1
|
Hegde PS, Agni MB, Rai P, Sadananda M, Mirajkar AM, Kumar BM, Ranade AV, Gowda KMD. Unraveling the synergistic effects of Astaxanthin and DHA on perinatal undernutrition-induced oxidative stress and cognitive deficit. Learn Behav 2025:10.3758/s13420-025-00673-4. [PMID: 40341979 DOI: 10.3758/s13420-025-00673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/11/2025]
Abstract
Perinatal undernutrition sensitizes offspring to the development of chronic adult metabolic diseases, including cognitive dysfunction, which poses significant public health issues. Undernutrition is the most powerful condition of physiological stress, and epidemiological studies indicate detrimental effects on cognitive function and behavior in human offspring exposed to inadequate perinatal nutrition, leading to increased peroxidation of PUFAs in the brain. To address these issues, the present study investigated the protective effects of the antioxidant nutraceuticals astaxanthin (AsX) and docosahexaenoic acid (DHA) on the protective effect of DHA in the presence of antioxidants on the cognitive dysfunction and oxidative stress induced by perinatal undernutrition. Using a Wistar rat model, AsX and DHA improved learning and memory skills in perinatally undernourished offspring. The cognitive parameters included the RAM and NOR tests, and the oxidative stress parameters were assessed by the estimation of GSH, MDA, total nitrite, and TAC. This study revealed spatial learning, memory dysfunction, and abnormal exploratory behavior in offspring exposed to perinatal undernutrition at different time points in postnatal life, and these effects were ameliorated by AsX and DHA. Similarly, oxidative stress induced by perinatal undernutrition was also ameliorated by AsX and DHA. Induced oxidative stress was significantly correlated with cognitive function. This study revealed the potential of AsX and DHA supplementation during the perinatal period for the future development of cognitive dysfunction.
Collapse
Affiliation(s)
- Pramukh Subrahmanya Hegde
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Megha Bhat Agni
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Praveen Rai
- Department of Infectious Diseases and Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Monika Sadananda
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| | - A M Mirajkar
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - B Mohana Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine (NUCSReM), Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - K M Damodara Gowda
- Department of Physiology, K S Hegde Medical Academy, Nitte (Deemed to Be University), Karnataka, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
2
|
Abd-Elkareem E, Ahmed-Farid OAE, Said NM. Protective Efficacy of Astaxanthin Against Acrylonitrile-Induced Toxicity: Hematological Analysis and Histopathological and Immunoexpression Study of TGF-β in the Heart, Kidney, and Liver of Albino Rats. Cell Biochem Biophys 2025:10.1007/s12013-025-01684-8. [PMID: 39928274 DOI: 10.1007/s12013-025-01684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Scientific research is currently moving towards studies of natural antioxidants that could reduce the deleterious effects resulting from the toxicity of materials used in industry in order to preserve the environment and public health. Astaxanthin "king of antioxidants". is known for its remarkable protection against numerous environmentally harmful substances, but not against acrylonitrile, which is utilized in the manufacturing of plastics, rubber, and synthetic fibers. The goal of this investigation is to assess how astaxanthin can recover the normal CBC and normal organ architecture after acrylonitrile toxicity. Fifty rats were divided equally into five groups: positive control (acrylonitrile), negative control (saline), vehicle (corn oil), antioxidant (astaxanthin), and protective (astaxanthin + acrylonitrile). After sacrificing all the rats, CBC was done. Tissues of the heart, liver, and kidney were used for pathological examination and to assess TGF-β1 by immunohistochemistry, Our results showed an improvement in most of hematological parameters in the protective group compared to the acrylonitrile group. There was a significant improvement in RBC count, PCV, HB, RDW, and platelets, accompanied by a slight increase in MCV. Conversely, significant decreases were observed in PDW, MPV, MCH, and MCHC. Additionally, our results showed a slight decrease in WBCs and neutrophils, along with a slight increase in eosinophils and lymphocytes, and a significant increase in monocytes. There was a significant decrease in TGF-β1 level in rats treated with astaxanthin. All the organs showed an excellent recovery for the normal architecture. Astaxanthin can ameliorate acrylonitrile toxicity by restoring the normal levels of hematological parameters and histological structure.
Collapse
Affiliation(s)
- Elham Abd-Elkareem
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | | | - Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Hegde PS, Agni MB, Rai P, Upadhyay SS, Aravind A, Keshava Prasad TS, Gowda KMD. Supplementation of diet with Astaxanthin and DHA prevents gestational and lactational undernourishment-induced metabolic derangements in dams: a metabolomic approach. J Dev Orig Health Dis 2024; 15:e30. [PMID: 39606856 DOI: 10.1017/s2040174424000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nutrition is the critical nongenetic factor that has a major influence on the health status of an organism. The nutritional status of the mother during gestation and lactation plays a vital role in defining the offspring's health. Undernutrition during these critical periods may induce chronic metabolic disorders like obesity and cardiovascular diseases in mothers as well as in offspring. The present study aims to evaluate the impact of undernutrition during gestational and lactational periods on the plasma metabolic profile of dams. Additionally, we investigated the potential synergistic mitigating effects of astaxanthin and docosahexaenoic acid (DHA) on dysregulated plasma metabolic profiles. Evaluation of plasma lipid profile revealed that undernourishment resulted in elevated levels of total cholesterol, triglycerides, low density and very low-density lipoproteins in dams. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based untargeted metabolomics illustrated that pathways related to lipid metabolism, such as cholesterol metabolism, steroid biosynthesis and metabolism of amine-derived hormones, were dysregulated by undernourishment. Additionally, pathway enrichment analysis predicted that there is a high incidence of development of desmosterolosis, hypercholesterolaemia, lysosomal acid lipase deficiency and Smith-Lemli-Opitz syndrome in the offspring, reflecting predisposition in mothers. However, synergistic supplementation of astaxanthin and DHA ameliorated these adverse effects by regulating a separate set of metabolic pathways associated with lipid metabolism. They included branched chain amino acid degradation such as valine, leucine and isoleucine, metabolism of alpha-linolenic acid, lipoic acid, lysine degradation, biosynthesis, elongation and degradation of fatty acids.
Collapse
Affiliation(s)
- Pramukh Subrahmanya Hegde
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Mangalore, India
| | - Megha Bhat Agni
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Mangalore, India
| | - Praveen Rai
- Division of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Shubham Sukerndeo Upadhyay
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | | | - K M Damodara Gowda
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Mangalore, India
| |
Collapse
|
4
|
Agni MB, Hegde PS, Rai P, Sadananda M, K M DG. Astaxanthin and DHA Supplementation Modulates the Maternal Undernutrition-induced Impairment of Cognitive Behavior and Synaptic Plasticity in Adult Life of Offspring's -Exploring the Molecular Mechanism. Mol Neurobiol 2024; 61:8975-8995. [PMID: 38578356 DOI: 10.1007/s12035-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Maternal nutrition was recognized as a significant part of brain growth and maturation in most mammalian species. Timely intervention with suitable nutraceuticals would provide long-term health benefits. We aim to unravel the molecular mechanisms of perinatal undernutrition-induced impairments in cognition and synaptic plasticity, employing animal model based on dietary nutraceutical supplementation. We treated undernourished dams at their gestational, lactational, and at both the time point with Astaxanthin (AsX) and Docosahexaenoic acid (DHA), and their pups were used as experimental animals. We evaluated the cognitive function by subjecting the pups to behavioral tests in their adult life. In addition, we assessed the expression of genes in the hippocampus related to cognitive function and synaptic plasticity. Our results showed downregulation of Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), cAMP response-element-binding protein (CREB), and uncoupling protein-2 (UCP2) gene expression in pups born to undernourished dams in their adult life, which AsX and DHA modulated. Maternal AsX and DHA supplementation ameliorated the undernutrition-induced learning impairment in novel object recognition (NOR) tests and partially baited radial arm maze (RAM) tasks in offspring's. The expressions of Synapsin-1 and PSD-95 decreased in perinatally undernourished groups compared to control and AsX-DHA treated groups at CA1, CA2, CA3, and DG. AsX and DHA supplementation upregulated BDNF, NT-3, CREB, and UCP2 gene expressions in perinatally undernourished rats, which are involved in intracellular signaling cascades like Ras, PI3K, and PLC. The results of our study give new insights into neuronal differentiation, survival, and plasticity, indicating that the perinatal period is the critical time for reversing maternal undernutrition-induced cognitive impairment in offspring's.
Collapse
Affiliation(s)
- Megha Bhat Agni
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Pramukh Subrahmanya Hegde
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Praveen Rai
- Nitte (Deemed to be University), Department of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Mangalore, Karnataka, 575018, India
| | - Monika Sadananda
- Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Damodara Gowda K M
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
5
|
Ranade AV, Hegde PS, Bhat MA, Rai P, Vinodini NA, Aravind A, Prasad TSK, Damodara Gowda KM. Astaxanthin and DHA supplementation ameliorates the proteomic profile of perinatal undernutrition-induced adipose tissue dysfunction in adult life. Sci Rep 2023; 13:12312. [PMID: 37516743 PMCID: PMC10387058 DOI: 10.1038/s41598-023-38506-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
Maternal diet is an essential factor that directly and indirectly regulates fetal growth. Exposure to certain environmental conditions substantially impacts an individual's short- and long-term health. Adipose tissue dysfunction is a worldwide chronic disease caused by improper lipid build-up in adipose tissue leading to obesity. Therefore, it is the need of the hour to invent anti-obesity agents. As a keto-carotenoid, Astaxanthin (AsX) has been shown to have preventive effects against problems associated with obesity. A crucial role in the pathogenesis of obesity has been attributed to dietary polyunsaturated fatty acids. Adipose tissue plays a vital role in maintaining overall body homeostasis. Metabolic dysfunction of white adipocytes forms a critical step in the emergence of insulin resistance and related diseases. Here we aim to investigate the effect of AsX and Docosahexaenoic acid (DHA) supplementation on the proteomic profile of perinatal undernutrition-induced adipose tissue dysfunction in adult life using a rat model. The LC-MS/MS quantitative proteomics enabled us to identify differentially expressed proteins in perinatal undernourished but AsX and DHA-supplemented animal models. Data are available via ProteomeXchange with identifier PXD041772.This study explored biological roles, molecular functions of differentially expressed proteins, and pathways related to adipose tissue dysfunction induced by undernutrition and its effective modulation by AsX and DHA.
Collapse
Affiliation(s)
- Anu V Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Pramukh Subrahmanya Hegde
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Megha Agni Bhat
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Deralakatte, Mangalore, 575018, India
| | - Praveen Rai
- Department of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - N A Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | - K M Damodara Gowda
- Department of Physiology, KS Hegde Medical Academy, Nitte (Deemed to be University), Karnataka, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|