiety-like avoidance in adolescent mice. CONCLUSIONS Age, dose and social fear are critical modulators of acute ethanol-induced pharmacological effects on social behaviour. Inconsistencies in ethanol-induced social consequences appear at least partly mediated by pharmacological interactions-not solely alcohol expectancies.
Collapse
Affiliation(s)
- Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Bianca B Wilson
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Oliver Tan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Anand Gururajan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia. .,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia.
| |
Collapse
|
37
|
Abstract
John Cacioppo has compared loneliness to hunger or thirst in that it signals that one needs to act and repair what is lacking. This paper reviews Cacioppo's and others' contributions to our understanding of neural mechanisms underlying social motivation in humans and in other social species. We focus particularly on the dopaminergic reward system and try to integrate evidence from animal models and human research. In rodents, objective social isolation leads to increased social motivation, mediated by the brains' mesolimbic dopamine system. In humans, social rejection can lead to either increased or decreased social motivation, and is associated with activity in the insular cortex; while chronic loneliness is typically associated with decreased social motivation but has been associated with altered dopaminergic responses in the striatum. This mixed pattern of cross-species similarities and differences may arise from the substantially different methods used to study unmet social needs across species, and suggests the need for more direct and deliberate cross-species comparative research in this critically important domain.
Collapse
Affiliation(s)
- Livia Tomova
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kay Tye
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
38
|
Matsumoto K, Fujiwara H, Araki R, Yabe T. Post-weaning social isolation of mice: A putative animal model of developmental disorders. J Pharmacol Sci 2019; 141:111-118. [DOI: 10.1016/j.jphs.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
|
39
|
Mayer P, Sivakumar N, Pritz M, Varga M, Mehmann A, Lee S, Salvatore A, Magno M, Pharr M, Johannssen HC, Troester G, Zeilhofer HU, Salvatore GA. Flexible and Lightweight Devices for Wireless Multi-Color Optogenetic Experiments Controllable via Commercial Cell Phones. Front Neurosci 2019; 13:819. [PMID: 31551666 PMCID: PMC6743353 DOI: 10.3389/fnins.2019.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Optogenetics provide a potential alternative approach to the treatment of chronic pain, in which complex pathology often hampers efficacy of standard pharmacological approaches. Technological advancements in the development of thin, wireless, and mechanically flexible optoelectronic implants offer new routes to control the activity of subsets of neurons and nerve fibers in vivo. This study reports a novel and advanced design of battery-free, flexible, and lightweight devices equipped with one or two miniaturized LEDs, which can be individually controlled in real time. Two proof-of-concept experiments in mice demonstrate the feasibility of these devices. First, we show that blue-light devices implanted on top of the lumbar spinal cord can excite channelrhodopsin expressing nociceptors to induce place aversion. Second, we show that nocifensive withdrawal responses can be suppressed by green-light optogenetic (Archaerhodopsin-mediated) inhibition of action potential propagation along the sciatic nerve. One salient feature of these devices is that they can be operated via modern tablets and smartphones without bulky and complex lab instrumentation. In addition to the optical stimulation, the design enables the simultaneously wireless recording of the temperature in proximity of the stimulation area. As such, these devices are primed for translation to human patients with implications in the treatment of neurological and psychiatric conditions far beyond chronic pain syndromes.
Collapse
Affiliation(s)
- Philipp Mayer
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland.,Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Pritz
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Matjia Varga
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Seunghyun Lee
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | | | - Michele Magno
- Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
40
|
Lüscher B, Möhler H. Brexanolone, a neurosteroid antidepressant, vindicates the GABAergic deficit hypothesis of depression and may foster resilience. F1000Res 2019; 8. [PMID: 31275559 PMCID: PMC6544078 DOI: 10.12688/f1000research.18758.1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
The GABAergic deficit hypothesis of depression states that a deficit of GABAergic transmission in defined neural circuits is causal for depression. Conversely, an enhancement of GABA transmission, including that triggered by selective serotonin reuptake inhibitors or ketamine, has antidepressant effects. Brexanolone, an intravenous formulation of the endogenous neurosteroid allopregnanolone, showed clinically significant antidepressant activity in postpartum depression. By allosterically enhancing GABA
A receptor function, the antidepressant activity of allopregnanolone is attributed to an increase in GABAergic inhibition. In addition, allopregnanolone may stabilize normal mood by decreasing the activity of stress-responsive dentate granule cells and thereby sustain resilience behavior. Therefore, allopregnanolone may augment and extend its antidepressant activity by fostering resilience. The recent structural resolution of the neurosteroid binding domain of GABA
A receptors will expedite the development of more selective ligands as a potential new class of central nervous system drugs.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology and Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Center for Molecular Investigation of Neurological Disorders, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hanns Möhler
- Institute of Pharmacology and Neuroscience Center, University of Zurich, Zurich, 8057, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, 8057, Switzerland
| |
Collapse
|
41
|
Guo Q, Ebihara K, Fujiwara H, Toume K, Awale S, Araki R, Yabe T, Dong E, Matsumoto K. Kami-shoyo-san ameliorates sociability deficits in ovariectomized mice, a putative female model of autism spectrum disorder, via facilitating dopamine D 1 and GABA A receptor functions. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:231-239. [PMID: 30862522 DOI: 10.1016/j.jep.2019.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kami-shoyo-san (KSS) is a Kampo formula used clinically for menopause-related symptoms in Japan. However, the effect of KSS on autism spectrum disorder (ASD), a developmental disorder with a higher prevalence in males than in females, has not been reported yet. AIM OF THE STUDY It is accepted generally that dysfunction in the GABAergic system is associated with pathogenesis of ASD. In our previous study, a decrease in brain allopregnanolone (ALLO), a positive allosteric GABAA receptor modulator, induced ASD-like symptoms such as impaired sociability-related performance and increased repetitive self-grooming behavior in male mice, and that KSS ameliorated these behavioral abnormalities via GABAA receptor- and dopamine D1 receptor-mediated mechanisms. In this study, to better understand a gender difference in the prevalence of ASD, we examined whether dissection of ovary (OVX), a major organ secreting progesterone in females, causes ASD-like behaviors in a manner dependent on brain ALLO levels, and if so, how KSS affects the behaviors. MATERIALS AND METHODS Six-week-old ICR female mice received ovariectomy, and KSS (74 mg/kg and 222 mg/kg, p.o.) were treated before 1 h starting each behavioral test. The sociability, social anxiety-like behavior, and self-grooming behavior were analyzed by the resident-intruder test, mirror chamber test, and open field test, respectively. After finishing the behavioral experiment, the ALLO content in the brain was measured by ELISA. Furthermore, we examined the effects of OVX on the neuro-signaling pathways in the prefrontal cortex and striatum by Western blotting. RESULTS The results revealed that OVX induced sociability deficits and social anxiety-related behaviors, but not repetitive self-grooming behavior, and that these behavioral changes were accompanied not only by a decrease of brain ALLO levels, but also by impairment of CREB- and CaMKIIα-mediated neuro-signaling in the prefrontal cortex. Moreover, the administration of KSS had no effect on the brain ALLO level, but significantly ameliorated the OVX-induced behavioral and neurochemical changes via facilitation of GABAA receptor and dopamine D1 receptor-mediated neurotransmission. CONCLUSIONS These findings suggest that a decrease in gonadal hormone-derived ALLO plays a major role in ASD-like behaviors in female mice and that KSS is beneficial for the treatment of ASD in females.
Collapse
Affiliation(s)
- Qingyun Guo
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken Ebihara
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hironori Fujiwara
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Suresh Awale
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Erbo Dong
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Kinzo Matsumoto
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
42
|
Zelikowsky M, Ding K, Anderson DJ. Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:97-103. [PMID: 30948452 DOI: 10.1101/sqb.2018.83.038109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prolonged periods of social isolation can generate an internal state that exerts profound effects on the brain and behavior. However, the neurobiological underpinnings of protracted social isolation have been relatively understudied. Here, we review recent literature implicating peptide neuromodulators in the establishment and maintenance of such internal states. More specifically, we describe an evolutionarily conserved role for the neuropeptide tachykinin in the control of social isolation-induced aggression and review recent data that elucidate the manner by which Tac2 controls the widespread effects of social isolation on behavior in mice. Last, we discuss potential roles for additional neuromodulators in controlling social isolation and a more general role for Tac2 in the response to other forms of stress.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Keke Ding
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - David J Anderson
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
- TianQiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
43
|
Maguire J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated With Major Depressive Disorder and Postpartum Depression. Front Cell Neurosci 2019; 13:83. [PMID: 30906252 PMCID: PMC6418819 DOI: 10.3389/fncel.2019.00083] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Stress and previous adverse life events are well-established risk factors for depression. Further, neuroendocrine disruptions are associated with both major depressive disorder (MDD) and postpartum depression (PPD). However, the mechanisms whereby stress contributes to the underlying neurobiology of depression remains poorly understood. The hypothalamic-pituitary-adrenal (HPA) axis, which mediates the body's neuroendocrine response to stress, is tightly controlled by GABAergic signaling and there is accumulating evidence that GABAergic dysfunction contributes to the impact of stress on depression. GABAergic signaling plays a critical role in the neurobiological effects of stress, not only by tightly controlling the activity of the HPA axis, but also mediating stress effects in stress-related brain regions. Deficits in neuroactive steroids and neurosteroids, some of which are positive allosteric modulators of GABAA receptors (GABAARs), such as allopregnanolone and THDOC, have also been implicated in MDD and PPD, further supporting a role for GABAergic signaling in depression. Alterations in neurosteroid levels and GABAergic signaling are implicated as potential contributing factors to neuroendocrine dysfunction and vulnerability to MDD and PPD. Further, potential novel treatment strategies targeting these proposed underlying neurobiological mechanisms are discussed. The evidence summarized in the current review supports the notion that MDD and PPD are stress-related psychiatric disorders involving neurosteroids and GABAergic dysfunction.
Collapse
Affiliation(s)
- Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
44
|
Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol Res 2019; 141:602-608. [DOI: 10.1016/j.phrs.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
45
|
Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco MR, Beadle K, Gradinaru V, Deverman BE, Anderson DJ. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress. Cell 2019; 173:1265-1279.e19. [PMID: 29775595 DOI: 10.1016/j.cell.2018.03.037] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/29/2018] [Accepted: 03/15/2018] [Indexed: 01/06/2023]
Abstract
Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.
Collapse
Affiliation(s)
- Moriel Zelikowsky
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | - May Hui
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomomi Karigo
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Choe
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
46
|
Kosel F, Torres Munoz P, Yang JR, Wong AA, Franklin TB. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer's disease. Behav Brain Res 2019; 362:160-172. [PMID: 30659846 DOI: 10.1016/j.bbr.2019.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
In addition to memory impairments, patients with Alzheimer's disease (AD) exhibit a number of behavioural and psychological symptoms that can affect social interactions over the course of the disease. While altered social interactions have been demonstrated in a number of mouse models of AD, many models only recapitulate the initial stages of the disease, and these behavioural changes have yet to be examined over the course of disease progression. By performing a longitudinal study using the 5xFAD mouse model, we have demonstrated that transgenic females exhibit progressive alterations in social investigation compared to wild-type controls. Transgenic females exhibited an age-related reduction in interest for social odours, as well as reduced investigative behaviours towards novel conspecifics in a novel environment. However, transgenic mice exhibited no obvious olfactory deficits, nor any changes in scent-marking behaviour compared to wild-type controls, indicating that changes in investigative behaviour were due to motivation to engage with a social stimulus. This evidence suggests that transgenic 5xFAD females exhibit increased social anxiety in novel environments compared to wild-type controls. Overall, transgenic 5xFAD female mice mimic some features of social withdrawal observed in human AD patients suggesting this strain may be suitable for modelling aspects of the social dysfunction observed in human patients.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Paula Torres Munoz
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - J Renee Yang
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Aimee A Wong
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
47
|
Ramin M, Li Y, Chang WT, Shaw H, Rao Y. The peacefulness gene promotes aggression in Drosophila. Mol Brain 2019; 12:1. [PMID: 30606245 PMCID: PMC6318936 DOI: 10.1186/s13041-018-0417-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
Natural aggressiveness is commonly observed in all animal species, and is displayed frequently when animals compete for food, territory and mating. Aggression is an innate behaviour, and is influenced by both environmental and genetic factors. However, the genetics of aggression remains largely unclear. In this study, we identify the peacefulness (pfs) gene as a novel player in the control of male-male aggression in Drosophila. Mutations in pfs decreased intermale aggressiveness, but did not affect locomotor activity, olfactory avoidance response and sexual behaviours. pfs encodes for the evolutionarily conserved molybdenum cofactor (MoCo) synthesis 1 protein (Mocs1), which catalyzes the first step in the MoCo biosynthesis pathway. Neuronal-specific knockdown of pfs decreased aggressiveness. By contrast, overexpression of pfs greatly increased aggressiveness. Knocking down Cinnamon (Cin) catalyzing the final step in the MoCo synthesis pathway, caused a pfs-like aggression phenotype. In humans, inhibition of MoCo-dependent enzymes displays anti-aggressive effects. Thus, the control of aggression by Pfs-dependent MoCo pathways may be conserved throughout evolution.
Collapse
Affiliation(s)
- Mahmoudreza Ramin
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.,Integrated Program in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yueyang Li
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Wen-Tzu Chang
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Hunter Shaw
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | - Yong Rao
- Department of Neurology and Neurosurgery, McGill Centre for Research in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Integrated Program in Neuroscience, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Department of Medicine, McGill University Health Centre, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. .,Centre for Research in Neuroscience, McGill University Health Centre, Room L7-136, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
48
|
Nisbett KE, Pinna G. Emerging Therapeutic Role of PPAR-α in Cognition and Emotions. Front Pharmacol 2018; 9:998. [PMID: 30356872 PMCID: PMC6190882 DOI: 10.3389/fphar.2018.00998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/14/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Khalin E Nisbett
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
49
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
50
|
Shultzaberger RK, Johnson SJ, Wagner J, Ha K, Markow TA, Greenspan RJ. Conservation of the behavioral and transcriptional response to social experience among Drosophilids. GENES BRAIN AND BEHAVIOR 2018; 18:e12487. [PMID: 29797548 PMCID: PMC7379240 DOI: 10.1111/gbb.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/02/2022]
Abstract
While social experience has been shown to significantly alter behaviors in a wide range of species, comparative studies that uniformly measure the impact of a single experience across multiple species have been lacking, limiting our understanding of how plastic traits evolve. To address this, we quantified variations in social feeding behaviors across 10 species of Drosophilids, tested the effect of altering rearing context on these behaviors (reared in groups or in isolation) and correlated observed behavioral shifts to accompanying transcriptional changes in the heads of these flies. We observed significant variability in the extent of aggressiveness, the utilization of social cues during food search, and social space preferences across species. The sensitivity of these behaviors to rearing experience also varied: socially naive flies were more aggressive than their socialized conspecifics in some species, and more reserved or identical in others. Despite these differences, the mechanism of socialization appeared to be conserved within the melanogaster subgroup as species could cross‐socialize each other, and the transcriptional response to social exposure was significantly conserved. The expression levels of chemosensory‐perception genes often varied between species and rearing conditions, supporting a growing body of evidence that behavioral evolution is driven by the differential regulation of this class of genes. The clear differences in behavioral responses to socialization observed in Drosophilids make this an ideal system for continued studies on the genetic basis and evolution of socialization and behavioral plasticity.
Collapse
Affiliation(s)
- R K Shultzaberger
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - S J Johnson
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - J Wagner
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - K Ha
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - T A Markow
- Laboratorio Nacional de Genomica de la Biodiversidad, Centro de Investigacion y de Estudios Avanzados-Irapuato, Guanajuato, Mexico.,Department of Cell and Developmental Biology, University of California San Diego, San Diego, California
| | - R J Greenspan
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| |
Collapse
|