1
|
Zeger VR, Thapa B, Shamsaei D, DeLair JF, Taylor TL, Anderson JL. Ionic Liquids in Analytical Chemistry: Fundamentals, Technological Advances, and Future Outlook. Anal Chem 2025; 97:4793-4818. [PMID: 40018979 PMCID: PMC11912132 DOI: 10.1021/acs.analchem.5c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
|
2
|
Subbaraj AK, Deb-Choudhury S, Pavan E, Realini CE. Volatile fingerprints of beef cooking methods using sol-gel-based solid-phase microextraction (SPME) and direct analysis in real-time mass spectrometry (DART-MS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9655. [PMID: 38073203 DOI: 10.1002/rcm.9655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/18/2023]
Abstract
RATIONALE The aroma profile of food is a complex mixture of volatile compounds that constitutes a major component of the overall eating experience. The food service industry and chefs therefore constantly seek ways to investigate and thereby enhance the aroma profile. Oven cooking, sous vide and pan fry are three cooking methods of beef commonly practised by chefs. Near real-time analysis of volatile compounds from these three cooking methods will provide insight into respective volatile fingerprints and help improve cooking techniques. METHODS Volatile compounds from three beef cooking methods were captured using an in-house sol-gel based solid phase microextraction (SPME) method and analysed using direct analysis in real-time mass spectrometry (DART-MS). A volatile organic compound (VOC) standard was used to demonstrate successful implementation of the sol-gel coating technique. Volatile features discriminating the three cooking methods were shortlisted and statistically assessed by univariate and multivariate analyses. RESULTS The VOC standard was successfully adsorbed by the sol-gel method and detected by DART-MS. Hierarchical cluster analysis clearly demarcated three beef cooking methods based on their volatile fingerprints. Out of 65 significant features differentiating the cooking methods, 50 were at highest concentrations from pan-fry cooking only, followed by 14 with highest concentrations from oven cooking followed by pan frying. Sous vide followed by pan frying showed lowest concentrations of almost all volatile features. CONCLUSIONS The sol-gel-based solid-phase microextraction technique combined with DART-MS was successful in differentiating beef cooking methods based on their volatile fingerprints. A workflow for rapid assessment of the volatile profile from beef cooking methods was established, providing a baseline to further explore volatile profiles from other key ingredients.
Collapse
Affiliation(s)
- Arvind K Subbaraj
- Proteins and Metabolites Team, AgResearch Limited, Lincoln, New Zealand
| | | | - Enrique Pavan
- Food Technology and Processing Team, AgResearch Limited, Palmerston North, New Zealand
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - Carolina E Realini
- Food Technology and Processing Team, AgResearch Limited, Palmerston North, New Zealand
| |
Collapse
|
3
|
Śmiełowska M, Zabiegała B. Current trends in analytical strategies for the determination of polybrominated diphenyl ethers (PBDEs) in samples with different matrix compositions – Part 2: New approaches to PBDEs determination. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Wojnowski W, Kalinowska K, Gębicki J, Zabiegała B. Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry. SENSORS 2020; 20:s20195531. [PMID: 32992544 PMCID: PMC7582819 DOI: 10.3390/s20195531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
We describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular the concentration of carcinogenic benzene, were then used as reference values for assessing the applicability of an array of low-cost electrochemical sensors in monitoring the exposure of the users of consumer-grade fused deposition modelling 3D printers to potentially harmful volatiles. Using multivariate statistical analysis and machine learning, it was possible to determine whether a set threshold limit value for the concentration of BTEX was exceeded with a 0.96 classification accuracy and within a timeframe of 5 min based on the responses of the chemical sensors.
Collapse
Affiliation(s)
- Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (W.W.); (K.K.)
| | - Kaja Kalinowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
- Correspondence: (W.W.); (K.K.)
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland;
| |
Collapse
|
5
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of detection and characterization of explosives and explosives residues 2016-2019. Forensic Sci Int Synerg 2020; 2:670-700. [PMID: 33385149 PMCID: PMC7770463 DOI: 10.1016/j.fsisyn.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
This review paper covers the forensic-relevant literature for the analysis and detection of explosives and explosives residues from 2016-2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/Resources/Documents#Publications.
Collapse
Affiliation(s)
- Douglas J. Klapec
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
6
|
Vandergrift GW, Lattanzio-Battle W, Krogh ET, Gill CG. Condensed Phase Membrane Introduction Mass Spectrometry with In Situ Liquid Reagent Chemical Ionization in a Liquid Electron Ionization Source (CP-MIMS-LEI/CI). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:908-916. [PMID: 32154722 DOI: 10.1021/jasms.9b00143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Direct mass spectrometry has grown significantly due to wide applicability, relative ease of use, and high sample throughput. However, many current direct mass spectrometry methods are largely based on ambient ionization techniques that can suffer from matrix effects and poor selectivity. A strategy that addresses these shortcomings is condensed phase membrane introduction mass spectrometry-liquid electron ionization utilizing in situ liquid reagent chemical ionization (CP-MIMS-LEI/CI). In CP-MIMS measurements, a semipermeable hollow fiber polydimethylsiloxane membrane probe is directly immersed into a complex sample. Neutral, hydrophobic analytes permeating the membrane are entrained by a continuously flowing liquid acceptor phase (nL/min) to an LEI/CI source, where the liquid is nebulized, followed by analyte vaporization and ionization. This study marks the first intentional exploitation of the liquid CP-MIMS acceptor phase as an in situ means of providing liquid chemical ionization (CI) reagents for improved analyte sensitivity and selectivity (CP-MIMS-LEI/CI). Acetonitrile and diethyl ether were used as a combination acceptor phase/CI proton transfer reagent system for the direct analysis of dialkyl phthalates. Using isotopically labeled reagents, the gas phase ionization mechanism was found to involve reagent autoprotonation, followed by proton transfer to dialkyl phthalates. A demonstration of the applicability of CP-MIMS-LEI/CI for rapid and sensitive screening of bis(2-ethylhexyl) phthalate in house dust samples is presented. The detection limit in house dust (6 mg/kg) is comparable to that obtained by conventional analyses, but without time-consuming sample workup or chromatographic separation steps.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
- Chemistry Department, University of Victoria, Victoria, BC Canada, V8P 5C2
| | - William Lattanzio-Battle
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
| | - Erik T Krogh
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
- Chemistry Department, University of Victoria, Victoria, BC Canada, V8P 5C2
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, BC Canada, V9R 5S5
- Chemistry Department, University of Victoria, Victoria, BC Canada, V8P 5C2
- Chemistry Department, Simon Fraser University, Burnaby, BC Canada, V5A 1S6
- Environmental and Occupational Health Sciences Department, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Majchrzak T, Wojnowski W, Rutkowska M, Wasik A. Real-Time Volatilomics: A Novel Approach for Analyzing Biological Samples. TRENDS IN PLANT SCIENCE 2020; 25:302-312. [PMID: 31948793 DOI: 10.1016/j.tplants.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The use of the 'omics techniques in environmental research has become common-place. The most widely implemented of these include metabolomics, proteomics, genomics, and transcriptomics. In recent years, a similar approach has also been taken with the analysis of volatiles from biological samples, giving rise to the so-called 'volatilomics' in plant analysis. Developments in direct infusion mass spectrometry (DI-MS) techniques have made it possible to monitor the changes in the composition of volatile flux from parts of plants, single specimens, and entire ecosystems in real-time. The application of these techniques enables a unique insight into the dynamic metabolic processes that occur in plants. Here, we provide an overview of the use of DI-MS in real-time volatilomics research involving plants.
Collapse
Affiliation(s)
- Tomasz Majchrzak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland
| | - Wojciech Wojnowski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland
| | - Małgorzata Rutkowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland
| | - Andrzej Wasik
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 80-233, Gdańsk, Poland.
| |
Collapse
|
8
|
Španěl P, Spesyvyi A, Smith D. Electrostatic Switching and Selection of H3O+, NO+, and O2+• Reagent Ions for Selected Ion Flow-Drift Tube Mass Spectrometric Analyses of Air and Breath. Anal Chem 2019; 91:5380-5388. [DOI: 10.1021/acs.analchem.9b00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - David Smith
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
9
|
Byliński H, Barczak RJ, Gębicki J, Namieśnik J. Monitoring of odors emitted from stabilized dewatered sludge subjected to aging using proton transfer reaction-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5500-5513. [PMID: 30610582 PMCID: PMC6403207 DOI: 10.1007/s11356-018-4041-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
One of the potential emission sources of odorous compounds from wastewater treatment plants is sludge processing. The odorous compounds released from dewatered sludge can result in odor nuisance. This study concerns the use of flux hood chamber combined with proton transfer reaction-time of flight-mass spectrometry (PTR-MS) technique for periodical monitoring of odorous compounds emitted from aged, stabilized dewatered sludge samples from 2 different wastewater treatment plants located in Pomeranian Voivodeship, Poland. Based on determined concentration of the chemical compounds and olfactory threshold values, theoretical odor concentrations (known also as "odor activity value" or "odor index") were calculated for 17 selected odorous compounds. As a result, sulfur compounds such as diethyl sulphide, dimethyl sulphide, methanethiol, and ethanethiol were estimated as the most significant chemical compounds responsible for malodorous effect (average results, e.g., methanethiol, 178 ou/m3; diethyl sulphide, 184 ou/m3). Based on Pearson correlation coefficient, we revealed a correlation between odorous substances emitted from aged, stabilized dewatered sludge cakes. It was revealed that stabilized dewatered sludge still possessed significant amount of odorous compounds and applied measurement technique could be used for monitoring of odor concentration level of selected malodorous compounds.
Collapse
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233, Gdańsk, Poland.
| | - Radosław J Barczak
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653, Warsaw, Poland
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, Narutowicza 11/12 Street, Gdańsk, Poland.
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233, Gdańsk, Poland
| |
Collapse
|
10
|
Deuscher Z, Andriot I, Sémon E, Repoux M, Preys S, Roger JM, Boulanger R, Labouré H, Le Quéré JL. Volatile compounds profiling by using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The case study of dark chocolates organoleptic differences. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:92-119. [PMID: 30478865 DOI: 10.1002/jms.4317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/28/2023]
Abstract
Direct-injection mass spectrometry (DIMS) techniques have evolved into powerful methods to analyse volatile organic compounds (VOCs) without the need of chromatographic separation. Combined to chemometrics, they have been used in many domains to solve sample categorization issues based on volatilome determination. In this paper, different DIMS methods that have largely outperformed conventional electronic noses (e-noses) in classification tasks are briefly reviewed, with an emphasis on food-related applications. A particular attention is paid to proton transfer reaction mass spectrometry (PTR-MS), and many results obtained using the powerful PTR-time of flight-MS (PTR-ToF-MS) instrument are reviewed. Data analysis and feature selection issues are also summarized and discussed. As a case study, a challenging problem of classification of dark chocolates that has been previously assessed by sensory evaluation in four distinct categories is presented. The VOC profiles of a set of 206 chocolate samples classified in the four sensory categories were analysed by PTR-ToF-MS. A supervised multivariate data analysis based on partial least squares regression-discriminant analysis allowed the construction of a classification model that showed excellent prediction capability: 97% of a test set of 62 samples were correctly predicted in the sensory categories. Tentative identification of ions aided characterisation of chocolate classes. Variable selection using dedicated methods pinpointed some volatile compounds important for the discrimination of the chocolates. Among them, the CovSel method was used for the first time on PTR-MS data resulting in a selection of 10 features that allowed a good prediction to be achieved. Finally, challenges and future needs in the field are discussed.
Collapse
Affiliation(s)
- Zoé Deuscher
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- CIRAD, UMR 95 QUALISUD, F-34000, Montpellier, France
| | - Isabelle Andriot
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | - Etienne Sémon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | | | | | - Jean-Michel Roger
- IRSTEA, Information, Technologies and Environmental Assessment for Agro-Processes, F-34000, Montpellier, France
| | | | - Hélène Labouré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
11
|
Aszyk J, Byliński H, Namieśnik J, Kot-Wasik A. Main strategies, analytical trends and challenges in LC-MS and ambient mass spectrometry–based metabolomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Sample preparation and recent trends in volatolomics for diagnosing gastrointestinal diseases. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Hits and misses in research trends to monitor contaminants in foods. Anal Bioanal Chem 2018; 410:5331-5351. [DOI: 10.1007/s00216-018-1195-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 01/26/2023]
|
14
|
PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal Chim Acta 2018; 1035:1-13. [PMID: 30224127 DOI: 10.1016/j.aca.2018.06.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
This tutorial review is a critical commentary on the combined use of two instrumental analytical techniques, namely GC-MS and PTR-MS. The first mention of such an analytical approach likely appeared after the year 2000 and despite many advantages, it has not been applied very often. Therefore, the aim of this article is to elaborate on the concept of their combined use and to provide a curse tutorial for those considering taking such an approach. The issue of complementarity was raised in a broad sense of this term. Special emphasis was placed on indicating the possibilities of complementary utilization of GC-MS and PTR-MS and presenting the advantages and disadvantages as well as the current application of these techniques when used together.
Collapse
|
15
|
Abdelhamid HN. Ionic Liquid-Assisted Laser Desorption/Ionization-Mass Spectrometry: Matrices, Microextraction, and Separation. Methods Protoc 2018; 1:E23. [PMID: 31164566 PMCID: PMC6526421 DOI: 10.3390/mps1020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) have advanced a variety of applications, including matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ILs can be used as matrices and solvents for analyte extraction and separation prior to analysis using laser desorption/ionization-mass spectrometry (LDI-MS). Most ILs show high stability with negligible sublimation under vacuum, provide high ionization efficiency, can be used for qualitative and quantitative analyses with and without internal standards, show high reproducibility, form homogenous spots during sampling, and offer high solvation efficiency for a wide range of analytes. Ionic liquids can be used as solvents and pseudo-stationary phases for extraction and separation of a wide range of analytes, including proteins, peptides, lipids, carbohydrates, pathogenic bacteria, and small molecules. This review article summarizes the recent advances of ILs applications using MALDI-MS. The applications of ILs as matrices, solvents, and pseudo-stationary phases, are also reviewed.
Collapse
|
16
|
Dymerski T. Two-Dimensional Gas Chromatography Coupled With Mass Spectrometry in Food Analysis. Crit Rev Anal Chem 2018; 48:252-278. [PMID: 29185796 DOI: 10.1080/10408347.2017.1411248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of instrumental analytical techniques provided the opportunity for in-depth characterization of many food matrices. In particular, the use of gas chromatography coupled with mass spectrometry gives impressive results in terms of quality and authenticity testing, conducting food freshness evaluations and contamination assessments. A new variant of gas chromatography, namely two-dimensional gas chromatography (GC × GC), and various versions of mass spectrometry have been developed since last 15 years, and they still remain at the time of their renaissance. The present critical review is focused on the use of GC × GC coupled with mass spectrometry for qualitative and quantitative reasons in food analysis. It is explained how powerful analytical tool is above-mentioned technical solution. Special attention is devoted to the issues related to the development of this technique during last years in terms of key construction elements, such as modulators and MS detectors. Finally, the critical discussion on many various aspects including advantages and more important disadvantages, caused probable moderate interest of this solution, in food analytics is concerned.
Collapse
Affiliation(s)
- Tomasz Dymerski
- a Faculty of Chemistry, Department of Analytical Chemistry , Gdańsk University of Technology , Gdańsk , Poland
| |
Collapse
|