1
|
Adenosine receptors participate in anabolic-androgenic steroid-induced changes on risk assessment/anxiety-like behaviors in male and female rats. Physiol Behav 2023; 261:114071. [PMID: 36584765 DOI: 10.1016/j.physbeh.2022.114071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Anabolic-androgenic steroids (AAS) and caffeine can induce several behavioral alterations in humans and rodents. Administration of nandrolone decanoate is known to affect defensive responses to aversive stimuli, generally decreasing inhibitory control and increasing aggressivity but whether caffeine intake influences behavioral changes induced by AAS is unknown. The present study aimed to investigate behavioral effects of caffeine (a non-selective antagonist of adenosine receptors) alone or combined with nandrolone decanoate (one of the most commonly AAS abused) in female and male Lister Hooded rats. Our results indicated that chronic administration of nandrolone decanoate (10 mg/kg, i.m., once a week for 8 weeks) decreased risk assessment/anxiety-like behaviors (in the elevated plus maze test), regardless of sex. These effects were prevented by combined caffeine intake (0.1 g/L, p.o., ad libitum). Overall, the present study heralds a key role for caffeine intake in the modulation of nandrolone decanoate-induced behavioral changes in rats, suggesting adenosine receptors as candidate targets to manage impact of AAS on brain function and behavior.
Collapse
|
2
|
Zelleroth S, Nylander E, Kjellgren E, Grönbladh G, Hallberg M. Nandrolone decanoate and testosterone undecanoate differently affect stress hormones, neurotransmitter systems, and general activity in the male rat. Behav Brain Res 2022; 432:113971. [PMID: 35738337 DOI: 10.1016/j.bbr.2022.113971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Anabolic androgenic steroids (AAS) are frequently used to improve physical appearance and strength. AAS are known to affect muscle growth, but many AAS-users also experience psychiatric and behavioral changes after long-term use. The AAS-induced effects on the brain seem to depend on the type of steroid used, but the rationale behind the observed effect is still not clear. The present study investigated and compared the impact of nandrolone decanoate and testosterone undecanoate on body weight gain, levels of stress hormones, brain gene expression, and behavioral profiles in the male rat. The behavioral profile was determined using the multivariate concentric squared field test (MCSF-test). Blood plasma and brains were collected for further analysis using ELISA and qPCR. Nandrolone decanoate caused a reduction in body weight gain in comparison with both testosterone undecanoate and control. Rats receiving nandrolone decanoate also demonstrated decreased general activity in the MCSF. In addition, nandrolone decanoate reduced the plasma levels of ACTH in comparison with the control and increased the levels of corticosterone in comparison with testosterone undecanoate. The qPCR analysis revealed brain region-dependent changes in mRNA expression, where the hypothalamus was identified as the region most affected by the AAS. Alterations in neurotransmitter systems and stress hormones may contribute to the changes in behavior detected in the MCSF. In conclusion, both AAS affect the male rat, although, nandrolone decanoate has more pronounced impact on the physiological and the behavioral parameters measured.
Collapse
Affiliation(s)
- Sofia Zelleroth
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - Erik Nylander
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - Ellinor Kjellgren
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - GronbladhAlfhild Grönbladh
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| | - Mathias Hallberg
- The Beijer laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24 Uppsala University, Sweden.
| |
Collapse
|
3
|
Niromand E, Javanmardy S, Salimi Z, Zarei F, Khazaei MR. Association between nandrolone and behavioral alterations: A systematic review of preclinical studies. Steroids 2021; 174:108901. [PMID: 34407462 DOI: 10.1016/j.steroids.2021.108901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM In recent years the expanding misuse of Nandrolone among non-athletes, particularly adolescent males is a prevalent global concern due to its adverse effects. This article provides a summary of the experimental studies to clarify the relationship between Nandrolone exposure and behavioral and cognitive performances. MATERIALS AND METHODS The present systematic review was conducted using PubMed, Embase and ScienceDirect databases, from 2000 to 2020, using the following key terms: Nandrolone AND Cognition, Nandrolone AND Learning, Nandrolone AND Memory, Nandrolone AND (Synaptic plasticity or Hippocampal synaptic plasticity), Nandrolone AND (Aggression or Aggressive-like behavior), Nandrolone AND (Anxiety or Anxiety-like behavior), Nandrolone AND (Depression or Depressive-like behavior). RESULTS 33 qualified papers were selected from the 2498 sources found. Of the 33 cases, 32 (96.97%) were males while only 1 (3.03%) was female and male. From 33 selected articles 8 reported studies were related to spatial memory, 2 reported studies were related to avoidance memory, 11 studies reported information on synaptic plasticity, 11 reported studies were related to aggressive behavior, 8 reported studies were related to aggressive behavior and 6 reported studies were related to depression. CONCLUSION Nandrolone can change spatial ability, avoidance memory and hippocampal synaptic plasticity. Also, Nandrolone exposure produces variable effects on behavioral function such as aggression, depression and anxiety. This despite the fact that the results are contradictory. These discrepancies might be due to the differences in sex, age, dosage and treatment duration, and administration route. However, the negative results are more common than the published positive ones.
Collapse
Affiliation(s)
- Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Setareh Javanmardy
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Salimi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Zarei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Morrison TR, Ricci LA, Puckett AS, Joyce J, Curran R, Davis C, Melloni RH. Serotonin type-3 receptors differentially modulate anxiety and aggression during withdrawal from adolescent anabolic steroid exposure. Horm Behav 2020; 119:104650. [PMID: 31805280 DOI: 10.1016/j.yhbeh.2019.104650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Male Syrian hamsters (Mesocricetus auratus) administered anabolic/androgenic steroids during adolescent development display increased aggression and decreased anxious behavior during the adolescent exposure period. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts and hamsters exhibit decreased aggression and increased anxious behavior. This study investigated the hypothesis that alterations in anterior hypothalamic signaling through serotonin type-3 receptors modulate the behavioral shift between adolescent anabolic/androgenic steroid-induced aggressive and anxious behaviors during the withdrawal period. To test this, hamsters were administered anabolic/androgenic steroids during adolescence then withdrawn from drug exposure for 21 days and tested for aggressive and anxious behaviors following direct pharmacological manipulation of serotonin type-3 receptor signaling within the latero-anterior hypothalamus. Blockade of latero-anterior hypothalamic serotonin type-3 receptors both increased aggression and decreased anxious behavior in steroid-treated hamsters, effectively reversing the pattern of behavioral responding normally observed during anabolic/androgenic steroid withdrawal. These findings suggest that the state of serotonin neural signaling within the latero-anterior hypothalamus plays an important role in behavioral shifting between aggressive and anxious behaviors following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Amanda S Puckett
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Jillian Joyce
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Riley Curran
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Courtney Davis
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
5
|
Kada Sanda A, Nantia AE, Manfo TFP, Toboh RT, Abende RE, Adaibum S, Moundipa PF, Kamtchouing P. Subchronic administration of Parastar insecticide induced behavioral changes and impaired motor coordination in male Wistar rats. Drug Chem Toxicol 2020; 45:426-434. [PMID: 31914824 DOI: 10.1080/01480545.2019.1709491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Parastar is an insecticide formulation of lambda-cyhalothrin and imidacloprid largely used for crop protection in North West Region of Cameroon. In the present study, we evaluated the behavioral activities and motor function of Wistar male rats after subchronic treatment with the pesticide formulation. To this end, three groups of adult rats were administered Parastar at doses 1.25, 2.49 and 6.23 mg/kg, respectively, for 35 days. A control group was included and received distilled water. At the end of the treatment, the animals were submitted to behavioral and functional tests (open field test, elevated plus maze test, light-dark box test, forced swimming test, tail suspension test, beam-walking test, grid suspension test and wire hang test) for estimation of anxiety, exploration, depression and motor coordination. Results revealed that Parastar, at the higher doses tested, 2.49 and 6.23 mg/kg, induced anxiogenic-like pattern behavior in rats in all behavioral assays including open field test (total distance moved, total lines crossed, frequency and total time in center square were all reduced), elevated plus maze (decreased total time spent in open arms and the number of entries in open arms of the elevated plus maze), and light-dark box (the dark box duration increased, while light box duration time and frequency of transition between dark and light box decreased). Treatment with 2.49 and 6.23 mg/kg Parastar increased the immobility time of animals in both forced swimming test and tail suspension test. The insecticide induced decrease in the distance traveled, foot slip and number of turns of animals in the beam walking test. Parastar also decreased the animal suspension time in both grid suspension grip-strength test and the wire hang test. Taken altogether, these results suggest that subchronic administration of Parastar at the doses of 2.49 and 6.23 mg/kg induced anxiety-like and depressive-like behavior as well as impaired motor coordination and muscle strength in male rats.
Collapse
Affiliation(s)
- Antoine Kada Sanda
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Akono Edouard Nantia
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - T F Pascal Manfo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Romi T Toboh
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Roxane Essame Abende
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Sterling Adaibum
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Paul Fewou Moundipa
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Pierre Kamtchouing
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| |
Collapse
|
6
|
Joksimovic J, Selakovic D, Matovic M, Zaletel I, Puskas N, Rosic G. The role of neuropeptide-Y in nandrolone decanoate-induced attenuation of antidepressant effect of exercise. PLoS One 2017; 12:e0178922. [PMID: 28582442 PMCID: PMC5459494 DOI: 10.1371/journal.pone.0178922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022] Open
Abstract
Since the increased prevalence of anabolic androgenic steroids abuse in last few decades is usually accompanied by various exercise protocols, the scope of our study was to evaluate the effects of chronic nandrolone decanoate administration in supraphysiological dose and a prolonged swimming protocol (alone and simultaneously with nandrolone decanoate) on depressive state in male rats. Simultaneously, we investigated the possible alterations in neuropeptide Y (NPY) content in blood and the hippocampus, in order to determine the role of NPY in the modulation of depressive-like behavior.Exercise induced antidepressant effects in tail suspension test (decrease of the total duration of immobility), as well as significant increase in the number of hippocampal NPY-interneurons in CA1 region. Chronic nandrolone decanoate treatment attenuated the beneficial antidepressant effects of exercise as measured by the tail suspension test parameters. Simultaneously, nandrolone decanoate treatment resulted in diminution of NPY content both in blood (decreased serum levels) and in hippocampus (the significant decrease in NPY expression in all three investigated hippocampal regions-CA1, CA2/3 and DG). Our findings indicate that alterations in serum and hippocampal NPY contents may underlie the changes in depressive state in rats. The exercise was beneficial as it exerted antidepressant effect, while chronic nandrolone decanoate treatment resulted in depressive-like behavior. Furthermore, the behavioral indicators of depression showed strong correlations with the serum levels and the hippocampal content of NPY.
Collapse
Affiliation(s)
- Jovana Joksimovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milovan Matovic
- Deparment of Nuclear Medicine, Faculty of Medical Sciences University of Kragujevac, Clinical Centre "Kragujevac", Kragujevac, Serbia
| | - Ivan Zaletel
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nela Puskas
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- * E-mail:
| |
Collapse
|
7
|
Joksimović J, Selaković D, Jakovljević V, Mihailović V, Katanić J, Boroja T, Rosić G. Alterations of the oxidative status in rat hippocampus and prodepressant effect of chronic testosterone enanthate administration. Mol Cell Biochem 2017; 433:41-50. [DOI: 10.1007/s11010-017-3014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
8
|
Morrison TR, Ricci LA, Melloni RH. Vasopressin differentially modulates aggression and anxiety in adolescent hamsters administered anabolic steroids. Horm Behav 2016; 86:55-63. [PMID: 27149949 PMCID: PMC5094902 DOI: 10.1016/j.yhbeh.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022]
Abstract
Adolescent Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids display increased offensive aggression and decreased anxiety correlated with an increase in vasopressin afferent development, synthesis, and neural signaling within the anterior hypothalamus. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts as hamsters display decreased offensive aggression and increased anxiety correlated with a decrease in anterior hypothalamic vasopressin. This study investigated the hypothesis that alterations in anterior hypothalamic vasopressin neural signaling modulate behavioral shifting between adolescent anabolic/androgenic steroid-induced offensive aggression and anxiety. To test this, adolescent male hamsters were administered anabolic/androgenic steroids and tested for offensive aggression or anxiety following direct pharmacological manipulation of vasopressin V1A receptor signaling within the anterior hypothalamus. Blockade of anterior hypothalamic vasopressin V1A receptor signaling suppressed offensive aggression and enhanced general and social anxiety in hamsters administered anabolic/androgenic steroids during adolescence, effectively reversing the pattern of behavioral response pattern normally observed during the adolescent exposure period. Conversely, activation of anterior hypothalamic vasopressin V1A receptor signaling enhanced offensive aggression in hamsters exposed to anabolic/androgenic steroids during adolescence. Together, these findings suggest that the state of vasopressin neural development and signaling in the anterior hypothalamus plays an important role in behavioral shifting between aggression and anxiety following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States.
| |
Collapse
|
9
|
Onaolapo OJ, Onaolapo AY, Omololu TA, Oludimu AT, Segun-Busari T, Omoleke T. Exogenous Testosterone, Aging, and Changes in Behavioral Response of Gonadally Intact Male Mice. J Exp Neurosci 2016; 10:59-70. [PMID: 27158222 PMCID: PMC4854217 DOI: 10.4137/jen.s39042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/06/2016] [Accepted: 03/18/2016] [Indexed: 01/23/2023] Open
Abstract
This study tested the hypothesis that aging significantly affects the influence of exogenous testosterone on neurobehavior in gonadally intact male mice. Groups of prepubertal and aged male mice received daily vehicle or testosterone propionate (TP; 2.5 or 5.0 mg/kg intraperitoneal [i.p.]) for 21 days. Behaviors were assessed on days 1 and 21. Weight gain was significant in prepubertal mice. Locomotion and rearing increased in prepubertal mice after first dose and decreased after last dose of TP. Rearing was suppressed in aged mice throughout. Suppression of grooming occurred in both age groups at day 21. Significant increase in working memory in both age groups was seen in the radial-arm maze (at specific doses) and in prepubertal mice in the Y-maze. Elevated plus maze test showed mixed anxiolytic/anxiogenic effects. Aged mice had higher serum testosterone. In conclusion, age is an important determinant for the influence of exogenous testosterone on behavior in gonadally intact male mice.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Oshogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Tope A Omololu
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Adedunke T Oludimu
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Toluwalase Segun-Busari
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Taofeeq Omoleke
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
10
|
Mad men, women and steroid cocktails: a review of the impact of sex and other factors on anabolic androgenic steroids effects on affective behaviors. Psychopharmacology (Berl) 2016; 233:549-69. [PMID: 26758282 PMCID: PMC4751878 DOI: 10.1007/s00213-015-4193-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE For several decades, elite athletes and a growing number of recreational consumers have used anabolic androgenic steroids (AAS) as performance enhancing drugs. Despite mounting evidence that illicit use of these synthetic steroids has detrimental effects on affective states, information available on sex-specific actions of these drugs is lacking. OBJECTIVES The focus of this review is to assess information to date on the importance of sex and its interaction with other environmental factors on affective behaviors, with an emphasis on data derived from non-human studies. METHODS The PubMed database was searched for relevant studies in both sexes. RESULTS Studies examining AAS use in females are limited, reflecting the lower prevalence of use in this sex. Data, however, indicate significant sex-specific differences in AAS effects on anxiety-like and aggressive behaviors, interactions with other drugs of abuse, and the interplay of AAS with other environmental factors such as diet and exercise. CONCLUSIONS Current methods for assessing AAS use have limitations that suggest biases of both under- and over-reporting, which may be amplified for females who are poorly represented in self-report studies of human subjects and are rarely used in animal studies. Data from animal literature suggest that there are significant sex-specific differences in the impact of AAS on aggression, anxiety, and concomitant use of other abused substances. These results have relevance for human females who take these drugs as performance-enhancing substances and for transgender XX individuals who may illicitly self-administer AAS as they transition to a male gender identity.
Collapse
|
11
|
Ahmed MAE, El-Awdan SA. Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression. Horm Behav 2015; 73:186-99. [PMID: 26187709 DOI: 10.1016/j.yhbeh.2015.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 12/29/2022]
Abstract
Behavioral perturbations associated with nandrolone decanoate abuse by athletes and adolescents may be attributed to oxidative stress and inflammation. However, the underlying mechanisms are not yet fully explored. On the other hand, the natural antioxidant lipoic acid can pass the blood brain barrier and enhance Nrf2/HO-1 (nuclear factor erythroid-2 related factor 2/heme oxygenase-1) pathway. In addition, the phosphodiesterase-IV inhibitor xanthine derivative pentoxifylline has a remarkable inhibitory effect on tumor necrosis factor-alpha (TNF-α). Therefore, this study aimed at investigation of the possible protective effects of lipoic acid and/or pentoxifylline against nandrolone-induced neurobehavioral alterations in rats. Accordingly, male albino rats were randomly distributed into seven groups and treated with either vehicle, nandrolone (15mg/kg, every third day, s.c.), lipoic acid (100mg/kg/day, p.o.), pentoxifylline (200mg/kg/day, i.p.), or nandrolone with lipoic acid and/or pentoxifylline. Rats were challenged in the open field, rewarded T-maze, Morris water maze, and resident-intruder aggression behavioral tests. The present findings showed that nandrolone induced hyperlocomotion, anxiety, memory impairment, and aggression in rats. These behavioral abnormalities were accompanied by several biochemical changes, including altered levels of brain monoamines, GABA, and acetylcholine, enhanced levels of malondialdehyde and TNF-α, elevated activity of acetylcholinesterase, and up-regulated expression of TNF-α receptor-1 (TNFR1). In addition, inhibited catalase activity, down-regulated Nrf2/HO-1 pathway, and suppressed acetylcholine receptor expression were observed. Lipoic acid and pentoxifylline combination significantly mitigated all the previously mentioned deleterious effects mainly via up-regulation of Nrf2/HO-1 pathway, inhibition of TNF-α and down-regulation of TNFR1 expression. In conclusion, the biochemical and histopathological findings of this study revealed the protective mechanisms of lipoic acid and pentoxifylline against nandrolone-induced behavioral changes and neurotoxicity in rats.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Sally A El-Awdan
- Department of Pharmacology, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Morrison TR, Ricci LA, Melloni RH. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety. Horm Behav 2015; 69:132-8. [PMID: 25655668 PMCID: PMC4359666 DOI: 10.1016/j.yhbeh.2015.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/03/2015] [Accepted: 01/28/2015] [Indexed: 12/15/2022]
Abstract
Anabolic/androgenic steroid (AAS) use remains high in both teens and adults in the U.S. and worldwide despite studies showing that AAS use is associated with a higher incidence of aggression and anxiety. Recently we showed that chronic exposure to AAS through adolescence increases aggression and decreases anxious behaviors, while during AAS-withdrawal aggression is lowered to species-normative levels and anxiety increases. AAS exposure is known to differentially alter behaviors and their underlying neural substrates between adults and adolescents and thus the current study investigated whether exposure to AAS during adulthood affects the relationship between aggression and anxiety in a manner similar to that previously observed in adolescents. Male hamsters were administered a moderate dose of AAS (5.0mg/kg/day×30days) during adolescence (P27-56) or young adulthood (P65-P94) and then tested for aggression and anxiety during AAS exposure (i.e., on P57 or P95) and during AAS withdrawal (i.e., 30days later on P77 or P115). Adolescent exposure to AAS increased aggressive responding during the AAS exposure period and anxiety-like responding during AAS withdrawal. Neither behavior was similarly influenced by adult exposure to AAS. Adult AAS exposure produced no difference in aggressive responding during AAS exposure (P95) or AAS withdrawal (P115); however, while AAS exposure during adulthood produced no difference in anxiety-like responding during AAS exposure, adult hamsters administered AAS were less anxious than vehicle control animals following AAS withdrawal. Together these data suggest that the aggression and anxiety provoking influence of AAS are likely a developmental phenomenon and that adult exposure to AAS may be anxiolytic over the long term.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA.
| |
Collapse
|
13
|
Piacentino D, Kotzalidis GD, del Casale A, Aromatario MR, Pomara C, Girardi P, Sani G. Anabolic-androgenic steroid use and psychopathology in athletes. A systematic review. Curr Neuropharmacol 2015; 13:101-121. [PMID: 26074746 PMCID: PMC4462035 DOI: 10.2174/1570159x13666141210222725] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 12/19/2022] Open
Abstract
The use of anabolic-androgenic steroids (AASs) by professional and recreational athletes is increasing worldwide. The underlying motivations are mainly performance enhancement and body image improvement. AAS abuse and dependence, which are specifically classified and coded by the DSM-5, are not uncommon. AAS-using athletes are frequently present with psychiatric symptoms and disorders, mainly somatoform and eating, but also mood, and schizophrenia-related disorders. Some psychiatric disorders are typical of athletes, like muscle dysmorphia. This raises the issue of whether AAS use causes these disorders in athletes, by determining neuroadaptive changes in the reward neural circuit or by exacerbating stress vulnerability, or rather these are athletes with premorbid abnormal personalities or a history of psychiatric disorders who are attracted to AAS use, prompted by the desire to improve their appearance and control their weights. This may predispose to eating disorders, but AASs also show mood destabilizing effects, with longterm use inducing depression and short-term hypomania; withdrawal/discontinuation may be accompanied by depression. The effects of AASs on anxiety behavior are unclear and studies are inconsistent. AASs are also linked to psychotic behavior. The psychological characteristics that could prompt athletes to use AASs have not been elucidated.
Collapse
Affiliation(s)
- Daria Piacentino
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University–Rome, Italy; UOC Psychiatry, Sant’Andrea Hospital, Rome, Italy
| | - Georgios D. Kotzalidis
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University–Rome, Italy; UOC Psychiatry, Sant’Andrea Hospital, Rome, Italy
| | - Antonio del Casale
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University–Rome, Italy; UOC Psychiatry, Sant’Andrea Hospital, Rome, Italy
- Department of Psychiatric Rehabilitation, P. Alberto Mileno Onlus Foundation, San Francesco
Institute, Vasto, Italy
| | - Maria Rosaria Aromatario
- Department of Anatomical, Histological, Forensic Medicine, And Orthopedic Sciences. Sapienza University–Rome, Italy
| | - Cristoforo Pomara
- Department of Forensic Pathology, University of Foggia; Ospedale Colonnello D'Avanzo, Foggia, Italy
| | - Paolo Girardi
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University–Rome, Italy; UOC Psychiatry, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gabriele Sani
- NESMOS (Neurosciences, Mental Health, and Sensory Organs) Department, School of Medicine and Psychology, Sapienza University–Rome, Italy; UOC Psychiatry, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, Rome, Italy
| |
Collapse
|
14
|
Onakomaiya MM, Porter DM, Oberlander JG, Henderson LP. Sex and exercise interact to alter the expression of anabolic androgenic steroid-induced anxiety-like behaviors in the mouse. Horm Behav 2014; 66:283-97. [PMID: 24768711 PMCID: PMC4127168 DOI: 10.1016/j.yhbeh.2014.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/14/2022]
Abstract
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.
Collapse
Affiliation(s)
- Marie M Onakomaiya
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Donna M Porter
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Joseph G Oberlander
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, IL 60208, USA
| | - Leslie P Henderson
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
15
|
Chronic nandrolone decanoate exposure during adolescence affects emotional behavior and monoaminergic neurotransmission in adulthood. Neuropharmacology 2014; 83:79-88. [PMID: 24721625 DOI: 10.1016/j.neuropharm.2014.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 03/25/2014] [Accepted: 03/30/2014] [Indexed: 12/14/2022]
Abstract
Nandrolone decanoate, an anabolic androgen steroid (AAS) illicitly used by adult and adolescent athletes to enhance physical performance and body image, induces psychiatric side effects, such as aggression, depression as well as a spectrum of adverse physiological impairments. Since adolescence represents a neurodevelopmental window that is extremely sensitive to the detrimental effects of drug abuse, we investigated the long-term behavioral and neurophysiological consequences of nandrolone abuse during adolescence. Adolescent rats received daily injections of nandrolone decanoate (15 mg/kg, i.m.) for 14 days (PND 40-53). At early adulthood (PND 68), forced swim, sucrose preference, open field and elevated plus maze tests were performed to assess behavioral changes. In vivo electrophysiological recordings were carried out to monitor changes in electrical activity of serotonergic neurons of the dorsal raphe nucleus (DRN) and noradrenergic neurons of the locus coeruleus (LC). Our results show that after early exposure to nandrolone, rats display depression-related behavior, characterized by increased immobility in the forced swim test and reduced sucrose intake in the sucrose preference test. In addition, adult rats presented anxiety-like behavior characterized by decreased time and number of entries in the central zone of the open field and decreased time spent in the open arms of the elevated plus maze. Nandrolone decreased the firing rate of spontaneously active serotonergic neurons in the DRN while increasing the firing rate of noradrenergic neurons in the LC. These results provide evidence that nandrolone decanoate exposure during adolescence alters the emotional profile of animals in adulthood and significantly modifies both serotonergic and noradrenergic neurotransmission.
Collapse
|
16
|
Olivares EL, Silveira ALB, Fonseca FV, Silva-Almeida C, Côrtes RS, Pereira-Junior PP, Nascimento JHM, Reis LC. Administration of an anabolic steroid during the adolescent phase changes the behavior, cardiac autonomic balance and fluid intake in male adult rats. Physiol Behav 2013; 126:15-24. [PMID: 24382485 DOI: 10.1016/j.physbeh.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 11/25/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
Few data are available on adolescent users because most behavioral studies on anabolic-androgenic steroids (AAS) abuse have been performed in adults. Studies evaluating the impact of long-term effects of AAS abuse on the prepubertal phase are even more uncommon. Accordingly, this study was developed to test the hypothesis that changes induced by the use of AAS during the adolescent phase may be noted in the adult phase even when the AAS treatment cycle is discontinued. Therefore, not only behavioral changes but also possible autonomic and electrolyte disorders were evaluated. For this purpose, we used male prepubertal, 26-day-old (P26) Wistar rats that were treated with vehicle (control, n=10) or testosterone propionate (TP; 5 mg/kg intramuscular (IM) injection, AAS, n=10) five times per week for 5 weeks, totaling 25 applications during the treatment. Aggression tests were performed at the end of the cycle (P54-56), whereas open-field tests (OFTs), elevated plus maze (EPM) behavioral tests and measurements of heart rate variability (HRV), fluid intake and pathology were conducted in the adult phase (P87-92). The AAS group showed greater aggressiveness in the pubertal phase and higher levels of horizontal and vertical exploration and anxiety-related behavior in the adult phase than the control group (P<0.05). HRV tests showed an increase in sympathetic autonomic modulation, and hydroelectrolytic assessment showed lower basal intake levels of hypertonic saline than the control group (P<0.05), without statistically significant changes in the basal intake of water. These data together suggest that the use of AAS during the prepubertal phase induces behavioral, autonomic and hydroelectrolytic changes that manifest in the adult phase even when treatment is discontinued in late adolescence in rats.
Collapse
Affiliation(s)
- Emerson L Olivares
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Brazil.
| | - Anderson L B Silveira
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Brazil
| | - Fabricia V Fonseca
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Brazil
| | - Claudio Silva-Almeida
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Brazil
| | - Rafael S Côrtes
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Brazil
| | - Pedro P Pereira-Junior
- Cardiac Electrophysiology Laboratory Carlos Chagas Filho, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Cardiac Electrophysiology Laboratory Carlos Chagas Filho, Biophysics Institute, Federal University of Rio de Janeiro, Brazil
| | - Luis C Reis
- Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Ricci LA, Morrison TR, Melloni RH. Adolescent anabolic/androgenic steroids: Aggression and anxiety during exposure predict behavioral responding during withdrawal in Syrian hamsters (Mesocricetus auratus). Horm Behav 2013; 64:770-80. [PMID: 24126136 PMCID: PMC3957330 DOI: 10.1016/j.yhbeh.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/10/2013] [Accepted: 10/03/2013] [Indexed: 11/22/2022]
Abstract
In the U.S. and worldwide anabolic/androgenic steroid use remains high in the adolescent population. This is concerning given that anabolic/androgenic steroid use is associated with a higher incidence of aggressive behavior during exposure and anxiety during withdrawal. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that an inverse behavioral relationship exists between anabolic/androgenic steroid-induced aggression and anxiety across adolescent exposure and withdrawal. In the first experiment, we examined aggression and anxiety during adolescent anabolic/androgenic steroid exposure and withdrawal. Adolescent anabolic/androgenic steroid administration produced significant increases in aggression and decreases in anxiety during the exposure period followed by significant decreases in aggression and increases in anxiety during anabolic/androgenic steroid withdrawal. In a second experiment, anabolic/androgenic steroid exposed animals were separated into groups based on their aggressive response during the exposure period and then tested for anxiety during exposure and then for both aggression and anxiety during withdrawal. Data were analyzed using a within-subjects repeated measures predictive analysis. Linear regression analysis revealed that the difference in aggressive responding between the anabolic/androgenic steroid exposure and withdrawal periods was a significant predictor of differences in anxiety for both days of testing. Moreover, the combined data suggest that the decrease in aggressive behavior from exposure to withdrawal predicts an increase in anxiety-like responding within these same animals during this time span. Together these findings indicate that early anabolic/androgenic steroid exposure has potent aggression- and anxiety-eliciting effects and that these behavioral changes occur alongside a predictive relationship that exists between these two behaviors over time.
Collapse
Affiliation(s)
- Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | | | | |
Collapse
|
18
|
Ricci LA, Morrison TR, Melloni RH. Serotonin modulates anxiety-like behaviors during withdrawal from adolescent anabolic-androgenic steroid exposure in Syrian hamsters. Horm Behav 2012; 62:569-78. [PMID: 23026540 PMCID: PMC3612524 DOI: 10.1016/j.yhbeh.2012.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/27/2022]
Abstract
From the U.S. to Europe and Australia anabolic steroid abuse remains high in the adolescent population. This is concerning given that anabolic steroid use is associated with a higher incidence of pathological anxiety that often appears during withdrawal from use. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that adolescent anabolic/androgenic steroid (AAS) exposure predisposes hamsters to heightened levels of anxiety during AAS withdrawal that is modulated by serotonin (5HT) neural signaling. In the first two sets of experiments, adolescent AAS-treated hamsters were tested for anxiety 21 days after the cessation of AAS administration (i.e., during AAS withdrawal) using the elevated plus maze (EPM), dark/light (DL), and seed finding (SF) tests and then examined for differences in 5HT afferent innervation to select areas of the brain important for anxiety. In the EPM and DL tests, adolescent AAS exposure leads to significant increases in anxiety-like response during AAS withdrawal. AAS-treated hamsters showed long-term reductions in 5HT innervation within several areas of the hamster brain implicated in anxiety, most notably the anterior hypothalamus and the central and medial amygdala. However, no differences in 5HT were found in other anxiety areas, e.g., frontal cortex and lateral septum. In the last experiment, adolescent AAS-treated hamsters were scored for anxiety on the 21st day of AAS withdrawal following the systemic administration of saline or one of three doses of fluoxetine, a selective serotonin reuptake inhibitor. Saline-treated hamsters showed high levels of AAS withdrawal-induced anxiety, while treatment with fluoxetine reduced AAS withdrawal-induced anxiety. These findings indicate that early AAS exposure has potent anxiogenic effects during AAS withdrawal that are modulated, in part, by 5HT signaling.
Collapse
|
19
|
Oberlander JG, Henderson LP. Corticotropin-releasing factor modulation of forebrain GABAergic transmission has a pivotal role in the expression of anabolic steroid-induced anxiety in the female mouse. Neuropsychopharmacology 2012; 37:1483-99. [PMID: 22298120 PMCID: PMC3327853 DOI: 10.1038/npp.2011.334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 12/14/2022]
Abstract
Increased anxiety is commonly observed in individuals who illicitly administer anabolic androgenic steroids (AAS). Behavioral effects of steroid abuse have become an increasing concern in adults and adolescents of both sexes. The dorsolateral bed nucleus of the stria terminalis (dlBnST) has a critical role in the expression of diffuse anxiety and is a key site of action for the anxiogenic neuromodulator, corticotropin releasing factor (CRF). Here we demonstrate that chronic, but not acute, exposure of female mice during adolescence to AAS augments anxiety-like behaviors; effects that were blocked by central infusion of the CRF receptor type 1 antagonist, antalarmin. AAS treatment selectively increased action potential (AP) firing in neurons of the central amygdala (CeA) that project to the dlBnST, increased the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in dlBnST target neurons, and decreased both c-FOS immunoreactivity (IR) and AP frequency in these postsynaptic cells. Acute application of antalarmin abrogated the enhancement of GABAergic inhibition induced by chronic AAS exposure whereas application of CRF to brain slices of naïve mice mimicked the actions of this treatment. These results, in concert with previous data demonstrating that chronic AAS treatment results in enhanced levels of CRF mRNA in the CeA and increased CRF-IR in the dlBnST neuropil, are consistent with a mechanism in which the enhanced anxiety elicited by chronic AAS exposure involves augmented inhibitory activity of CeA afferents to the dlBnST and CRF-dependent enhancement of GABAergic inhibition in this brain region.
Collapse
Affiliation(s)
- Joseph G Oberlander
- Department of Physiology & Neurobiology, Dartmouth Medical School, Hanover, NH, USA
| | - Leslie P Henderson
- Department of Physiology & Neurobiology, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
20
|
The Sturm und Drang of anabolic steroid use: angst, anxiety, and aggression. Trends Neurosci 2012; 35:382-92. [PMID: 22516619 DOI: 10.1016/j.tins.2012.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/17/2012] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Anabolic androgenic steroids (AAS) are illicitly administered to enhance athletic performance and body image. Although conferring positive actions on performance, steroid abuse is associated with changes in anxiety and aggression. AAS users are often keenly invested in understanding the biological actions of these drugs. Thus, mechanistic information on AAS actions is important not only for the biomedical community, but also for steroid users. Here we review findings from animal studies on the impact of AAS exposure on neural systems that are crucial for the production of anxiety and aggression, and compare the effects of the different classes of AAS and their potential signaling mechanisms, as well as context-, age- and sex-dependent aspects of their actions.
Collapse
|
21
|
Ip EJ, Barnett MJ, Tenerowicz MJ, Perry PJ. The Anabolic 500 survey: characteristics of male users versus nonusers of anabolic-androgenic steroids for strength training. Pharmacotherapy 2012; 31:757-66. [PMID: 21923602 DOI: 10.1592/phco.31.8.757] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To contrast the characteristics of two groups of men who participated in strength-training exercise-those who reported anabolicandrogenic steroid (AAS) use versus those who reported no AAS use. DESIGN Analysis of data from the Anabolic 500, a cross-sectional survey. PARTICIPANTS Five hundred six male self-reported AAS users (mean age 29.3 yrs) and 771 male self-reported nonusers of AAS (mean age 25.2 yrs) who completed an online survey between February 19 and June 30, 2009. MEASUREMENTS AND MAIN RESULTS Respondents were recruited from Internet discussion boards of 38 fitness, bodybuilding, weightlifting, and steroid Web sites. The respondents provided online informed consent and completed the Anabolic 500, a 99-item Web-based survey. Data were collected on demographics, use of AAS and other performance-enhancing agents, alcohol and illicit drug use, substance dependence disorder, other Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision diagnoses, and history of sexual and/or physical abuse. Most (70.4%) of the AAS users were recreational exercisers who reported using an average of 11.1 performance-enhancing agents in their routine. Compared with nonusers, the AAS users were more likely to meet criteria for substance dependence disorder (23.4% vs 11.2%, p<0.001), report a diagnosis of an anxiety disorder (10.1% vs 6.1%, p=0.010), use cocaine within the past 12 months (11.3% vs 4.7%, p<0.001), and report a history of sexual abuse (6.1% vs 2.7%, p=0.005). CONCLUSION Most of the AAS users in this study were recreational exercisers who practiced polypharmacy. The AAS users were more likely than nonusers to meet criteria for substance dependence disorder, report a diagnosis of an anxiety disorder, report recent cocaine use, and have a history of sexual abuse. The information uncovered in this study may help clinicians and researchers develop appropriate intervention strategies for AAS abuse.
Collapse
Affiliation(s)
- Eric J Ip
- Department of Pharmacy Practice, Touro University College of Pharmacy, Vallejo, California 94592, USA.
| | | | | | | |
Collapse
|
22
|
Chronic anabolic androgenic steroid exposure alters corticotropin releasing factor expression and anxiety-like behaviors in the female mouse. Psychoneuroendocrinology 2010; 35:1473-85. [PMID: 20537804 PMCID: PMC2937186 DOI: 10.1016/j.psyneuen.2010.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/05/2010] [Accepted: 04/27/2010] [Indexed: 01/18/2023]
Abstract
In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central nucleus of the amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BnST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST.
Collapse
|
23
|
Magnusson K, Birgner C, Bergström L, Nyberg F, Hallberg M. Nandrolone decanoate administration dose-dependently affects the density of kappa opioid peptide receptors in the rat brain determined by autoradiography. Neuropeptides 2009; 43:105-11. [PMID: 19201466 DOI: 10.1016/j.npep.2008.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/20/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
The kappa opioid receptor ligand [(3)H]CI-977 was used to autoradiographically determine the density of kappa opioid receptors in the male rat brain following chronic treatment with the anabolic androgenic steroid nandrolone decanoate at two different doses. As compared to controls, significantly lower densities of the kappa opioid receptor were encountered after two weeks of high dose nandrolone decanoate (15 mg/kg) in the nucleus accumbens shell (16%), lateral hypothalamic area (36%), ventromedial hypothalamic nucleus (37%), dorsomedial hypothalamic nucleus (49%), central amygdaloid nucleus, capsular part (28%), lateral globus pallidus (35%) and in the stria terminalis (24%). Furthermore, an up-regulation of the receptor level was observed in the caudate putamen (18%) and in the dorsal endopiriform nucleus (23%). These alterations in the kappa opioid receptor expression are possibly attributed to a previously observed pronounced impact of nandrolone decanoate on the dynorphinergic system and could also include involvement of the dopaminergic reward system.
Collapse
Affiliation(s)
- K Magnusson
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Parrilla-Carrero J, Figueroa O, Lugo A, García-Sosa R, Brito-Vargas P, Cruz B, Rivera M, Barreto-Estrada JL. The anabolic steroids testosterone propionate and nandrolone, but not 17alpha-methyltestosterone, induce conditioned place preference in adult mice. Drug Alcohol Depend 2009; 100:122-7. [PMID: 19028026 PMCID: PMC2671726 DOI: 10.1016/j.drugalcdep.2008.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 08/17/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Anabolic androgenic steroids (AAS) are often misused by adolescents and athletes. Their effects vary according to chemical structure and metabolism, route of administration, and AAS regimen. In this study, adult C57Bl/6 male mice were systemically exposed to testosterone propionate (TP), nandrolone or 17alpha-methyltestosterone (17alpha-meT), type I, type II and type III AAS, respectively, in order to determine the hedonic or aversive properties of each drug. For this purpose, the conditioned place preference (CPP) test was employed at three different AAS doses (0.075, 0.75 and 7.5 mg/kg). Other behavioral domains monitored were light-dark transitions (side changes) and general activity. TP shifted place preference at all doses tested, and nandrolone shifted place preference at 0.75 and 7.5 mg/kg, but not at 0.075 mg/kg, the lower dose tested. Conversely, mice receiving 17alpha-meT did not show alteration in the preference score. The lower dose of nandrolone did modify exploratory-based anxiety showing a decrease in light-dark transitions if compared to vehicle-treated animals, while mice treated with TP or 17alpha-meT were not affected. Our data suggest that when studying hedonic and rewarding properties of synthetic androgens, distinction has to be made based on type of AAS and metabolism.
Collapse
|
25
|
Treit D, Engin E, McEown K. Animal models of anxiety and anxiolytic drug action. Curr Top Behav Neurosci 2009; 2:121-60. [PMID: 21309109 DOI: 10.1007/7854_2009_17] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Animal models of anxiety attempt to represent some aspect of the etiology, symptomatology, or treatment of human anxiety disorders, in order to facilitate their scientific study. Within this context, animal models of anxiolytic drug action can be viewed as treatment models relevant to the pharmacological control of human anxiety. A major purpose of these models is to identify novel anxiolytic compounds and to study the mechanisms whereby these compounds produce their anxiolytic effects. After a critical analysis of "face," "construct," and "predictive" validity, the biological context in which animal models of anxiety are to be evaluated is specified. We then review the models in terms of their general pharmacological profiles, with particular attention to their sensitivity to 5-HTIA agonists and antidepressant compounds. Although there are important exceptions, most of these models are sensitive to one or perhaps two classes of anxiolytic compounds, limiting their pharmacological generality somewhat, but allowing in depth analysis of individual mechanisms of anxiolytic drug action (e.g., GABAA agonism). We end with a discussion of possible sources of variability between models in response to 5-HTIA agonists and antidepressant drugs.
Collapse
Affiliation(s)
- Dallas Treit
- Department of Psychology, Division of Neuroscience, University of Alberta, P-449 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9.
| | | | | |
Collapse
|