1
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
DeVoti JA, Israr M, Lam F, Papayannakos C, Frank DK, Kamdar DP, Pereira LM, Abramson A, Steinberg BM, Bonagura VR. Oropharyngeal tumor cells induce COX-2 expression in peripheral blood monocytes by secretion of IL-1α. Front Immunol 2022; 13:1011772. [DOI: 10.3389/fimmu.2022.1011772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Oropharyngeal squamous cell cancer (OPC) accounts for 3% of all cancers and greater than 1.5% of all cancer deaths in the United States, with marked treatment-associated morbidity in survivors. More than 80% of OPC is caused by HPV16. Tumors induced by HPV have been linked to impaired immune functions, with most studies focused on the local tumor microenvironment. Fewer studies have characterized the effects of these tumors on systemic responses in OPC, especially innate responses that drive subsequent adaptive responses, potentially creating feed-back loops favorable to the tumor. Here we report that elevated plasma levels of PGE2 are expressed in half of patients with OPC secondary to overexpression of COX-2 by peripheral blood monocytes, and this expression is driven by IL-1α secreted by the tumors. Monocytes from patients are much more sensitive to the stimulation than monocytes from controls, suggesting the possibility of enhanced immune-modulating feed-back loops. Furthermore, control monocytes pre-exposed to PGE2 overexpress COX-2 in response to IL-1α, simulating responses made by monocytes from some OPC patients. Disrupting the PGE2/IL-1α feed-back loop can have potential impact on targeted medical therapies.
Collapse
|
3
|
Sugimura R, Chao Y. Deciphering Innate Immune Cell-Tumor Microenvironment Crosstalk at a Single-Cell Level. Front Cell Dev Biol 2022; 10:803947. [PMID: 35646915 PMCID: PMC9140036 DOI: 10.3389/fcell.2022.803947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment encompasses various innate immune cells which regulate tumor progression. Exploiting innate immune cells is a new frontier of cancer immunotherapy. However, the classical surface markers for cell-type classification cannot always well-conclude the phenotype, which will further hinge our understanding. The innate immune cells include dendritic cells, monocytes/macrophages, natural killer cells, and innate lymphoid cells. They play important roles in tumor growth and survival, in some cases promoting cancer, in other cases negating cancer. The precise characterization of innate immune cells at the single-cell level will boost the potential of cancer immunotherapy. With the development of single-cell RNA sequencing technology, the transcriptome of each cell in the tumor microenvironment can be dissected at a single-cell level, which paves a way for a better understanding of the cell type and its functions. Here, we summarize the subtypes and functions of innate immune cells in the tumor microenvironment based on recent literature on single-cell technology. We provide updates on recent achievements and prospects for how to exploit novel functions of tumor-associated innate immune cells and target them for cancer immunotherapy.
Collapse
|
4
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6:362. [PMID: 34620838 PMCID: PMC8497485 DOI: 10.1038/s41392-021-00670-9] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/21/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Xuejin Ou
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Pei Shu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, 610041, Chengdu, China. .,Clinical Trial Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
5
|
Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells 2021; 10:cells10030677. [PMID: 33803806 PMCID: PMC8003224 DOI: 10.3390/cells10030677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis (EMS) is a common gynecological disease characterized by the presence of endometrial tissue outside the uterus. Approximately 10% of women around the world suffer from this disease. Recent studies suggest that endometriosis has potential to transform into endometriosis-associated ovarian cancer (EAOC). Endometriosis is connected with chronic inflammation and changes in the phenotype, activity, and function of immune cells. The underlying mechanisms include quantitative and functional disturbances of neutrophils, monocytes/macrophages (MO/MA), natural killer cells (NK), and T cells. A few reports have shown that immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) may promote the progression of endometriosis. MDSCs are a heterogeneous population of immature myeloid cells (dendritic cells, granulocytes, and MO/MA precursors), which play an important role in the development of immunological diseases such as chronic inflammation and cancer. The presence of MDSCs in pathological conditions correlates with immunosuppression, angiogenesis, or release of growth factors and cytokines, which promote progression of these diseases. In this paper, we review the impact of MDSCs on different populations of immune cells, focusing on their immunosuppressive role in the immune system, which may be related with the pathogenesis and/or progression of endometriosis and its transformation into ovarian cancer.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Jan Kotarski
- Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
- Correspondence:
| |
Collapse
|
6
|
Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol 2020; 10:1399. [PMID: 33042791 PMCID: PMC7528630 DOI: 10.3389/fonc.2020.01399] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Monocytes influence multiple aspects of tumor progression, including antitumor immunity, angiogenesis, and metastasis, primarily by infiltrating tumors, and differentiating into tumor-associated macrophages. Emerging evidence suggests that the tumor-induced systemic environment influences the development and phenotype of monocytes before their arrival to the tumor site. As a result, circulating monocytes show functional alterations in cancer, such as the acquisition of immunosuppressive activity and reduced responsiveness to inflammatory stimuli. In this review, we summarize available evidence about cancer-induced changes in monopoiesis and its impact on the abundance and function of monocytes in the periphery. In addition, we describe the phenotypical alterations observed in tumor-educated peripheral blood monocytes and highlight crucial gaps in our knowledge about additional cellular functions that may be affected based on transcriptomic studies. We also highlight emerging therapeutic strategies that aim to reverse cancer-induced changes in monopoiesis and peripheral monocytes to inhibit tumor progression and improve therapy responses. Overall, we suggest that an in-depth understanding of systemic monocyte reprogramming will have implications for cancer immunotherapy and the development of clinical biomarkers.
Collapse
Affiliation(s)
- Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aarushi Audhut Caro
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Okła K, Rajtak A, Czerwonka A, Bobiński M, Wawruszak A, Tarkowski R, Bednarek W, Szumiło J, Kotarski J. Accumulation of blood-circulating PD-L1-expressing M-MDSCs and monocytes/macrophages in pretreatment ovarian cancer patients is associated with soluble PD-L1. J Transl Med 2020; 18:220. [PMID: 32487171 PMCID: PMC7268341 DOI: 10.1186/s12967-020-02389-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have shown clinical relevance of programmed death-ligand 1 (PD-L1) and soluble PD-L1 (sPD-L1) in human cancers. However, still contradictory results exist. Our aim was evaluation of PD-L1-expressing monocytic myeloid-derived suppressor cells (M-MDSCs), monocytes/macrophages (MO/MA), tumour cells (TC) and immune/inflammatory cells (IC) as well as investigation of the sPD-L1 in ovarian cancer (OC) patients. METHODS The group of 74 pretreatment women were enrollment to the study. The expression of PD-L1 on M-MDSCS and MO/MA was assessed by flow cytometry. The profile of sPD-L1 was examined with ELISA. The expression of PD-L1 in mononuclear cells (MCs) was analyzed using real time PCR. PD-L1 immunohistochemical analysis was prepared on TC and IC. An in silico validation of prognostic significance of PD-L1 mRNA expression was performed based microarray datasets. RESULTS OC patients had significantly higher frequency of MO/MA versus M-MDSC in the blood, ascites and tumour (each p < 0.0001). In contrast, PD-L1 expression was higher on M-MDSCs versus MO/MA in the blood and ascites (each p < 0.0001), but not in the tumour (p > 0.05). Significantly higher accumulation of blood-circulating M-MDSC, MO/MA, PD-L1+M-MDSC, PD-L1+MO/MA and sPD-L1 was observed in patients versus control (p < 0.001, p < 0.05, p < 0.001, p < 0.001 and p < 0.0001, respectively). Accumulation of these factors was clinicopathologic-independent (p > 0.05). The expression of PD-L1 was significantly higher on IC versus TC (p < 0.0001) and was clinicopathologic-independent (p > 0.05) except higher level of PD-L1+TC in the endometrioid versus mucinous tumours. Interestingly, blood-circulating sPD-L1 positively correlated with PD-L1+M-MDSCs (p = 0.03) and PD-L1+MO/MA (p = 0.02) in the blood but not with these cells in the ascites and tumours nor with PD-L1+TC/IC (each p > 0.05). PD-L1 and sPD-L1 were not predictors of overall survival (OS; each p > 0.05). Further validation revealed no association between PD-L1 mRNA expression and OS in large independent OC patient cohort (n = 655, p > 0.05). CONCLUSIONS Although PD-L1 may not be a prognostic factor for OC, our study demonstrated impaired immunity manifested by up-regulation of PD-L1/sPD-L1. Furthermore, there was a positive association between PD-L1+ myeloid cells and sPD-L1 in the blood, suggesting that sPD-L1 may be a noninvasive surrogate marker for PD-L1+myeloid cells immunomonitoring in OC. Overall, these data should be under consideration during future clinical studies/trials.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland.
| | - Alicja Rajtak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Sklodowska University, 20-031, Lublin, Poland
| | - Marcin Bobiński
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Rafał Tarkowski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Wiesława Bednarek
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, 20-090, Lublin, Poland
| | - Jan Kotarski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, 20-081, Lublin, Poland
| |
Collapse
|
8
|
Myeloid-Derived Suppressor Cells Mediate Immunosuppression After Cardiopulmonary Bypass. Crit Care Med 2020; 47:e700-e709. [PMID: 31149961 DOI: 10.1097/ccm.0000000000003820] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Cardiopulmonary bypass is associated with severe immune dysfunctions. Particularly, a cardiopulmonary bypass-related long-lasting immunosuppressive state predisposes patients to a higher risk of postoperative complications, such as persistent bacterial infections. This study was conducted to elucidate mechanisms of post-cardiopulmonary bypass immunosuppression. DESIGN In vitro studies with human peripheral blood mononuclear cells. SETTING Cardiosurgical ICU, University Research Laboratory. PATIENTS Seventy-one patients undergoing cardiac surgery with cardiopulmonary bypass (enrolled May 2017 to August 2018). INTERVENTIONS Peripheral blood mononuclear cells before and after cardiopulmonary bypass were analyzed for the expression of immunomodulatory cell markers by real-time quantitative reverse transcription polymerase chain reaction. T cell effector functions were determined by enzyme-linked immunosorbent assay, carboxyfluorescein succinimidyl ester staining, and cytotoxicity assays. Expression of cell surface markers was assessed by flow cytometry. CD15 cells were depleted by microbead separation. Serum arginine was measured by mass spectrometry. Patient peripheral blood mononuclear cells were incubated in different arginine concentrations, and T cell functions were tested. MEASUREMENTS AND MAIN RESULTS After cardiopulmonary bypass, peripheral blood mononuclear cells exhibited significantly reduced levels of costimulatory receptors (inducible T-cell costimulator, interleukin 7 receptor), whereas inhibitory receptors (programmed cell death protein 1 and programmed cell death 1 ligand 1) were induced. T cell effector functions (interferon γ secretion, proliferation, and CD8-specific cell lysis) were markedly repressed. In 66 of 71 patients, a not yet described cell population was found, which could be characterized as myeloid-derived suppressor cells. Myeloid-derived suppressor cells are known to impair immune cell functions by expression of the arginine-degrading enzyme arginase-1. Accordingly, we found dramatically increased arginase-1 levels in post-cardiopulmonary bypass peripheral blood mononuclear cells, whereas serum arginine levels were significantly reduced. Depletion of myeloid-derived suppressor cells from post-cardiopulmonary bypass peripheral blood mononuclear cells remarkably improved T cell effector function in vitro. Additionally, in vitro supplementation of arginine enhanced T cell immunocompetence. CONCLUSIONS Cardiopulmonary bypass strongly impairs the adaptive immune system by triggering the accumulation of myeloid-derived suppressor cells. These myeloid-derived suppressor cells induce an immunosuppressive T cell phenotype by increasing serum arginine breakdown. Supplementation with L-arginine may be an effective measure to counteract the onset of immunoparalysis in the setting of cardiopulmonary bypass.
Collapse
|
9
|
Coosemans A, Baert T, Ceusters J, Busschaert P, Landolfo C, Verschuere T, Van Rompuy AS, Vanderstichele A, Froyman W, Neven P, Van Calster B, Vergote I, Timmerman D. Myeloid-derived suppressor cells at diagnosis may discriminate between benign and malignant ovarian tumors. Int J Gynecol Cancer 2020; 29:1381-1388. [PMID: 31685557 DOI: 10.1136/ijgc-2019-000521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The behavior of the immune system as a driver in the progression of ovarian cancer has barely been studied. Our knowledge is mainly limited to the intra-tumoral adaptive immune system. Because of the widespread metastases of ovarian cancer, an assessment of the circulating immune system seems more accurate.To demonstrate the presence of immune cells in blood samples of patients with ovarian neoplasms. METHODS In this exploratory prospective cohort study, peripheral blood mononuclear cells were collected at diagnosis from 143 women, including 62 patients with benign cysts, 13 with borderline tumor, 41 with invasive ovarian cancer, and 27 age-matched healthy controls. Immune profile analyses, based on the presence of CD4 (cluster of differentiation), CD8, natural killer cells, myeloid-derived suppressor cells, and regulatory T cells, were performed by fluorescence activated cell sorting. RESULTS In a multivariable analysis, six immune cells (activated regulatory T cells, natural killer cells, myeloid-derived suppressor cells, monocytic myeloid-derived suppressor cells, exhausted monocytic myeloid-derived suppressor cells, and total myeloid cells) were selected as independent predictors of malignancy, with an optimism-corrected area under the receiver operating characteristic curve (AUC) of 0.858. In contrast, a profile based on CD8 and regulatory T cells, the current standard in ovarian cancer immunology, resulted in an AUC of 0.639. CONCLUSIONS Our immune profile in blood suggests an involvement of innate immunosuppression driven by myeloid-derived suppressor cells in the development of ovarian cancer. This finding could contribute to clinical management of patients and in selection of immunotherapy.
Collapse
Affiliation(s)
- An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Katholieke Universiteit Leuven, Leuven, Belgium .,Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Leuven, Belgium
| | - Thaïs Baert
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte gGmbH, Essen, Germany
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Pieter Busschaert
- Department of Oncology, Laboratory of Gynecologic Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chiara Landolfo
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Gynecology and Obstetrics, Queen Charlotte's and Chelsea Hospital, London, UK
| | - Tina Verschuere
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | | | - Adriaan Vanderstichele
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Leuven, Belgium.,Department of Oncology, Laboratory of Gynecologic Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Wouter Froyman
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Leuven, Belgium.,Department of Development and Regeneration, Women and Child, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Leuven, Belgium.,Department of Oncology, Laboratory of Gynecologic Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ben Van Calster
- Department of Development and Regeneration, Women and Child, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ignace Vergote
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Leuven, Belgium.,Department of Oncology, Laboratory of Gynecologic Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dirk Timmerman
- Department of Gynecology and Obstetrics, Leuven Cancer Institute, University Hospital Leuven, Leuven, Belgium.,Department of Development and Regeneration, Women and Child, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Kishimoto T, Fujimoto N, Ebara T, Omori T, Oguri T, Niimi A, Yokoyama T, Kato M, Usami I, Nishio M, Yoshikawa K, Tokuyama T, Tamura M, Yokoyama Y, Tsuboi K, Matsuo Y, Xu J, Takahashi S, Abdelgied M, Alexander WT, Alexander DB, Tsuda H. Serum levels of the chemokine CCL2 are elevated in malignant pleural mesothelioma patients. BMC Cancer 2019; 19:1204. [PMID: 31823764 PMCID: PMC6905076 DOI: 10.1186/s12885-019-6419-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a debilitating disease of the pleural cavity. It is primarily associated with previous inhalation of asbestos fibers. These fibers initiate an oxidant coupled inflammatory response. Repeated exposure to asbestos fibers results in a prolonged inflammatory response and cycles of tissue damage and repair. The inflammation-associated cycles of tissue damage and repair are intimately involved in the development of asbestos-associated cancers. Macrophages are a key component of asbestos-associated inflammation and play essential roles in the etiology of a variety of cancers. Macrophages are also a source of C-C motif chemokine ligand 2 (CCL2), and a variety of tumor-types express CCL2. High levels of CCL2 are present in the pleural effusions of mesothelioma patients, however, CCL2 has not been examined in the serum of mesothelioma patients. METHODS The present study was carried out with 50 MPM patients and 356 subjects who were possibly exposed to asbestos but did not have disease symptoms and 41 healthy volunteers without a history of exposure to asbestos. The levels of CCL2 in the serum of the study participants was determined using ELISA. RESULTS Levels of CCL2 were significantly elevated in the serum of patients with advanced MPM. CONCLUSIONS Our findings are consistent with the premise that the CCL2/CCR2 axis and myeloid-derived cells play an important role in MPM and disease progression. Therapies are being developed that target CCL2/CCR2 and tumor resident myeloid cells, and clinical trials are being pursued that use these therapies as part of the treatment regimen. The results of trials with patients with a similar serum CCL2 pattern as MPM patients will have important implications for the treatment of MPM.
Collapse
Affiliation(s)
- Takumi Kishimoto
- Japan Organization of Occupational Health and Safety, Research Center for Asbestos-related Diseases, Okayama Rosai Hospital, Okayama, Japan
| | - Nobukazu Fujimoto
- Japan Organization of Occupational Health and Safety, Research Center for Asbestos-related Diseases, Okayama Rosai Hospital, Okayama, Japan
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toyonori Omori
- Department of Healthcare Policy and Management, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takako Yokoyama
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Munehiro Kato
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Ikuji Usami
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Masayuki Nishio
- Department of Respiratory Medicine, Daido Hospital, Nagoya, Japan
| | - Kosho Yoshikawa
- Department of Respiratory Medicine, Daido Hospital, Nagoya, Japan
| | - Takeshi Tokuyama
- Department of Internal Medicine, Saiseikai Chuwa Hospital, Sakurai, Nara, Japan
| | - Mouka Tamura
- Department of Internal Medicine, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Yoshifumi Yokoyama
- Department of Medicine and Physical Medicine and Rehabilitation, Nagoya City Koseiin Medical Welfare Center, Nagoya, Japan
| | - Ken Tsuboi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jiegou Xu
- Department of Immunology, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed Abdelgied
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - William T Alexander
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - David B Alexander
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Hiroyuki Tsuda
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
11
|
Mengos AE, Gastineau DA, Gustafson MP. The CD14 +HLA-DR lo/neg Monocyte: An Immunosuppressive Phenotype That Restrains Responses to Cancer Immunotherapy. Front Immunol 2019; 10:1147. [PMID: 31191529 PMCID: PMC6540944 DOI: 10.3389/fimmu.2019.01147] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recent successes in cancer immunotherapy have been tempered by sub-optimal clinical responses in the majority of patients. The impaired anti-tumor immune responses observed in these patients are likely a consequence of immune system dysfunction contributed to by a variety of factors that include, but are not limited to, diminished antigen presentation/detection, leukopenia, a coordinated network of immunosuppressive cell surface proteins, cytokines and cellular mediators. Monocytes that have diminished or no HLA-DR expression, called CD14+HLA-DRlo/neg monocytes, have emerged as important mediators of tumor-induced immunosuppression. These cells have been grouped into a larger class of suppressive cells called myeloid derived suppressor cells (MDSCs) and are commonly referred to as monocytic myeloid derived suppressor cells. CD14+HLA-DRlo/neg monocytes were first characterized in patients with sepsis and were shown to regulate the transition from the inflammatory state to immune suppression, ultimately leading to immune paralysis. These immunosuppressive monocytes have also recently been shown to negatively affect responses to PD-1 and CTLA-4 checkpoint inhibition, CAR-T cell therapy, cancer vaccines, and hematopoietic stem cell transplantation. Ultimately, the goal is to understand the role of these cells in the context of immunosuppression not only to facilitate the development of targeted therapies to circumvent their effects, but also to potentially use them as a biomarker for understanding disparate responses to immunotherapeutic regimens. Practical aspects to be explored for development of CD14+HLA-DRlo/neg monocyte detection in patients are the standardization of flow cytometric gating methods to assess HLA-DR expression, an appropriate quantitation method, test sample type, and processing guidances. Once detection methods are established that yield consistently reproducible results, then further progress can be made toward understanding the role of CD14+HLA-DRlo/neg monocytes in the immunosuppressive state.
Collapse
Affiliation(s)
- April E Mengos
- Nyberg Human Cellular Therapy Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| | - Dennis A Gastineau
- Nyberg Human Cellular Therapy Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| | - Michael P Gustafson
- Nyberg Human Cellular Therapy Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
12
|
Okła K, Czerwonka A, Wawruszak A, Bobiński M, Bilska M, Tarkowski R, Bednarek W, Wertel I, Kotarski J. Clinical Relevance and Immunosuppressive Pattern of Circulating and Infiltrating Subsets of Myeloid-Derived Suppressor Cells (MDSCs) in Epithelial Ovarian Cancer. Front Immunol 2019; 10:691. [PMID: 31001284 PMCID: PMC6456713 DOI: 10.3389/fimmu.2019.00691] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expansion is a hallmark of cancer. Three major MDSC subsets defined as monocytic (M)-MDSCs, polymorphonuclear (PMN)-MDSCs and early stage (e)MDSCs can be revealed in human diseases. However, the clinical relevance and immunosupressive pattern of these cells in epithelial ovarian cancer (EOC) are unknown. Therefore, we performed a comprehensive analysis of each MDSC subset and immunosupressive factors in the peripheral blood (PB), peritoneal fluid (PF), and the tumor tissue (TT) samples from EOC and integrated this data with the patients' clinicopathological characteristic. MDSCs were analyzed using multicolor flow cytometry. Immunosuppressive factors analysis was performed with ELISA and qRT-PCR. The level of M-MDSCs in the PB/PF/TT of EOC was significantly higher than in healthy donors (HD); frequency of PMN-MDSCs was significantly greater in the TT than in the PB/PF and HD; while the level of eMDSCs was greater in the PB compared with the PF and HD. Elevated abundance of tumor-infiltrating M-MDSCs was associated with advanced stage and high grade of EOC. An analysis of immunosuppressive pattern showed significantly increased blood-circulating ARG/IDO/IL-10-expressing M- and PMN-MDSCs in the EOC patients compared with HD and differences in the accumulation of these subsets in the three tumor immune microenvironments (TIME). This accumulation was positively correlated with levels of TGF-β and ARG1 in the plasma and PF. Low level of blood-circulating and tumor-infiltrating M-MDSCs, but neither PMN-MDSCs nor eMDSCs was strongly associated with prolonged survival in ovarian cancer patients. Our results highlight M-MDSCs as the subset with potential the highest clinical significance.
Collapse
Affiliation(s)
- Karolina Okła
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Virology and Immunology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Marcin Bobiński
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Monika Bilska
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Rafał Tarkowski
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Wiesława Bednarek
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Iwona Wertel
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland.,Tumor Immunology Laboratory, Medical University of Lublin, Lublin, Poland
| | - Jan Kotarski
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|