1
|
Peng Y, Du K, Yue H, Li H, Li H, Liu M, Shangguan S, He X, Li X, Chang Y. Integrated deep eutectic system enrichment and AI-assisted high-throughput visual detection for Hg 2+ in environmental samples. J Adv Res 2025:S2090-1232(25)00255-3. [PMID: 40220898 DOI: 10.1016/j.jare.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/23/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025] Open
Abstract
INTRODUCTION Mercury ion (Hg2+), a prevalent heavy metal, is commonly found in environmental soils and waters. Its interaction with sulfhydryl groups in proteins and lipids can cause oxidative stress and disruption of calcium homeostasis. These lead to severe health issues, including digestive, nervous, and immune system damage. Conventional Hg2+ detection methods, such as ICP-MS and AAS, require complex procedures and bulky instruments, limiting their applicability for real-time, on-site analysis. Recently, AI-assisted detection methods have emerged as promising solutions, offering portability and rapid detection capabilities. Deep eutectic solvents (DESs), and in particularly hydrophobic DESs (HDESs), provide an environmentally friendly alternative for the enrichment and detection metal ions. OBJECTIVES This study aims to develop a portable, cost-effective, and environmentally friendly colorimetric sensing platform based on a silver nanoparticles hydrophobic deep eutectic system (AgNPs-HDES) for Hg2+ enrichment and detection. METHODS AgNPs-HDES was synthesized using silver nanoparticle-containing ethylene glycol (AgNPs-EG) as the hydrogen bond donor. Electrostatic potential maps (ESP) and density functional theory (DFT) were employed to elucidate its synthesis and enrichment mechanisms. Smartphone-based image acquisition combined with YOLOv8-based AI software enabled high-throughput colorimetric analysis for Hg2+ detection. RESULTS A progressive color change from brownish-yellow to colorless was observed with increasing Hg2+ concentration, thereby eliminating hydrophilic interference and improving sensitivity. The AgNPs-HDES platform demonstrated a linear detection range of 1-40 μmol·L-1 (R2 = 0.9889) and a detection limit of 0.23 μmol·L-1. Recovery rates in real samples, including lake water, soil, seawater and industrial sewage, ranged from 90.3% to 123%. CONCLUSION The established platform enables portable, rapid, and highly accurate Hg2+ detection across multiple environmental samples simultaneously. This AI-assisted, high-throughput detection system presents a valuable tool for environmental monitoring and pollutant tracking.
Collapse
Affiliation(s)
- Yilin Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hengmao Yue
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Hui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haixiang Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shenhao Shangguan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin2University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Lai J, Zhou P, Li X, Lu Y, Wang Y, Yuan H, Yang Y. Ultrasound-assisted deep eutectic solvent extraction of flavonol glycosides from Ginkgo biloba: Optimization of efficiency and mechanism. ULTRASONICS SONOCHEMISTRY 2025; 114:107254. [PMID: 39938221 PMCID: PMC11867297 DOI: 10.1016/j.ultsonch.2025.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Ultrasound-assisted extraction (UAE) is a technique that can enhance the efficiency of the extraction of bioactive ingredients. In previous work, ginkgo flavonol glycosides (GFG) were extracted using a deep eutectic solvent (DES). To further enhance mass transfer efficiency in this work, ultrasound-assisted deep eutectic solvent (UADES) was employed for GFG extraction. The optimal extraction parameters were determined to be the ultrasonic power 320 W, extraction time 63.6 min, and extraction temperature 32.5℃. The extraction yield of GFG reached 5.60 mg/g, surpassing that achieved through DES extraction. Notably, the extraction time was drastically shortened from 11.8 h to 63.6 min. The analysis of changes in micro-morphology, crystalline structure, and cellulose content of the phytoextraction solid residue revealed that the UADES effectively disrupted the crystalline regions of lignocellulose within the cell wall, and the ultrasound enhanced the solubilization of DES to lignocellulose, thus improving the efficiency of the extraction process.
Collapse
Affiliation(s)
- Jiajia Lai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China
| | - Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004 Hunan, PR China.
| | - Ying Lu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China
| | - Yuqing Wang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China
| | - Han Yuan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China
| | - Yanhong Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 PR China
| |
Collapse
|
3
|
Nicolau A, Mutch AL, Thickett SC. Applications of Functional Polymeric Eutectogels. Macromol Rapid Commun 2024; 45:e2400405. [PMID: 39007171 DOI: 10.1002/marc.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, deep eutectic solvents (DESs) have captured significant attention as an emergent class of solvents that have unique properties and applications in differing fields of chemistry. One area where DES systems find utility is the design of polymeric gels, often referred to as "eutectogels," which can be prepared either using a DES to replace a traditional solvent, or where monomers form part of the DES themselves. Due to the extensive network of intramolecular interactions (e.g., hydrogen bonding) and ionic species that exist in DES systems, polymeric eutectogels often possess appealing material properties-high adhesive strength, tuneable viscosity, rapid polymerization kinetics, good conductivity, as well as high strength and flexibility. In addition, non-covalent crosslinking approaches are possible due to the inherent interactions that exist in these materials. This review considers several key applications of polymeric eutectogels, including organic electronics, wearable sensor technologies, 3D printing resins, adhesives, and a range of various biomedical applications. The design, synthesis, and properties of these eutectogels are discussed, in addition to the advantages of this synthetic approach in comparison to traditional gel design. Perspectives on the future directions of this field are also highlighted.
Collapse
Affiliation(s)
- Alma Nicolau
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Alexandra L Mutch
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, 7005, Australia
| | - Stuart C Thickett
- School of Natural Sciences (Chemistry), University of Tasmania, Hobart, Tasmania, 7005, Australia
| |
Collapse
|
4
|
Manasi I, King SM, Edler KJ. Cationic micelles in deep eutectic solvents: effects of solvent composition. Faraday Discuss 2024; 253:26-41. [PMID: 39023245 DOI: 10.1039/d4fd00045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Deep eutectic solvents (DES) are mixtures of hydrogen bond donors and acceptors that form strongly hydrogen-bonded room temperature liquids. Changing the H-bonding components and their ratios can alter the physicochemical properties of deep eutectic solvents. Recent studies have shown p-toluenesulfonic acid (pTSA) forms room temperature liquids with choline chloride (ChCl) at different molar ratios: 1 : 1, 1 : 2 and 2 : 1 [Rodriguez Rodriguez et al., ACS Sustain. Chem. Eng., 2019, 7(4), 3940]. They also showed that the composition affects the physical properties of these liquids and their ability to dissolve metal oxides. In this work we evaluate the solubility and self-assembly of cationic surfactants alkyltrimethyl ammonium bromides (CnTAB) in these pTSA/ChCl based liquids. CnTABs are insoluble in 1pTSA : 2ChCl, whereas in 1pTSA : 1ChCl and 2pTSA : 1ChCl they form micelles. We characterise CnTAB (n = 12, 14, 16) micelles using small angle neutron scattering and also look at interaction of water with the micelles. These studies help determine the interaction of DES components with the surfactant and the influence of varying pTSA and water ratios on these interactions. This provides potential for controlled surfactant templating and for tuning rheology modification in such systems.
Collapse
Affiliation(s)
- Iva Manasi
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AX, UK.
| | - Stephen M King
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Karen J Edler
- Department of Chemistry, Centre for Analysis and Synthesis (CAS) Lund University, Lund, 221 00, Sweden.
| |
Collapse
|
5
|
Wang H, Kang X, Han B. Electrocatalysis in deep eutectic solvents: from fundamental properties to applications. Chem Sci 2024; 15:9949-9976. [PMID: 38966383 PMCID: PMC11220594 DOI: 10.1039/d4sc02318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
6
|
He X, Ji W, Xing S, Feng Z, Li H, Lu S, Du K, Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition. Talanta 2024; 268:125283. [PMID: 37857111 DOI: 10.1016/j.talanta.2023.125283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Molecular imprinting technology (MIT) has become a promising recognition technology in various fields due to its specificity, high efficiency, stability and eco-friendliness in the recognition of target. Molecularly imprinted polymers (MIPs), known as 'artificial receptors', are shown similar properties to natural receptors as a biomimetic material. The selectivity of recognition for targets can be greatly improved when MIPs are introduced into sensors, as known that MIPs, are suitable for the pretreatment and analysis of trace substances in complex matrix samples. At present, various sensors has been developed by the combination with MIPs for detecting and identifying trace compounds, biological macromolecules or other substances, such as optical, electrochemical and piezoelectric sensors. Smart phones, with their built-in sensors and powerful digital imaging capabilities, provide a unique platform for the needs of portability and instant detection. MIP sensors based on smart phones are expected to become a new research direction in the future. This review discusses the latest applications of MIP sensors in the field of detection and recognition in recent years, summarizes the frontier progress of MIP sensor research based on smart phones in the past two years, and points out the challenges, limitations and future development prospects.
Collapse
Affiliation(s)
- Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Sijia Xing
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhixuan Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongyan Li
- Tianjin JOYSTAR Technology Co., Ltd, No.453, Hengshan Road, Modern Industrial Park, Tianjin Economic Technological Development Area, Tianjin, 300457, China
| | - Shanshan Lu
- BaiyangDian Basin Ecological Environment Monitoring Center, Baoding, Hebei, 071000, China
| | - Kunze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
7
|
Manasi I, Schweins R, Ma K, Edler KJ. Nanostructure in Amphiphile-Based Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16776-16784. [PMID: 37965899 PMCID: PMC10688184 DOI: 10.1021/acs.langmuir.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Deep eutectic solvents (DESs) are an emerging class of modern, often "green" solvents with unique properties. Recently, a deep eutectic system based on amphiphilic surfactant N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (C12 & C14 sulfobetaine) and (1S)-(+)-10-camphor-sulfonic acid in the molar ratio 1:1.5 has been reported. Nanostructuring can be expected in this DES due to the nature of the components. In this work, we have investigated the native nanostructure in the DES comprising C12-C18 alkyl chain sulfobetaines with camphor sulfonic acid and how it interacts with polar and nonpolar species, water and dodecane, respectively, using small angle neutron scattering. By using contrast variation to highlight the relative position of the solvent components and additives, we can resolve the structure of the solvent and how it changes upon interaction with water and dodecane. Scattering from the neat DES shows structures corresponding to the self-assembly of sulfobetaines; the size of the structure increases as the alkyl chain length of the sulfobetaines increases. Water and dodecane interact, respectively, with the hydrophilic and hydrophobic moieties in the DES structure, primarily the sulfobetaine, thereby swelling and solvating the entire structure. The extent of the shift of the peak position, and the swelling, depend on concentration of the additive. The solution phase organization and the interaction of polar and nonpolar species as observed here, have the potential to affect the ordering of inorganic or polymeric materials grown in such solvents, paving new avenues for templating applications.
Collapse
Affiliation(s)
- Iva Manasi
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, U.K.
| | - Ralf Schweins
- Institut
Laue-Langevin, CS 20156, Grenoble Cedex 9 38042, France
| | - Kun Ma
- ISIS
Neutron and Muon Source, STFC, Rutherford
Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, U.K.
- Department
of Chemistry, Centre for Analysis and Synthesis (CAS), Lund University, Lund 221 00, Sweden
| |
Collapse
|
8
|
Manyoni L, Redhi G. Separation potential of 1,5-pentanediol-based deep eutectic solvent: Infinite dilution activity coefficients and excess thermodynamic data. Heliyon 2023; 9:e21516. [PMID: 38034612 PMCID: PMC10682540 DOI: 10.1016/j.heliyon.2023.e21516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
In the present study, the new data of the infinite dilution activity coefficient for 32 different solutes in {1-ethyl-1-methylpyrrolidinium bromide +1,5-pentanediol}, [[EMPYR] Br + 1,5-PDO] DES, were measured using the gas liquid chromatography (GLC) method with pre-saturation of the helium gas. The list of selected solutes included alkanes, alkenes, alkynes, cycloalkanes, cycloalkenes, aromatics, ketones, alcohols, and water. Because the solvents were volatile at the temperatures used for measurements, pre-saturation was deemed necessary. The measurements were taken at temperatures T = (313.15-343.15) K and atmospheric pressure. Values of partial molar properties, i.e., enthalpy, entropy, and Gibbs free energy, were computed at a reference temperature of Tref = 333.15 K. Moreover, the values of capacity and selectivity relating to [[EMPYR] Br + 1,5-PDO] DES for different sets of binary systems that are normally problematic in the separation through solvent extraction or distillation were also computed. These include cyclohexane/benzene; acetone/methanol; and hexane/benzene. The obtained data in the present work was then compared to the literature data, at similar temperatures. Thus, the thermodynamical data is important for pre-selecting solvents for industrial purposes.
Collapse
Affiliation(s)
- Lindokuhle Manyoni
- Physical Chemistry Laboratories, Department of Chemistry, Durban University of Technology, Durban-4000, Berea, South Africa
- Chemical Thermodynamics and Separation Technology, Department of Chemical Engineering, Durban University of Technology, Durban-4000, Berea, KwaZulu-Natal, South Africa
| | - Gan Redhi
- Physical Chemistry Laboratories, Department of Chemistry, Durban University of Technology, Durban-4000, Berea, South Africa
| |
Collapse
|
9
|
Khokhar V, Pandey S. Constituent- and Composition-Dependent Surfactant Aggregation in (Lanthanide Salt + Urea) Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5129-5136. [PMID: 37001023 DOI: 10.1021/acs.langmuir.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Due to the ease of tailoring the physicochemical properties by simply changing a constituent or composition, deep eutectic solvents (DESs) possess widely varying capabilities for surfactant self-assembly that could depend on the surfactant headgroup charge. The self-aggregation process of three surfactants, sodium dodecylsulfate (SDS), cetyltrimethylammonium bromide (CTAB), and Triton X-100 (TX-100), dissolved in DESs composed of a lanthanide salt (Ln) and urea (U) is investigated. The role of the identity of the metal salt is assessed by using [La(NO3)3·6H2O] (La) and [Ce(NO3)3·6H2O] (Ce) and that of the composition is deciphered by systematically changing the mole ratio of the metal salt and urea in (La/U) DESs. The response to a fluorescence probe pyrene-1-carboxaldehyde along with electrical conductance and surface tension measurements is used to obtain the critical aggregation concentration (CAC). While the CACs in 1:3.5 (Ln/U) for SDS are significantly lower than that in water, the values are marginally higher for CTAB and TX-100. The CACs for all three surfactants are similar in 1:3.5 (La/U) and (Ce/U) DESs, implying that the identity of the metal in the salt is not so important. Increasing the urea composition in (La/U) DESs results in increased CAC for SDS and CTAB; however, a minimal decrease in CAC is observed for TX-100. From the temperature dependence of CAC, thermodynamic parameters, ΔGagg0, ΔHagg0, and ΔSagg0, of the surfactant self-aggregation process are estimated. These parameters reveal that while at a lower urea content, the SDS/CTAB self-assembly process is enthalpically driven, it becomes entropically favored at higher urea concentrations. The TX-100 self-aggregation in these DESs is found to be strongly enthalpically favored and entropically un-favored. These parameters are explained as a combination of passage of the solvophobic surfactant chain from the bulk DES to the aggregate pseudo-phase and differential orientation/organization of DES constituents around surfactant monomers and/or aggregates.
Collapse
Affiliation(s)
- Vaishali Khokhar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Guzmán‐Cruz A, Lourdes Ruiz‐Peralta M, Pal U, Paraguay‐Delgado F, Pal M. Green Synthesis of TiO
2
Nanoparticles in a Deep Eutectic Solvent for High‐Performance Photocatalysis: The Role of the Cosolvent. ChemistrySelect 2023. [DOI: 10.1002/slct.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Andrés Guzmán‐Cruz
- Instituto de Física, Benemérita Universidad Autónoma de Puebla Ciudad Universitaria Av. San Claudio y Blvd. 18 Sur, Col. San Manuel C.P. 72570 Puebla México
| | - Ma. Lourdes Ruiz‐Peralta
- Facultad de Ingeniería Química Benemérita Universidad Autónoma de Puebla Avenida San Claudio y 18 Sur, C.P. 72570 Puebla México
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla Ciudad Universitaria Av. San Claudio y Blvd. 18 Sur, Col. San Manuel C.P. 72570 Puebla México
| | - F. Paraguay‐Delgado
- Departamento de Materiales Nanoestructurados Centro de Investigación en Materiales Avanzados (CIMAV) C.P. 31136 Chihuahua México
| | - Mou Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla Ciudad Universitaria Av. San Claudio y Blvd. 18 Sur, Col. San Manuel C.P. 72570 Puebla México
| |
Collapse
|
11
|
Deep eutectic solvents-modified advanced functional materials for pollutant detection in food and the environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
|
13
|
Liu K, Tan JN, Wei Y, Li C, Dou Y, Zhang Z. Application of choline chloride-based deep eutectic solvents for the extraction of dopamine from purslane (Portulaca oleracea L.). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
14
|
Manasi I, Andalibi MR, Atri RS, Hooton J, King SM, Edler KJ. Self-assembly of ionic and non-ionic surfactants in type IV cerium nitrate and urea based deep eutectic solvent. J Chem Phys 2021; 155:084902. [PMID: 34470344 DOI: 10.1063/5.0059238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Understanding and manipulating micelle morphology are key to exploiting surfactants in various applications. Recent studies have shown surfactant self-assembly in a variety of Deep Eutectic Solvents (DESs) where both the nature of surfactants and the interaction of the surfactant molecule with the solvent components influence the size, shape, and morphology of the micelles formed. So far, micelle formation has only been reported in type III DESs, consisting solely of organic species. In this work, we have explored the self-assembly of cationic surfactant dodecyl trimethylammonium nitrate/bromide (C12TANO3/C12TAB), anionic surfactant sodium dodecyl sulfate (SDS), and non-ionic surfactants hexaethylene glycol monododecyl ether (C12EO6) and octaethylene glycol monohexadecyl ether (C16EO8) in a type IV DES comprising metal salt, cerium (III) nitrate hexahydrate, and a hydrogen bond donor, urea, in the molar ratio 1:3.5. C12TANO3, C12TAB, C12EO6, and C16EO8 form spherical micelles in the DES with the micelle size dependent on both the surfactant alkyl chain length and the head group, whereas SDS forms cylindrical micelles. We hypothesize that the difference in the micelle shape can be explained by counterion stabilization of the SDS headgroup by polycations in the DES compared to the nitrate/bromide anion interaction in the case of cationic surfactants or molecular interaction of the urea and the salting out effect of (CeNO3)3 in the DES on the alkyl chains/polyethoxy headgroup for non-ionic surfactants. These studies deepen our understanding of amphiphile self-assembly in this novel, ionic, and hydrogen-bonding solvent, raising the opportunity to use these structures as liquid crystalline templates to generate porosity in metal oxides (ceria) that can be synthesized using these DESs.
Collapse
Affiliation(s)
- Iva Manasi
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Mohammad R Andalibi
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Ria S Atri
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Jake Hooton
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Stephen M King
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| |
Collapse
|
15
|
Chen L, Yang YY, Zhou RR, Fang LZ, Zhao D, Cai P, Yu R, Zhang SH, Huang JH. The extraction of phenolic acids and polysaccharides from Lilium lancifolium Thunb. using a deep eutectic solvent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1226-1231. [PMID: 33605948 DOI: 10.1039/d0ay02352c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Establishing a fast and effective extraction method for herbs is beneficial for the determination of their main compounds and estimating their quality. In this study, deep eutectic solvents (DESs) were optimized to simultaneously extract three main types of phenolic acids, i.e., regaloside B, regaloside C, and regaloside E, and polysaccharides from the bulbs of Lilium lancifolium Thunb. Based on the optimized extraction conditions, i.e., an extraction temperature of 50 °C, an extraction time of 40 min, a solid-liquid ratio of 1 : 25, and a ratio of water in the DES of 20%, the extracted amounts of regaloside B, regaloside C, and regaloside E reached 0.31 ± 0.06 mg g-1, 0.29 ± 0.03 mg g-1, and 3.04 ± 0.38 mg g-1, respectively. The extraction efficiencies were higher than those obtained using conventional organic solvents. Next, the polysaccharide levels were measured and compared with those obtained using a conventional hot water extraction method, and equivalent extraction efficiencies were obtained with the conventional hot water extraction method. This study provides a new application of deep eutectic solvents (DESs) for simultaneously extracting phenolic acids and polysaccharides from the bulbs of L. lancifolium Thunb. Considering the biodegradability and pharmaceutical acceptability, DESs as a class of green solvents could have wide applications in the extraction of natural products.
Collapse
Affiliation(s)
- Lin Chen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Yang-Yu Yang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Rong-Rong Zhou
- College of Pharmacy, Changchun University of Chinese Medcine, Changchun, China
| | - Liang-Zi Fang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Rong Yu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China. and Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| |
Collapse
|
16
|
ZHAO Z, JI Y, LIU X, ZHAO L. [Progress in the application of deep eutectic solvents to extraction and separation technology]. Se Pu 2021; 39:152-161. [PMID: 34227348 PMCID: PMC9274834 DOI: 10.3724/sp.j.1123.2020.07015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
With the rapid development of green chemistry, the design and application of the related methods and requisite solvents have received increasing attention in recent years. Deep eutectic solvents (DESs) are mixtures formed from a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD). Generally, ionic liquids (ILs) and DESs have similar physical and chemical properties, and hence, find application in the same fields. However, DESs have many advantages over ILs, such as non-toxicity, environmental friendliness, low cost, and biodegradability. Thus, there are many areas where DESs play a key role and act as new, efficient green extraction solvents. DESs can aid the extraction and separation of different target compounds from a variety of samples, thus promoting the rapid development of sample pretreatment technology. As extraction solvents, DESs offer unique advantages. In dispersive liquid-liquid microextraction (DLLME), DESs show incredible ability to extract residual drugs, metal ions, and bioactive components from complex matrices, which would require complicated sample preparation steps when using traditional organic extraction solvents. Compared with traditional organic extraction solvents, DESs have considerable merits of greenness, hypotoxicity, higher extraction efficiency, etc. Moreover, as a dispersant, a DES can accelerate the diffusion of the extractant in the sample solution during DLLME, owing to its benefits of miniaturization and low cost. Traditional dispersants such as methanol and acetonitrile have many disadvantages, including high volatility, flammability, and toxicity, while DESs are environmentally friendly. Therefore, the combination of DES and DLLME has recently gained prominence in the field of sample preparation. Additionally, the combination of DES and solid-phase extraction (SPE) has broad application prospects. By virtue of their diverse functions, DESs have been used as eluents, in combination with a solid-phase extraction column and a stir bar, to elute analytes from the sorbent surface. The molar ratio of the HBA and HBD is one of the important factors influencing the elution efficiency. DESs can be combined with magnetic multiwalled carbon nanotubes, magnetic graphene oxide, and other nanocomposites to specifically adsorb target analytes through hydrogen bonding, π-π forces, and electrostatic forces. In addition, the DES can be used in the synthesis of magnetic nanocomposites and molecularly imprinted polymers when combined with magnetic materials. Magnetic nanocomposites functionalized with DES show excellent performance and high efficiency in the extraction process. The combination of DES and magnetic materials would promote the development of magnetic materials for green chemistry and expand the application of DES to several other fields. However, to the best of our knowledge, research on the microstructure, physical and chemical properties, and extraction mechanism of DESs is still in its nascent stage. Therefore, exploring the theoretical mechanism and applications of new DESs with special functions would be an essential future research direction. This article integrates the research progress of DESs in extraction separation technology; introduces the preparation, properties, and classification of DESs; and summarizes the applications of DESs in DLLME and SPE.
Collapse
Affiliation(s)
- Zexin ZHAO
- 沈阳药科大学药学院, 辽宁 沈阳 110016
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinghe JI
- 沈阳药科大学药学院, 辽宁 沈阳 110016
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaomei LIU
- 沈阳药科大学药学院, 辽宁 沈阳 110016
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Longshan ZHAO
- 沈阳药科大学药学院, 辽宁 沈阳 110016
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
17
|
Sustainable green solvents for microextraction techniques: Recent developments and applications. J Chromatogr A 2021; 1640:461944. [PMID: 33556679 DOI: 10.1016/j.chroma.2021.461944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023]
Abstract
The development and application of alternative green solvents in analytical techniques consist of trends in sample preparation, since this subject represents an important step toward sustainability in experimental procedures. This review is focused on the main theoretical aspects related to deep eutectic solvents (DES), switchable hydrophilicity solvents (SHS) and supramolecular solvents (SUPRAS). Recent applications are highlighted, particularly for the extraction of different analytes from environmental, biological and food matrices. Moreover, novel configurations are emphasized, aiming for efficient, automated and high-throughput procedures. This review also provides some critical points regarding the use of these solvents and their green aspects.
Collapse
|
18
|
Zhu Z, Lü H, Zhang M, Yang H. Deep eutectic solvents as non-traditionally multifunctional media for the desulfurization process of fuel oil. Phys Chem Chem Phys 2021; 23:785-805. [PMID: 33399593 DOI: 10.1039/d0cp05153e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Deep eutectic solvents (DESs) have been intensively pursued in the field of separation processes, catalytic reactions, polymers, nanomaterial science, and sensing technologies due to their unique features such as the low cost of components, ease of preparation, tunable physicochemical properties, negligible vapor pressure, non-toxicity, renewability, and biodegradability in the recent decade. Considering these appealing merits, DESs are widely used as extraction agents, solvents and/or catalysts in the desulfurization process since 2013. This review is focused on summarizing the physicochemical properties of DESs (i.e., freezing point, density, viscosity, ionic conductivity, acidity, hydrophilicity/hydrophobicity, polarity, surface tension, and diffusion) to some extent, and their significant advances in applications related to desulfurization processes such as extraction desulfurization, extraction-oxidation desulfurization, and biomimetic desulfurization. In particular, we systematically compile very recent works concerning the selective aerobic oxidation desulfurization (AODS) under extremely mild conditions (60 °C and ambient pressure) via a biomimetic approach coupling DESs with polyoxometallates (POMs). In this system, DESs act as multifunctional roles such as extraction agents, solvents, and catalysts, while POMs serve as electron transfer mediators. This strategy is inspirational since biomimetic or bioinspired catalysis is the "Holy Grail" of oxidation catalysis, which overcomes the difficulty of O2 activation via introducing electron transfer mediators into this system. It not only can be used for AODS, but also paves a novel way for oxidation catalysis, such as the selective oxyfunctionalization of hydrocarbon. Eventually, the conclusion, current challenges, and future opportunities are discussed. The aim is to provide necessary guidance for precisely designing tailor-made DESs, and to inspire chemists to use DESs as a powerful platform in the field of catalysis science.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, Shandong, China.
| | - Hongying Lü
- Green Chemistry Centre, College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, Shandong, China.
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
19
|
Deep eutectic solvents (DESs): A short overview of the thermophysical properties and current use as base fluid for heat transfer nanofluids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Novel sustainable metal complex based deep eutectic solvents for extractive desulphurisation of fuel. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Li X, Row KH. Preparation of levofloxacin-imprinted nanoparticles using designed deep eutectic solvents for the selective removal of levofloxacin pollutants from environmental waste water. Analyst 2020; 145:2958-2965. [DOI: 10.1039/c9an02556a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Designed deep eutectic solvents was applied to preparation of levofloxacin-imprinted nanoparticles as functional monomer. The nanoparticles using for the selective removal of levofloxacin pollutants from a natural environmental system.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| |
Collapse
|
22
|
Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids. Mikrochim Acta 2019; 186:753. [DOI: 10.1007/s00604-019-3885-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023]
|
23
|
|
24
|
Wei ZH, Sun X, Mu LN, Huang YP, Liu ZS. Improving affinity of imprinted monolithic polymer prepared in deep eutectic solvent by metallic pivot. J Chromatogr A 2019; 1602:48-55. [DOI: 10.1016/j.chroma.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
25
|
Magnetic carbon nanotube modified with polymeric deep eutectic solvent for the solid phase extraction of bovine serum albumin. Talanta 2019; 206:120215. [PMID: 31514903 DOI: 10.1016/j.talanta.2019.120215] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/24/2022]
Abstract
This article described the fabrication of novel magnetic carbon nanotube modified with polymeric deep eutectic solvent (M-CNT@PDES) and its application as extractant for the magnetic solid phase extraction (MSPE) of bovine serum albumin (BSA). The physicochemical properties and morphology of M-CNT@PDES were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermo-gravimetric analysis (TGA), zeta potentials, fourier transform infrared spectrometry (FT-IR) and transmission electron microscope (TEM). Afterwards, several parameters such as pH value, initial concentration of BSA, extraction time, ionic strength and extraction temperature were optimized. The results indicated that the modification of PDES significantly improved the extraction performance for BSA, and the maximum extraction capacity was 225.15 mg/g under the optimized conditions. In addition, 0.20 mol/L NaCl-PBS solution was chosen as the appropriate eluent, and favourable elution rate (81.22%) was obtained. Circular dichroism spectroscopy (CD) indicated that the secondary structure of BSA has not changed during extraction and elution. The regenerative experiment and application in real calf serum confirmed the outstanding durability and practical application ability of M-CNT@PDES. All of above verified that the proposed M-CNT@PDES coupled with MSPE method has great application potential for the pre-concentration of biomolecules.
Collapse
|
26
|
Theoretical study of physicochemical properties of selected ammonium salt-based deep eutectic solvents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Suriyanarayanan S, Olsson GD, Kathiravan S, Ndizeye N, Nicholls IA. Non-Ionic Deep Eutectic Liquids: Acetamide-Urea Derived Room Temperature Solvents. Int J Mol Sci 2019; 20:ijms20122857. [PMID: 31212745 PMCID: PMC6627579 DOI: 10.3390/ijms20122857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/01/2023] Open
Abstract
A family of non-ionic deep eutectic liquids has been developed based upon mixtures of solid N-alkyl derivatives of urea and acetamide that in some cases have melting points below room temperature. The eutectic behaviour and physical characteristics of a series of eleven eutectic mixtures are presented, along with a molecular dynamics study-supported hypothesis for the origin of the non-ideal mixing of these substances. Their use as solvents in applications ranging from natural product extraction to organic and polymer synthesis are demonstrated.
Collapse
Affiliation(s)
- Subramanian Suriyanarayanan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Gustaf D Olsson
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Natacha Ndizeye
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| |
Collapse
|
28
|
Zolotareva D, Zazybin A, Rafikova K, Dembitsky VM, Dauletbakov A, Yu V. Ionic liquids assisted desulfurization and denitrogenation of fuels. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Darya Zolotareva
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
| | - Alexey Zazybin
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
- Center of Chemical Engineering; Kazakh-British Technical University, 59 Tole-bi Str.; Almaty, 050000 Kazakhstan
| | - Khadichakhan Rafikova
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
- Suleyman Demirel University, Abylai khan street 1/1; Almaty, Kaskelen city, 040900 Kazakhstan
| | - Valery M. Dembitsky
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences. Leninsky Prospect 47; Moscow, 119991 Russia
| | - Anuar Dauletbakov
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
- Center of Chemical Engineering; Kazakh-British Technical University, 59 Tole-bi Str.; Almaty, 050000 Kazakhstan
| | - Valentina Yu
- A.B. Bekturov Institute of Chemical Sciences, 106 Walikhanov Str.; Almaty, 050000 Kazakhstan
| |
Collapse
|
29
|
Zhang WH, Chen MN, Hao Y, Jiang X, Zhou XL, Zhang ZH. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines]. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Li X, Dai Y, Row KH. Preparation of two-dimensional magnetic molecularly imprinted polymers based on boron nitride and a deep eutectic solvent for the selective recognition of flavonoids. Analyst 2019; 144:1777-1788. [DOI: 10.1039/c8an02258e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Two-dimensional (2D) boron nitride (BN) were developed as a 2D scaffold material in preparation of magnetic molecularly imprinted polymers (MMIPs).
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Yunliang Dai
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402-751
- Korea
| |
Collapse
|
31
|
A new dual basic ionic liquid promoted synthesis of spiro[naphthalene-2,5′-pyrimidine]-4-carbonitrile. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3565-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|