1
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
2
|
Bøhn SK, Myhrstad MCW, Thoresen M, Erlund I, Vasstrand AK, Marciuch A, Carlsen MH, Bastani NE, Engedal K, Flekkøy KM, Blomhoff R. Bilberry/red grape juice decreases plasma biomarkers of inflammation and tissue damage in aged men with subjective memory impairment -a randomized clinical trial. BMC Nutr 2021; 7:75. [PMID: 34802467 PMCID: PMC8607697 DOI: 10.1186/s40795-021-00482-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Few randomized clinical trials have explored the health effects of bilberries in humans. The aim was to test the effect of bilberry and red grape-juice consumption on visual memory, motor speed and dexterity as well as inflammatory and tissue damage biomarkers of plasma in aged men with subjective memory impairment. METHODS Nine-week double-blind, placebo-controlled, dietary intervention study of aged men (n = 60, age ≥ 67 years) with subjective memory impairment randomized to consume a 50/50 mix of bilberry/red grape-juice or an iso-caloric placebo juice. A selection of Cambridge Cognition Test Battery (CANTAB), Grooved Pegboard tests and blood-sampling for biomarker analysis were performed before and after the intervention. RESULTS Compared to placebo the selected memory and motor test scores were un-affected by the bilberry/red grape intervention. However, the plasma levels of tissue damage biomarkers decreased significantly more in the bilberry/red grape group. In particular lactate dehydrogenase (LDH) decreased from 362 U/L (median, baseline) to 346 U/L (median, post intervention) in the bilberry/red grape group. Also, several biomarkers of inflammation (EGF, IL6, IL9, IL10 and TNFα) decreased significantly more in the bilberry/red grape group. Furthermore, several plasma polyphenols; p-coumaric acid, hippuric acid, protocatechuic acid, 3HPAA and vanillic acid, increased significantly more in the bilberry/red grape group compared to placebo with the largest increase in p-coumaric acid with 116%; from 2.2 [1.0,5.5] to 4.7 [2.8,8.1] μM/L (median [95% CL]). CONCLUSIONS The results indicate that a nine-week bilberry/red grape juice intervention has no measurable effects on the selected memory scores in aged men experiencing memory problems but decreases the level of biomarkers of inflammation and tissue damage. Whether the dampening effects on inflammation and tissue damage biomarkers have relevance for neuroinflammatory brain pathology remains to be established. TRIAL REGISTRATION Registration number ( ClinicalTrials.gov : NCT00972972 ), September 9, 2009.
Collapse
Affiliation(s)
- Siv K Bøhn
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Mari C W Myhrstad
- Department of Nutrition, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, Oslo, Norway
| | - Iris Erlund
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Anne Marciuch
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Monica H Carlsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Knut Engedal
- Department of geriatric medicine, Oslo university hospital, Oslo, Norway
| | | | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease. Antioxidants (Basel) 2019; 8:antiox8090333. [PMID: 31443476 PMCID: PMC6770078 DOI: 10.3390/antiox8090333] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.
Collapse
|
4
|
Liu W, Mao Y, Schoenborn J, Wang Z, Tang G, Tang X. Whole blueberry protects pancreatic beta-cells in diet-induced obese mouse. Nutr Metab (Lond) 2019; 16:34. [PMID: 31139236 PMCID: PMC6530052 DOI: 10.1186/s12986-019-0363-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Blueberry is rich in bioactive substances and possesses powerful antioxidant potential, which can protect against oxidant-induced and inflammatory cell damage and cytotoxicity. The aim of this study was to determine how blueberry affects glucose metabolism and pancreatic β-cell proliferation in high fat diet (HFD)-induced obese mice. Methods Wild type male mice at age of 4 weeks received two different kinds of diets: high-fat diet (HFD) containing 60% fat or modified HFD supplemented with 4% (wt:wt) freeze-dried whole blueberry powder (HFD + B) for 14 weeks. A separate experiment was performed in mice fed with low-fat diet (LFD) containing 10% fat or modified LFD + B supplemented with 4% (wt:wt) freeze-dried whole blueberry powder. The metabolic parameters including blood glucose and insulin levels, glucose and insulin tolerances were measured. Results Blueberry-supplemented diet significantly increased insulin sensitivity and glucose tolerance in HFD + B mice compared to HFD mice. However, no difference was observed in blood glucose and insulin sensitivity between LFD + B and LFD mice. In addition, blueberry increased β-cell survival and prevented HFD-induced β-cell expansion. The most important finding was the observation of presence of small scattered islets in blueberry treated obese mice, which may reflect a potential role of blueberry in regenerating pancreatic β-cells. Conclusions Blueberry-supplemented diet can prevent obesity-induced insulin resistance by improving insulin sensitivity and protecting pancreatic β-cells. Blueberry supplementation has the potential to protect and improve health conditions for both type 1 and type 2 diabetes patients. Electronic supplementary material The online version of this article (10.1186/s12986-019-0363-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weixiang Liu
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931 USA
| | - Yiping Mao
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931 USA
| | - Jacob Schoenborn
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931 USA
| | - Zhihong Wang
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931 USA
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931 USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931 USA
| |
Collapse
|
5
|
Maher P. Protective effects of fisetin and other berry flavonoids in Parkinson's disease. Food Funct 2018; 8:3033-3042. [PMID: 28714503 DOI: 10.1039/c7fo00809k] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is an age-associated degenerative disease of the midbrain that results from the loss of dopaminergic neurons in the substantia nigra. It initially presents as a movement disorder with cognitive and other behavioral problems appearing later in the progression of the disease. Current therapies for PD only delay the onset or reduce the motor symptoms. There are no treatments to stop the nerve cell death or to cure the disease. It is becoming increasingly clear that neurological diseases such as PD are multi-factorial involving disruptions in multiple cellular systems. Thus, it is unlikely that modulating only a single factor will be effective at either preventing disease development or slowing disease progression. A better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Flavonoids are polyphenolic compounds that are widely distributed in fruits and vegetables and therefore regularly consumed in the human diet. While flavonoids were historically characterized on the basis of their antioxidant and free radical scavenging effects, more recent studies have shown that flavonoids have a wide range of activities that could make them particularly effective as agents for the treatment of PD. In this article, the multiple physiological benefits of flavonoids in the context of PD are first reviewed. Then, the evidence for the beneficial effects of the flavonol fisetin in models of PD are discussed. These results, coupled with the known actions of fisetin, suggest that it could reduce the impact of PD on brain function.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Corbi G, Conti V, Davinelli S, Scapagnini G, Filippelli A, Ferrara N. Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans? Front Pharmacol 2016; 7:364. [PMID: 27790141 PMCID: PMC5062465 DOI: 10.3389/fphar.2016.00364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Although several efforts have been made in the search for genetic and epigenetic patterns linked to diseases, a comprehensive explanation of the mechanisms underlying pathological phenotypic plasticity is still far from being clarified. Oxidative stress and inflammation are two of the major triggers of the epigenetic alterations occurring in chronic pathologies, such as neurodegenerative diseases. In fact, over the last decade, remarkable progress has been made to realize that chronic, low-grade inflammation is one of the major risk factor underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant immunomodulatory and/or anti-inflammatory activities in the context of brain aging. Starting by the evidence that a common denominator of aging and chronic degenerative diseases is represented by inflammation, and that several dietary phytochemicals are able to potentially interfere with and regulate the normal function of cells, in particular neuronal components, aim of this review is to summarize recent studies on neuroinflammaging processes and proofs indicating that specific phytochemicals may act as positive modulators of neuroinflammatory events. In addition, critical pathways involved in mediating phytochemicals effects on neuroinflammaging were discussed, exploring the real impact of these compounds in preserving brain health before the onset of symptoms leading to inflammatory neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, University of Salerno Salerno, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno Salerno, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of TeleseTelese Terme, Italy
| |
Collapse
|
7
|
|
8
|
Sengupta T, Vinayagam J, Singh R, Jaisankar P, Mohanakumar KP. Plant-Derived Natural Products for Parkinson's Disease Therapy. ADVANCES IN NEUROBIOLOGY 2016; 12:415-96. [PMID: 27651267 DOI: 10.1007/978-3-319-28383-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.
Collapse
Affiliation(s)
- T Sengupta
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - J Vinayagam
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - R Singh
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - P Jaisankar
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - K P Mohanakumar
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala, India.
| |
Collapse
|
9
|
Virel A, Rehnmark A, Orädd G, Olmedo-Díaz S, Faergemann E, Strömberg I. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson's disease--phagocyte influx to the brain is promoted by bilberry-enriched diet. Eur J Neurosci 2015; 42:2761-71. [PMID: 26273789 DOI: 10.1111/ejn.13044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
Neuroinflammation is a chronic event in neurodegenerative disorders. In the rat model of Parkinson's disease, including a striatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA), antioxidant treatment affects the inflammatory process. Despite a heavy accumulation of microglia early after the injury, dopamine nerve fibre regeneration occurs. It remains unclear why this heavy accumulation of microglia is found early after the lesion in antioxidant-treated animals, or even more, what is the origin of these microglia. In this study magnetic resonance imaging (MRI) was used to elucidate whether the inflammatory response was generated from the blood or from activated brain microglia. Superparamagnetic iron oxide (SPIO) nanoparticles were injected intravenously prior to a striatal 6-OHDA injection to tag phagocytes in the blood. Rats were fed either with bilberry-enriched or control diet. T2*-weighted MRI scans were performed 1 week after the lesion, and hypointense areas were calculated from T2*-weighted images, to monitor the presence of SPIO particles. The results revealed that feeding the animals with bilberries significantly promoted accumulation of blood-derived immune cells. Gadolinium-enhanced MRI demonstrated no difference in leakage of the blood-brain barrier independent of diets. To conclude, bilberry-enriched diet promotes an influx of periphery-derived immune cells to the brain early after injury.
Collapse
Affiliation(s)
- Ana Virel
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Anna Rehnmark
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, SE 901 87 Umeå, Sweden
| | - Sonia Olmedo-Díaz
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Erik Faergemann
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Ingrid Strömberg
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| |
Collapse
|
10
|
|
11
|
Rehnmark A, Strömberg I. Antioxidant-Enriched Diet Affects Early Microglia Accumulation and Promotes Regeneration of the Striatal Dopamine System after a 6-Hydroxidopamine-Induced Lesion in a Rat. J Exp Neurosci 2012. [DOI: 10.4137/jen.s10424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neuroinflammation is found both in the brain of humans suffering from Parkinson's disease and in animal models of disease. It is suggested to be involved in the pathogenesis of the disease. In the present study, in order to study the effects of antioxidants on neuroinflammation, microglial phenotypes were evaluated in rats fed with diets containing bilberries, blueberries, or crowberries at 1 and 4 weeks following striatal injection of 6-hydroxydopamine. The dopamine innervation was visualized using antibodies raised against tyrosine hydroxlase (TH) in the striatum and in the globus pallidus. One week post-lesion, the expression of Iba1-positive cells, a general microglial marker, was significantly increased in the striatum of all animals fed with antioxidant-enriched diets compared to control-diet fed animals, while the diameter of the TH-negative zone was similar in all animals. At four weeks post-lesion, the Iba1-positive microglia was significantly reduced in animals fed with antioxidant-enriched diets. The diameter of the TH-negative zone was significantly reduced in animals fed bilberry and crowberry. The expression and distribution of ED1-positive cells was similar to that of Iba1-positive cells found in the lesioned areas. A cell division marker Ki67 revealed that few microglia were proliferating in crowberry-treated animals. Otherwise dividing cells were associated with blood capillary cells. Although the antioxidant level should be equal in the entire brain, no regeneration was found in globus pallidus, suggesting the mechanism promoting regeneration in the striatum is not effective in the globus pallidus. In conclusion, diets rich in bilberries and crowberries and with high contents of antioxidants stimulate an early phase of accumulation of reactive migroglia that fades at longer time points i.e. promotes regeneration of the striatal dopamine system.
Collapse
Affiliation(s)
- Anna Rehnmark
- Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
12
|
von Geldern G, Mowry EM. The influence of nutritional factors on the prognosis of multiple sclerosis. Nat Rev Neurol 2012; 8:678-89. [PMID: 23026980 DOI: 10.1038/nrneurol.2012.194] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of nutrition and dietary supplements on the course of multiple sclerosis (MS) is a topic of great interest to both patients and clinicians. In particular, vitamin D status has been shown to influence both the incidence and the course of MS. High vitamin D levels are probably protective against the development of MS, although the efficacy of vitamin D supplementation in slowing progression of MS remains to be established. The influence of polyunsaturated fatty acids (PUFAs) on the development and course of MS has also long been under investigation. Small clinical trials suggest a modest reduction in the severity and duration of relapses in patients with MS receiving PUFA supplements. Other nutritional factors have been evaluated for their effect on MS disease progression, including milk proteins, gluten, probiotics, antioxidants (uric acid, vitamins A, C and E, lipoic acid), polyphenols, Ginkgo biloba extracts and curcumin. However, further studies are needed to evaluate the effects of these dietary components on the relapse rate and progression of MS. This Review gives an overview of the literature on the nutritional factors most commonly implicated as having an effect on MS and discusses the biological rationale that is thought to underlie their influence.
Collapse
Affiliation(s)
- Gloria von Geldern
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, John Hopkins University School of Medicine, Pathology Building Room 627, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
13
|
Choi SS, Lee DH, Lee SH. Blueberry protects LPS-stimulated BV-2 microglia through inhibiting activities of p38 MAPK and ERK1/2. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Xin J, Feinstein DL, Hejna MJ, Lorens SA, McGuire SO. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5743-8. [PMID: 22243431 DOI: 10.1021/jf203611t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p < 0.01). When blueberry-fed mice with EAE were compared with control-fed mice with EAE, blueberry-fed mice had significantly lower motor disability scores (p = 0.03) as well as significantly greater myelin preservation in the lumbar spinal cord (p = 0.04). In a relapsing-remitting EAE model, blueberry-supplemented mice showed improved cumulative and final motor scores compared to control diet-fed mice (p = 0.01 and 0.03, respectively). These data demonstrate that blueberry supplementation is beneficial in multiple EAE models, suggesting that blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients.
Collapse
Affiliation(s)
- Junping Xin
- Rehabilitation Research and Development Service, U.S. Veterans Administration , Edward Hines, Jr., VA Hospital, Mail Stop 151, 5000 South Fifth Avenue, Hines, Illinois 60141, United States
| | | | | | | | | |
Collapse
|
15
|
Bautista-Garfias CR, Rios-Flores E, García-Rubio VG. Comparative effect of Lactobacillus casei and a commercial mangosteen dietary supplement on body weight gain and antibody response to Newcastle disease virus vaccine in fighting roosters. J Med Food 2011; 14:828-33. [PMID: 21548799 DOI: 10.1089/jmf.2010.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to compare the effect of Lactobacillus casei and a commercial mixed combination of fruit juice that included Garcinia mangostana fruit extract on body weight gain from 7 to 90 days of age, on the antibody response 23 days after vaccination against Newcastle disease virus (NDV), and on the mortality in fighting roosters. Fifty-four 7-day-old birds were randomly distributed into three groups (treated with L. casei, G. mangostana, and saline solution [LC, GM, and SS groups, respectively]) of 18 animals each; all birds were orally treated daily. At 60 and 90 days, the LC group showed the highest body weight gain compared with the other two groups (P<.01). The mean levels of antibody to NDV were significantly higher in the GM group compared with the LC and SS groups (P<.05). Throughout the study the percentages of mortality were 5.55%, 0%, and 22.22% for the LC, GM, and SS groups, respectively. The results indicate that L. casei and the commercial mangosteen dietary supplement intake, compared with the control group, induce beneficial effects in fighting roosters--L. casei on weight gain and the commercial mixed combination of fruit juice with G. mangostana fruit extract on humoral immune response--and both showed none or very low mortality.
Collapse
Affiliation(s)
- Carlos R Bautista-Garfias
- National Center of Disciplinary Research in Veterinary Parasitology, National Institute of Forestry, Agricultural, and Fishing Investigations, Jiutepec, Morelos, State of Mexico, Mexico.
| | | | | |
Collapse
|
16
|
Biotransformed blueberry juice protects neurons from hydrogen peroxide-induced oxidative stress and mitogen-activated protein kinase pathway alterations. Br J Nutr 2010; 104:656-63. [PMID: 20459875 DOI: 10.1017/s0007114510001170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A growing body of evidence supports the therapeutic effects of blueberry in neurodegenerative disorders. Biotransformation of blueberry juice by Serratia vaccinii bacteria increases its phenolic content and antioxidant activity. In neuronal cell culture, biotransformed blueberry juice (BJ) significantly increased the activity of antioxidant enzymes, namely catalase and superoxide dismutase. Moreover, BJ protected neurons against H2O2-induced cell death in a dose-dependent manner. This associated with the upregulation of mitogen-activated protein kinase (MAPK) family enzymes p38 and c-Jun N-terminal kinase (JNK) activation, as well as with the protection of extracellular signal-regulated kinase (ERK1/2) and MAPK/ERK kinase (MEK1/2) activity loss induced by H2O2. The present studies demonstrate that BJ can protect neurons against oxidative stress possibly by increasing antioxidant enzyme activities and activating p38- and JNK-dependent survival pathways while blocking MEK1/2- and ERK1/2-mediated cell death. Thus, BJ may represent a novel approach to prevent and to treat neurodegenerative disorders, and it may represent a source of novel therapeutic agents against these diseases.
Collapse
|
17
|
Berglöf E, Small BJ, Bickford PC, Strömberg I. Beneficial effects of antioxidant-enriched diet for tyrosine hydroxylase-positive neurons in ventral mesencephalic tissue in oculo grafts. J Comp Neurol 2009; 515:72-82. [PMID: 19399894 DOI: 10.1002/cne.22002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supplementation of antioxidants to the diet has been proved to be beneficial in aging and after brain injury. Furthermore, it has been postulated that the locus coeruleus promotes survival of dopamine neurons. Thus, this study was performed to elucidate the effects of a blueberry-enriched diet on fetal ventral mesencephalic tissue in the presence or absence of locus coeruleus utilizing the in oculo grafting method. Sprague-Dawley rats were given control diet or diet supplemented with 2% blueberries, and solid tissue pieces of fetal locus coeruleus and ventral mesencephalon were implanted as single and co-grafts. The results revealed that the presence of locus coeruleus tissue or the addition of blueberries enhanced the survival of ventral mesencephalic tyrosine hydroxylase (TH)-positive neurons, whereas no additive effects were observed for the two treatments. The density of TH-positive nerve fibers in ventral mesencephalic tissue was significantly elevated when it was attached to the locus coeruleus or by blueberry treatment, whereas the innervation of dopamine-beta-hydroxylase-positive nerve fibers was not altered. The presence of locus coeruleus tissue or bluberry supplementation reduced the number of Iba-1-positive microglia in the ventral mesencephalic portion of single and co-grafts, respectively, whereas almost no OX6 immunoreactivity was found. Furthermore, neither the attachment of ventral mesencephalic tissue nor the addition of blueberries improved the survival of TH-positive neurons in the locus coerulean grafts. To conclude, locus coeruleus and blueberries are beneficial for the survival of fetal ventral mesencephalic tissue, findings that could be useful when grafting tissue in Parkinson's disease.
Collapse
Affiliation(s)
- Elisabet Berglöf
- Department of Integrative Medical Biology, Umeå University, Umeå, SE 901 87 Sweden
| | | | | | | |
Collapse
|
18
|
Chao J, Yu MS, Ho YS, Wang M, Chang RCC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 2008; 45:1019-26. [PMID: 18675900 DOI: 10.1016/j.freeradbiomed.2008.07.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 06/25/2008] [Accepted: 07/05/2008] [Indexed: 01/01/2023]
Abstract
Oxyresveratrol (OXY) is a polyhydroxylated stilbene existing in mulberry. Increasing lines of evidence have shown its neuroprotective effects against Alzheimer disease and stroke. However, little is known about its neuroprotective effect in Parkinson disease (PD). Owing to its antioxidant activity, blood-brain barrier permeativity, and water solubility, we hypothesized that OXY may exert neuroprotective effects against parkinsonian mimetic 6-hydroxydopamine (6-OHDA) neurotoxicity. Neuroblastoma SH-SY5Y cells have long been used as dopaminergic neurons in PD research. We found that both pretreatment and posttreatment with OXY on SH-SY5Y cells significantly reduced the release of lactate dehydrogenase, the activity of caspase-3, and the generation of intracellular reactive oxygen species triggered by 6-OHDA. Compared to resveratrol, OXY exhibited a wider effective dosage range. We proved that OXY could penetrate the cell membrane by HPLC analysis of cell extracts. These results suggest that OXY may act as an intracellular antioxidant to reduce oxidative stress induced by 6-OHDA. Western blot analysis demonstrated that OXY markedly attenuated 6-OHDA-induced phosphorylation of JNK and c-Jun. Furthermore, we proved that OXY increased the basal levels of SIRT1, which may disclose new pathways accounting for the neuroprotective effects of OXY. Taken together, our results suggest OXY, a dietary phenolic compound, as a potential nutritional candidate for protection against neurodegeneration in PD.
Collapse
Affiliation(s)
- Jianfei Chao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
19
|
Son TG, Camandola S, Mattson MP. Hormetic dietary phytochemicals. Neuromolecular Med 2008; 10:236-46. [PMID: 18543123 DOI: 10.1007/s12017-008-8037-y] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/06/2008] [Indexed: 01/23/2023]
Abstract
Compelling evidence from epidemiological studies suggests beneficial roles of dietary phytochemicals in protecting against chronic disorders such as cancer, and inflammatory and cardiovascular diseases. Emerging findings suggest that several dietary phytochemicals also benefit the nervous system and, when consumed regularly, may reduce the risk of disorders such as Alzheimer's and Parkinson's diseases. The evidence supporting health benefits of vegetables and fruits provide a rationale for identification of the specific phytochemicals responsible, and for investigation of their molecular and cellular mechanisms of action. One general mechanism of action of phytochemicals that is emerging from recent studies is that they activate adaptive cellular stress response pathways. From an evolutionary perspective, the noxious properties of such phytochemicals play an important role in dissuading insects and other pests from eating the plants. However at the subtoxic doses ingested by humans that consume the plants, the phytochemicals induce mild cellular stress responses. This phenomenon has been widely observed in biology and medicine, and has been described as 'preconditioning' or 'hormesis.' Hormetic pathways activated by phytochemicals may involve kinases and transcription factors that induce the expression of genes that encode antioxidant enzymes, protein chaperones, phase-2 enzymes, neurotrophic factors, and other cytoprotective proteins. Specific examples of such pathways include the sirtuin-FOXO pathway, the NF-kappaB pathway, and the Nrf-2/ARE pathway. In this article, we describe the hormesis hypothesis of phytochemical actions with a focus on the Nrf2/ARE signaling pathway as a prototypical example of a neuroprotective mechanism of action of specific dietary phytochemicals.
Collapse
Affiliation(s)
- Tae Gen Son
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|