1
|
Silva Paz RJ, Sancho AM, Vaudagna SR, Szerman N. Thermal-assisted pressure processing: effects of marination, temperature, and pressure level on physicochemical, color and textural parameters of Superficial pectoralis beef muscle. J Food Sci 2025; 90:e17627. [PMID: 39736102 DOI: 10.1111/1750-3841.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
This study aimed to evaluate the effects of salt addition and different thermal-assisted pressure processing (TAPP) conditions (temperature and pressure levels) on technological, chromatic, and textural parameters and lipid oxidation of Superficial pectoralis beef muscle. A factorial design with three factors was applied: KCl/NaCl marination (marinated samples MS; non-marinated samples, NMS), temperature during high-pressure processing (50, 70°C), and pressure level (0.1, 200, and 300 MPa). All factors affect the water-holding capacity of beef, which is important to ensure both high yields and optimal tenderness and juiciness in the final product. MS treated at 50°C had the highest yield values, regardless of applied pressure level. TAPP modified the color parameter values of raw samples, resulting in brighter and less reddish. After cooking, color differences remained, indicating that this process did not fully reverse the changes induced by TAPP treatments. MS had lower shear force values than NMS. The presence of salts slightly diminished shear force values. A similar texture profile was obtained for NMS treated at 70°C and 300 MPa and MS treated at 50°C and 200 MPa. NMS and MS treated at 70°C and 0.1 MPa had the highest thiobarbituric acid reactive substance values. Based on the results, marinated samples treated at 200 MPa and 50°C were selected for treatment. TAPP could be an innovative technology for the development of value-added beef products with assured texture. PRACTICAL APPLICATION: Beef tenderness is an essential attribute in consumer satisfaction and purchase decisions. However, several factors affect tenderness, such as the amount of connective tissue, muscle contraction in rigor mortis, and proteolysis. The development of ready-to-cook products with guaranteed tenderness by applying thermally assisted pressure processing would benefit both the industry and consumers.
Collapse
Affiliation(s)
| | - Ana Maria Sancho
- Facultad Agronomía y Ciencias Agroalimentarias, Universidad de Morón, Buenos Aires, Argentina
| | - Sergio Ramón Vaudagna
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Buenos Aires, Argentina
- Instituto de Ciencia y Tecnología de los Sistemas Alimentarios Sustentables (ICyTeSAS), UEDD INTA-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Szerman
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto Tecnología de Alimentos, Buenos Aires, Argentina
- Instituto de Ciencia y Tecnología de los Sistemas Alimentarios Sustentables (ICyTeSAS), UEDD INTA-CONICET, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Günal-Köroğlu D, Yılmaz H, Gultekin Subasi B, Capanoglu E. Protein oxidation: The effect of different preservation methods or phenolic additives during chilled and frozen storage of meat/meat products. Food Res Int 2025; 200:115378. [PMID: 39779159 DOI: 10.1016/j.foodres.2024.115378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear. This review comprehensively explores the impact of various preservation techniques, including high hydrostatic pressure (HHP), irradiation (IR), and modified atmosphere packaging (MAP), on protein oxidation during chilled or frozen storage of meat products. While these techniques have shown promising results in extending shelf-life, their effects on protein oxidation are dose-dependent and must be carefully controlled to maintain product quality. Preservation techniques involving the use of phenolic additives have demonstrated synergistic effects in mitigating protein oxidation during storage. Notably, natural phenolic additives have shown comparable efficacy compared to artificial antioxidants. Additionally, incorporating phenolic additives into bio-edible films has shown promise in combating protein oxidation.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| | - Hilal Yılmaz
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Türkiye.
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye.
| |
Collapse
|
3
|
Li M, Zhang X, Yin Y, Li J, Qu C, Liu L, Zhang Y, Zhu Q, Wang S. Perspective of sodium reduction based on endogenous proteases via the strategy of sodium replacement in conjunction with mediated-curing. Crit Rev Food Sci Nutr 2024; 64:9353-9364. [PMID: 37216477 DOI: 10.1080/10408398.2023.2212287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
NaCl is the main curing agent in dry-cured meat products, and a large amount of NaCl addition leads to high salt content of final products. Salt content and composition are important factors affecting the activity of endogenous proteases, which in turn could affect proteolysis as well as the quality of dry-cured meat products. With the increasing emphasis on the relationship between diet and health, reducing sodium content without sacrificing quality and safety of products is a great challenge for dry-cured meat industry. In this review, the change of endogenous proteases activity during processing, the potential relationship between sodium reduction strategy, endogenous proteases activity, and quality were summarized and discussed. The results showed that sodium replacement strategy and mediated-curing had a complementary advantage in influencing endogenous proteases activity. In addition, mediated-curing had the potential to salvage the negative effects of sodium substitution by affecting endogenous proteases. Based on the results, a sodium reduction strategy that sodium replacement in conjunction with mediated-curing based on endogenous proteases was proposed for the future perspective.
Collapse
Affiliation(s)
- Mingming Li
- China Meat Research Center, Beijing, China
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Xin Zhang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Yantao Yin
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Jiapeng Li
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Chao Qu
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| | - Linggao Liu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | | | - Qiujin Zhu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Shouwei Wang
- China Meat Research Center, Beijing, China
- Beijing Academy of Food Sciences, Beijing, China
| |
Collapse
|
4
|
Sidirokastritis ND, Vareltzis P. Matrix effect on the Effectiveness of High Hydrostatic Pressure Treatment on Antibiotic Residues. J Food Prot 2024; 87:100278. [PMID: 38631420 DOI: 10.1016/j.jfp.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The use of antibiotics in agriculture and livestock poses health risks to consumers. Treatments such as High Hydrostatic Pressure (HHP) have been shown to reduce antibiotic and pesticide residues in food. This study aims to investigate the matrix effect on the effectiveness of HHP on hydrochloride tetracycline (HTC) and sulfathiazole (STZ) residues in spiked food matrices. The effect of viscosity, as well as carbohydrate, protein, and fat content on the effectiveness of HHP on antibiotic residues, was investigated. The studied matrices were full-fat and fat-free bovine milk and model food systems consisting of aqueous solutions of sugars, aqueous solutions of proteins, and oil in water emulsions. Model food systems were also used to study the viscosity effect. These systems consisted of aqueous solutions of honey, aqueous solutions of apple puree, and aqueous solutions of glycerol. The HHP processing (580 MPa, 6 min, 25 °C) took place under industrial conditions. For both antibiotics, the concentration of sugars and proteins was found to affect the effectiveness of treatment. The concentration of oils affected treatment efficacy only for HTC. Reduction of antibiotics by HHP was also affected by the type of carbohydrate and the viscosity. In conclusion, the composition and the viscosity of the food matrix exert a variable effect on the studied antibiotic residues reduction by HHP indicating different underlying mechanisms of the interactions between food constituents and antibiotics under the same process conditions.
Collapse
Affiliation(s)
- Nikolaos D Sidirokastritis
- Laboratory of Food Industries and Agricultural Industries Technology, Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Patroklos Vareltzis
- Laboratory of Food Industries and Agricultural Industries Technology, Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Kim H, Lee J, Jeong S, Lee S, Hong GP. Effect of high pressure pretreatment on the inhibition of ice nucleation and biochemical changes in pork loins during supercooling preservation. Meat Sci 2024; 208:109393. [PMID: 37979345 DOI: 10.1016/j.meatsci.2023.109393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In this study, the effect of high pressure (HP) pretreatment on the stability of pork loins during supercooling (SC) preservation was investigated, and the freshness and postmortem metabolism of pork loins preserved by SC was evaluated. Based on the differential scanning calorimetry (DSC), the peak enthalpies of 200 MPa treatment were lower than those of 50 MPa treatment (P < 0.05). For the nuclear magnetic resonance (NMR) relaxometry, extramyofibrillar water in pork loins was decreased with increasing intermyofibrillar water at >100 MPa (P < 0.05). Compared to unpressurized control all HP treatment had less α-helix structure while random coil was dominated from the Fourier transform infrared (FTIR) spectroscopy (P < 0.05). A 200 MPa was selected to estimate the relationship between HP pretreatment and stability of SC preservation of pork loins. The HP-treated pork loins showed high stability during SC preservation under the relatively low temperature algorithm. Compared to fresh control, HP pretreatment caused physicochemical changes of pork loins which did not recover even after 2 weeks of preservation. Nevertheless, HP followed by SC preservation was able to reduce property changes better than pork loins preserved by normal refrigeration. According to the analyses of transmission electron microscopy (TEM), the HP pretreatment influenced the postmortem biochemical metabolism of pork loins, however, it did not affect the freshness and quality parameters of pork loins due to the subsequently applied low preservation temperature of SC. Therefore, this study demonstrated that moderate HP pretreatment was a potential pretreatment for SC preservation of pork loins.
Collapse
Affiliation(s)
- Honggyun Kim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Jiseon Lee
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Sungmin Jeong
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Suyong Lee
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea
| | - Geun-Pyo Hong
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
6
|
High-pressure processing and modified atmosphere packaging combinations for the improvement of dark, firm, and dry beef quality and shelf-life. Meat Sci 2023; 198:109113. [PMID: 36681061 DOI: 10.1016/j.meatsci.2023.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This study investigated the effects of high-pressure processing (HPP) and modified atmosphere packaging (MAP) on 'dark, firm, and dry' (DFD) beef. To optimize the HPP, beef steaks (n = 180) were first processed at different pressures (0.1, 200, 300, 400, 500 MPa). It was found that 400 MPa enhanced DFD beef color and shelf-life. This optimized HPP (400 MPa) was combined with 3 MAP formulations, in a second study (40, 60, or 80% O2-MAP), to determine their effect on DFD beef steaks. HPP (400 MPa) combined with MAP improved DFD beef L* and a*, color scores, and delayed discoloration (P < 0.01). Total plate counts for DFD beef held under 60% O2-MAP was ≤6 log10 CFU/g, even after 14 d of chilled storage. These same samples had shear force and TBARS values significantly lower than observed for DFD beef held under 80% O2-MAP. HPP (400 MPa) combined with 60% O2-MAP is recommended to improve DFD beef quality and shelf-life.
Collapse
|
7
|
Hu S, Xu X, Zhang W, Li C, Zhou G. Quality Control of Jinhua Ham from the Influence between Proteases Activities and Processing Parameters: A Review. Foods 2023; 12:foods12071454. [PMID: 37048273 PMCID: PMC10094101 DOI: 10.3390/foods12071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
Endogenous proteases are significant for Jinhua ham quality. Protein degradation affects the chemical traits, texture and the formation of flavor substances. Protease activities are affected by different process parameters, such as processing temperature, maturation time, salt content and the drying rate. They affect ham quality, which can be controlled by process parameters. The influences of key factors on Jinhua ham quality are briefly summarized, which can provide a theoretical basis for the selection of specific parameters in dry-cured ham processing. Furthermore, some suggestions are proposed for correcting and improving the flavor and textural defects of ham, yet the effectiveness depends on the operating conditions. The determination of enzyme activity is not real-time and unsupervised at the moment. Future research will focus on the determination of the actual endogenous protease activity and the quantitative relationship between the enzyme activity and main processing parameters.
Collapse
Affiliation(s)
- Shiqi Hu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Gong H, Liu J, Wang L, You L, Yang K, Ma J, Sun W. Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives. Crit Rev Food Sci Nutr 2022; 64:4202-4218. [PMID: 36305316 DOI: 10.1080/10408398.2022.2139660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Myofibrillar protein (MP), as the main meat protein, have high nutritional value. However, the relatively poor solubility of MP at low ionic strength sometimes limits the utilization of MP to produce products rich in meat protein. Accordingly, appropriate modification of MP is needed to improve their functional properties. In general, MP modification strategies are categorized into biochemical and physical approaches. Different from other available reviews, the review focuses on summarizing the principles and applications of several techniques of physical modification, briefly depicting biochemical modification as a comparison. Modification of MP with a certain intensity of direct current magnetic field, ultrasound, high pressure, microwave, or radio frequency can improve solubility, emulsification, stability, and gel formation. Of these, magnetic field and microwave-modified MP have shown some potential in reducing salt in meat. These physical techniques can also have synergistic effects with other conditions (temperature, pH, physical or chemical techniques) to compensate for the deficiencies of individual treatment techniques. However, these strategies still need further research for practical applications.HIGHLIGHTSThe current status and findings of research on direct current magnetic field in meat processing are presented.Several physical strategies to modify the microstructure and functional properties of MPs.The synergistic effects of these techniques in combination with other methods to modify MPs are discussed.
Collapse
Affiliation(s)
- Honghong Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jiao Liu
- College of Life Science, South-Central MinZu University, Wuhan, P. R. China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
9
|
Nuygen M, Arvaj L, Balamurugan S. The use of high pressure processing to compensate for the effects of salt reduction in ready-to-eat meat products. Crit Rev Food Sci Nutr 2022; 64:2533-2547. [PMID: 36106480 DOI: 10.1080/10408398.2022.2124398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sodium chloride is an essential ingredient in meat products, where it is not only used as a flavoring agent but also to achieve desired textural properties and as an antimicrobial to improve its safety and extend shelf-life. Although NaCl plays this multi-functional role in meat products, excessive sodium intake is linked to various negative health consequences such as cardiovascular disease and obesity. Sodium chloride added to ready-to-eat meat products is the largest contributor of sodium. Thus, there is an increased interest in the development of meat products with reduced sodium levels. Strategies to reduce sodium include identification of alternatives to sodium, considering safety and functionality, and including technological innovations and alternative food processing strategies. Several studies have shown that high pressure processing (HPP) can partially compensate for the loss in functional and sensory properties of meat products as a result of NaCl reduction. This review summarizes these studies to date and will highlight the ability of HPP to enhance the safety, shelf-life and quality of sodium-reduced meat products.
Collapse
Affiliation(s)
- Melina Nuygen
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, Ontario, Canada
- Biomedical Toxicology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Laura Arvaj
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, Ontario, Canada
| | - S Balamurugan
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Akhtar J, Abrha MG. Pressurization technique: principles and impact on quality of meat and meat products. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2068507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Javeed Akhtar
- Department of Chemical Engineering, College of Engineering and Technology, Adigrat University, Adigrat, Ethiopia
| | - Mebrhit Gebremariam Abrha
- Department of Chemical Engineering, College of Engineering and Technology, Adigrat University, Adigrat, Ethiopia
| |
Collapse
|
11
|
Effect of Partial Substitution of Sodium Chloride (NaCl) with Potassium Chloride (KCl) Coupled with High-Pressure Processing (HPP) on Physicochemical Properties and Volatile Compounds of Beef Sausage under Cold Storage at 4 °C. Processes (Basel) 2022. [DOI: 10.3390/pr10020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
This study aimed to evaluate the effects of partial substitution of sodium chloride (NaCl) with potassium chloride (KCl) in combination with high-pressure processing (HPP) on the physicochemical properties and volatile compounds of beef sausage during cold storage at 4 °C. Significant differences were found in the volatile compounds of beef sausages with 0%, 25%, and 50% NaCl contents partially substituted with KCl subjected to 28 days of storage and were well-visualized by heat map analysis. A total of 75 volatile compounds were identified and quantified in the beef sausages at the end of 28 days of storage, including 12 aldehydes, 4 phenols, 2 ketones, 18 alcohols, 8 acids, 3 esters, 14 terpenes, and 14 alkanes. Thirteen compounds had low odor activity values (OAV) (OAV < 1); however, high OAV (OAV > 1) were obtained after partial substitution of NaCl by KCl at 25% and 50% with HPP treatment compared to the non-HPP treated samples. In addition, 50% NaCl substitution with KCl in conjunction with HPP treatments increased thiobarbituric acid reactive substances (TBARS) by (0.46 ± 0.03 mg/MDA) compared with no HPP treatments. Replacement of 25% and 50% NaCl with KCl decreased TBARS by an average of 10.8% and 11.10%, respectively, compared to 100% NaCl coupled with HPP beef sausages. In summary, HPP and partial substitution of NaCl with KCl at 25% and 50% can be used to compensate for the reduction of NaCl in beef sausage by keeping the physical and flavor fraction at required levels.
Collapse
|
12
|
Janardhanan R, Virseda P, Huerta-Leidenz N, Beriain MJ. Effect of high–hydrostatic pressure processing and sous-vide cooking on physicochemical traits of Biceps femoris veal patties. Meat Sci 2022; 188:108772. [DOI: 10.1016/j.meatsci.2022.108772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 10/19/2022]
|
13
|
Zheng HB, Xu BC, Xu XL, Li C, Bolumar T, Zhen ZY. Gelation of chicken batters during heating under high pressure. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Rajendran S, Mallikarjunan PK, O’Neill E. High pressure processing for raw meat in combination with other treatments: A review. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sasireka Rajendran
- Department of Food Process Engineering Tamil Nadu Agricultural University Coimbatore India
| | | | | |
Collapse
|
15
|
The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Warner RD, Wheeler TL, Ha M, Li X, Bekhit AED, Morton J, Vaskoska R, Dunshea FR, Liu R, Purslow P, Zhang W. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci 2021; 185:108657. [PMID: 34998162 DOI: 10.1016/j.meatsci.2021.108657] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including their potential commercial application. Continued success of the meat industry relies on ongoing advances in our understanding, and in industry innovation. The recent advances in fundamental and applied research on meat tenderness in relation to the various sectors of the supply chain will enable such innovation.
Collapse
Affiliation(s)
- Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - James Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Rozita Vaskoska
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rui Liu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Peter Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Zhou Y, Watkins P, Oiseth S, Cochet-Broch M, Sikes AL, Chen C, Buckow R. High pressure processing improves the sensory quality of sodium-reduced chicken sausage formulated with three anion types of potassium salt. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhou CY, Pan DD, Cao JX, Zhou GH. A comprehensive review on molecular mechanism of defective dry-cured ham with excessive pastiness, adhesiveness, and bitterness by proteomics insights. Compr Rev Food Sci Food Saf 2021; 20:3838-3857. [PMID: 34118135 DOI: 10.1111/1541-4337.12779] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 02/01/2023]
Abstract
Excessive bitterness, pastiness, and adhesiveness are the main organoleptic and textural defects of dry-cured ham, which often cause a lot of financial losses to manufacturers and seriously damage the quality of the product. These sensory and textural defects are related to the protein degradation of dry-cured ham. Proteomics shows great potential to improve our understanding of the molecular mechanism of sensory and textural defects and identify biomarkers for monitoring their quality traits. This review presents some of the major achievements and considerations in organoleptic and textural defects of dry-cured ham by proteomics analysis in the recent decades and gives an overview about how to correct sensory and textural defects of dry-cured ham. Proteomics reveals that muscle proteins derived from myofibril and cytoskeleton and involved in metabolic enzymes and oxygen transport have been identified as potential biomarkers in defective dry-cured ham. Relatively high residual activities of cathepsin B and L are responsible for the excessive degradation of these protein biomarkers in defective dry-cured ham. Ultrasound-assisted mild thermal or high-pressure treatment shows a good correction for the organoleptic and textural defects of dry-cured ham by changing microstructure and conformation of muscle proteins by accelerating degradation of proteins and polypeptides into free amino acids.
Collapse
Affiliation(s)
- Chang-Yu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, P.R. China
| | - Dao-Dong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Jin-Xuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food & Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Guang-Hong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing Agricultural University, Nanjing, P.R. China.,Key Laboratory of Meat Processing, MOA, Nanjing Agricultural University, Nanjing, P.R. China.,Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
19
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
20
|
Effect of high pressure processing, allyl isothiocyanate, and acetic acid stresses on Salmonella survivals, storage, and appearance color in raw ground chicken meat. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
21
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Lee S, Choi YS, Jo K, Yong HI, Jeong HG, Jung S. Improvement of meat protein digestibility in infants and the elderly. Food Chem 2021; 356:129707. [PMID: 33873143 DOI: 10.1016/j.foodchem.2021.129707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Meat is a valuable protein source with a balanced composition of essential amino acids and various nutrients. This review aims to identify methods to improve digestion of meat proteins, as well as evaluate the digestive characteristics of infants and the elderly. Immature digestive conditions in infants, including a high gastric pH and low protease concentration, can hinder protein digestion, thus resulting in inhibited growth and development. Likewise, gastrointestinal (GI) tract aging and chronic health problems, including tooth loss and atrophic gastritis, can lead to reduction in protein digestion and absorption in the elderly compared with those in young adults. Moderate heating and several non-thermal technologies, such as aging, enzymatic hydrolysis, ultrasound, high-pressure processing, and pulsed electric field can alter protein structure and improve protein digestion in individuals with low digestive capacity.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
23
|
Kang ZL, Lu F, Li YP, Wang CY. Effects of high pressure and thermal combinations on gel properties and water distribution of pork batters. Journal of Food Science and Technology 2021; 58:3243-3249. [PMID: 34294987 DOI: 10.1007/s13197-021-05051-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
The effects of high pressure (100-500 MPa) and heated (80 °C, 25 min) combinations on gel properties, rheological characteristic and water distribution of pork batters were investigated. Compared to the only-heat, the cooking yield, a* value, hardness, cohesiveness, and chewiness of cooked pork batters treated less than 300 MPa were significantly increased (P < 0.05), meanwhile, the b* value was significantly decreased (P < 0.05). Opposite, the color and cooking yield were not significant different (P > 0.05) when over 300 MPa, except the L* value. At 300 MPa, the cooking yield, hardness, chewiness, and G' value at 80 °C of pork batter were the highest. The initial relaxation time of T21 was decreased significantly (P < 0.05), and the peak ration of P21 was increased significantly (P < 0.05) when treated at 200 and 300 MPa, that indicated the water was bound tightly and the ratio of immobilized water was increased. Overall, 300 MPa treatment and thermal combinations could improve the gel properties of pork batters.
Collapse
Affiliation(s)
- Zhuang-Li Kang
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 People's Republic of China
| | - Fei Lu
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Yan-Ping Li
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,Sumy National Agrarian University, Sumy, Ukraine
| | - Chun-Yan Wang
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 People's Republic of China
| |
Collapse
|
24
|
Bolumar T, Orlien V, Sikes A, Aganovic K, Bak KH, Guyon C, Stübler AS, de Lamballerie M, Hertel C, Brüggemann DA. High-pressure processing of meat: Molecular impacts and industrial applications. Compr Rev Food Sci Food Saf 2020; 20:332-368. [PMID: 33443800 DOI: 10.1111/1541-4337.12670] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
High-pressure processing (HPP) has been the most adopted nonthermal processing technology in the food industry with a current ever-growing implementation, and meat products represent about a quarter of the HPP foods. The intensive research conducted in the last decades has described the molecular impacts of HPP on microorganisms and endogenous meat components such as structural proteins, enzyme activities, myoglobin and meat color chemistry, and lipids, resulting in the characterization of the mechanisms responsible for most of the texture, color, and oxidative changes observed when meat is submitted to HPP. These molecular mechanisms with major effect on the safety and quality of muscle foods are comprehensively reviewed. The understanding of the high pressure-induced molecular impacts has permitted a directed use of the HPP technology, and nowadays, HPP is applied as a cold pasteurization method to inactive vegetative spoilage and pathogenic microorganisms in ready-to-eat cold cuts and to extend shelf life, allowing the reduction of food waste and the gain of market boundaries in a globalized economy. Yet, other applications of HPP have been explored in detail, namely, its use for meat tenderization and for structure formation in the manufacturing of processed meats, though these two practices have scarcely been taken up by industry. This review condenses the most pertinent-related knowledge that can unlock the utilization of these two mainstream transformation processes of meat and facilitate the development of healthier clean label processed meats and a rapid method for achieving sous vide tenderness. Finally, scientific and technological challenges still to be overcome are discussed in order to leverage the development of innovative applications using HPP technology for the future meat industry.
Collapse
Affiliation(s)
- Tomas Bolumar
- Department of Safety and Quality of Meat, Meat Technology, Max Rubner Institute (MRI), Kulmbach, Germany
| | - Vibeke Orlien
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Anita Sikes
- Department of Agriculture and Food, Commonwealth for Scientific and Industrial Research Organization (CSIRO), Brisbane, Australia
| | - Kemal Aganovic
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Kathrine H Bak
- Department of Food Technology and Veterinary Public Health, Institute of Food Safety, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claire Guyon
- Food Science and Engineering (ONIRIS), Nantes-Atlantic National College of Veterinary Medicine, Nantes, France
| | - Anna-Sophie Stübler
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Marie de Lamballerie
- Food Science and Engineering (ONIRIS), Nantes-Atlantic National College of Veterinary Medicine, Nantes, France
| | - Christian Hertel
- Advanced Technologies, German Institute of Food Technologies (DIL), Quakenbrück, Germany
| | - Dagmar A Brüggemann
- Department of Safety and Quality of Meat, Meat Technology, Max Rubner Institute (MRI), Kulmbach, Germany
| |
Collapse
|
25
|
Hyperbaric Storage Effect on Enzyme Activity and Texture Characteristics of Raw Meat. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Pizarro-Oteíza S, Briones-Labarca V, Pérez-Won M, Uribe E, Lemus-Mondaca R, Cañas-Sarazúa R, Tabilo-Munizaga G. Enzymatic impregnation by high hydrostatic pressure as pretreatment for the tenderization process of Chilean abalone (Concholepas concholepas). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Li H, Sun X, Liao X, Gänzle M. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Compr Rev Food Sci Food Saf 2020; 19:3476-3500. [PMID: 33337070 DOI: 10.1111/1541-4337.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 01/18/2023]
Abstract
High-pressure processing is among the most widely used nonthermal intervention to reduce pathogenic and spoilage bacteria in meat and meat products. However, resistance of pathogenic bacteria strains in meats at the current maximum commercial equipment of 600 MPa questions the ability of inactivation by its application in meats. Pathogens including Escherichia coli, Listeria, and Salmonelle, and spoilage microbiota including lactic acid bacteria dominate in raw meat, ready-to-eat, and packaged meat products. Improved understanding on the mechanisms of the pressure resistance is needed for optimizing the conditions of pressure treatment to effectively decontaminate harmful bacteria. Effective control of the pressure-resistant pathogens and spoilage organisms in meats can be realized by the combination of high pressure with application of mild temperature and/or other hurdles including antimicrobial agents and/or competitive microbiota. This review summarized applications, mechanisms, and challenges of high pressure on meats from the perspective of microbiology, which are important for improving the understanding and optimizing the conditions of pressure treatment in the future.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
28
|
Hou R, Liu Y, Li W, Zhao W, Wang C, Li Y, Yan Q, Zhu W, Dong J. Effect of high pressure processing on the microstructure, myofibrillar protein oxidation, and volatile compounds of sauce lamb tripe. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this study, sauce lamb tripe was used as the research object. High pressure processing (HPP) was carried out at 100, 250, and 400 MPa, with holding times of 5, 10, 15, 20, and 25 min at 25 °C, respectively. The effects of HPP on the microstructure and volatile compound content of sauce lamb tripe and the properties of myofibrillar protein were studied. The degree of protein oxidation was most significant at 400 MPa for 25 min. The secondary structure of myofibrillar protein became unstable and the microstructure of the sauce lamb tripe became loose at 400 MPa. The retention of hydrocarbons, aldehydes, alcohols, and ketones was maximum at 250 MPa for 15 min, and the flavor-contributing compound (3-Hydroxy-2-butanone) was also retained by 11.9% on ketones at 250 MPa for 15 min. The results showed that myofibrillar protein was appropriately oxidized; the sauce lamb tripe had better microstructure and several representative volatile compounds after HPP. Therefore, better processing conditions for sauce lamb tripe were 250 MPa for 15 min.
Collapse
Affiliation(s)
- Ran Hou
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yangming Liu
- College of Food, Shihezi University, Shihezi 832000, China
| | - Wenhui Li
- College of Food, Shihezi University, Shihezi 832000, China
| | - Wei Zhao
- College of Food, Jiangnan University, Wuxi 214122, China
| | - Chunyan Wang
- College of Food, Shihezi University, Shihezi 832000, China
| | - Yingbiao Li
- College of Food, Shihezi University, Shihezi 832000, China
| | - Qingqing Yan
- College of Food, Shihezi University, Shihezi 832000, China
| | - Weichao Zhu
- College of Food, Shihezi University, Shihezi 832000, China
| | - Juan Dong
- College of Food, Shihezi University, Shihezi 832000, China
| |
Collapse
|
29
|
Truong BQ, Buckow R, Nguyen M. Mechanical and Functional Properties of Unwashed Barramundi ( Lates calcarifer) Gels as Affected by High-Pressure Processing at three Different Temperatures and Salt Concentrations. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1739792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Binh Quang Truong
- Faculty of Fisheries, Nong Lam University, Ho Chi Minh, Vietnam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Roman Buckow
- Commonwealth Scientific and Industrial Research Organisation, Food and Nutrition, Canberra, Australia
| | - Minh Nguyen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
- School of Science and Health, Western Sydney University, Sydney, Australia
| |
Collapse
|
30
|
Mune Mune MA, Stănciuc N, Grigore-Gurgu L, Aprodu I, Borda D. Structural changes induced by high pressure processing in Bambara bean proteins at different pH. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Panea B, Albertí P, Ripoll G. Effect of High Pressure, Calcium Chloride and ZnO-Ag Nanoparticles on Beef Color and Shear Stress. Foods 2020; 9:E179. [PMID: 32059388 PMCID: PMC7074284 DOI: 10.3390/foods9020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/21/2022] Open
Abstract
This study investigates how the use of a combination of high-pressure treatment, steak marination and active packaging influences beef color and shear stress. A 2 × 2 × 2 × 3 factorial design was applied, including pressure, marination, packaging and storage time. Many significant interactions among factors were found, but the effects of pressure and marination were so high that the effect of packaging was almost undetectable. Independent of storage type, pressurized treatments presented higher values for both L* and hab than unpressurized treatments, and independent of pressure application, the increase in L* and hab with storage time was higher for marinated treatments than for unmarinated treatments. In unpressurized samples, marination provoked an increase in L*, a* and hab and a decrease in Cab*, whereas in pressurized samples, marination had no effect on color. Pressurized samples always showed higher values for shear stress (on average 71% higher) than unpressurized samples.
Collapse
Affiliation(s)
- Begoña Panea
- Animal Production and Health Unit, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Avda. Montañana, 930, 50059 Zaragoza, Spain; (P.A.); (G.R.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza) Avda. Montañana, 930, 50059 Zaragoza, Spain
| | - Pere Albertí
- Animal Production and Health Unit, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Avda. Montañana, 930, 50059 Zaragoza, Spain; (P.A.); (G.R.)
| | - Guillermo Ripoll
- Animal Production and Health Unit, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Avda. Montañana, 930, 50059 Zaragoza, Spain; (P.A.); (G.R.)
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza) Avda. Montañana, 930, 50059 Zaragoza, Spain
| |
Collapse
|
32
|
Xue S, Wang C, Kim YHB, Bian G, Han M, Xu X, Zhou G. Application of high-pressure treatment improves the in vitro protein digestibility of gel-based meat product. Food Chem 2020; 306:125602. [DOI: 10.1016/j.foodchem.2019.125602] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022]
|
33
|
Hwang SI, Hong GP. Effects of high pressure in combination with the type of aging on the eating quality and biochemical changes in pork loin. Meat Sci 2019; 162:108028. [PMID: 31816519 DOI: 10.1016/j.meatsci.2019.108028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/30/2022]
Abstract
This study investigated the effects of high pressure (0.1, 150 and 400 MPa) and the aging method (wet- and dry-aging) on the quality characteristics of pork loin. Pork pressurized at the target pressure levels was aged at 1 °C for 3 weeks in vacuum packaging (wet-aging) or a moisture/vapor permeable bag (dry-aging). The water binding properties, shear force, color, volatile compounds and microbial counts were estimated as the quality characteristics of aged pork. Despite dry-aged pork having distinctive flavor characteristics, high moisture loss during aging was estimated as the most important factor that affected the quality of aged pork. Alternately, wet aging showed advantages of producing tender and juicy pork, and moderate pressurization (150 MPa) modified or improved the qualities of wet-aged pork. Consequently, this study indicated that pressurization followed by wet-aging had potential application as a meat tenderizing technique.
Collapse
Affiliation(s)
- Su-In Hwang
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
34
|
Wei LP, Li YP, Wang CY, Kang ZL, Ma HJ. Thermal gel properties and protein conformation of pork batters as affected by high pressure and temperature. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1657444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Li-Peng Wei
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Yan-Ping Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, PR China
- Food Technologies Faculty of Sumy National Agrarian University, Sumy, Ukraine
| | - Chun-Yan Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Zhuang-Li Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, PR China
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, PR China
| |
Collapse
|
35
|
Szerman N, Ferrari R, Sancho AM, Vaudagna S. Response surface methodology study on the effects of sodium chloride and sodium tripolyphosphate concentrations, pressure level and holding time on beef patties properties. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Zybert A, Tarczyński K, Sieczkowska H. A meta‐analysis of the effect of high pressure processing on four quality traits of fresh pork. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrzej Zybert
- Faculty of Natural Sciences, Department of Pig Breeding and Meat Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| | - Krystian Tarczyński
- Faculty of Natural Sciences, Department of Pig Breeding and Meat Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| | - Halina Sieczkowska
- Faculty of Natural Sciences, Department of Pig Breeding and Meat Science Siedlce University of Natural Sciences and Humanities Siedlce Poland
| |
Collapse
|
37
|
Investigation of the effects of high pressure processing on the process of rigor in pork. Meat Sci 2018; 145:455-460. [DOI: 10.1016/j.meatsci.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022]
|
38
|
Xue S, Qian C, Kim YHB, Xu X, Zhou G. High-pressure effects on myosin in relation to heat gelation: A micro-perspective study. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Huang CY, Sheen S, Sommers C, Sheen LY. Modeling the Survival of Escherichia coli O157:H7 Under Hydrostatic Pressure, Process Temperature, Time and Allyl Isothiocyanate Stresses in Ground Chicken Meat. Front Microbiol 2018; 9:1871. [PMID: 30154776 PMCID: PMC6102346 DOI: 10.3389/fmicb.2018.01871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (STEC) is a common contaminant in meat and poultry. We investigated the use of non-thermal high pressure processing (HPP), with or without allyl isothiocyanate (AITC) essential oil, to kill STEC in ground chicken meat. Temperature was found an important factor affecting the inactivation of STEC in addition to pressure and process time. A full factorial experiment design (4 factors × 2 levels) was used to facilitate and evaluate the effect of pressure (250–350 MPa), operation temperature (−15–4°C), AITC concentration (0.05–0.15%, w/w), and pressure-holding time (10–20 min) on the inactivation of STEC. A linear model (a polynomial equation) was developed to predict/describe those four parameters’ impact on E. coli O157:H7 survival (R2 = 0.90), as well as a dimensionless non-linear model. Both types of models were validated with data obtained from separate experimental points. The dimensionless model also demonstrated that it may predict the lethality (defined as the log CFU/g reduction of STEC before and after treatment) reasonably well with some factors set slightly outside the design ranges (e.g., a wider application than the linear model). The results provide important information regarding STEC survival as affected by HPP (e.g., pressure, time and temperature) and AITC. With the addition of AITC, the hydrostatic pressure may be lowered to the 250–350 MPa level. Regulatory agencies and food industry may use those models for STEC risk assessment in ground chicken meat. A storage test (at 4 and 10°C, 10 days) after HPP+AITC treatment indicated that AITC may continue depressing or killing the pressure-damaged cells.
Collapse
Affiliation(s)
- Chi-Yun Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Shiowshuh Sheen
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Christopher Sommers
- Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
High-Pressure Homogenization Pretreatment before Enzymolysis of Soy Protein Isolate: the Effect of Pressure Level on Aggregation and Structural Conformations of the Protein. Molecules 2018; 23:molecules23071775. [PMID: 30029493 PMCID: PMC6099614 DOI: 10.3390/molecules23071775] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/25/2022] Open
Abstract
The high-pressure homogenization (HPH) treatment of soybean protein isolate (SPI) before enzymatic hydrolysis using bromelain was investigated. Homogenization pressure and cycle effects were evaluated on the enzymatic degree of hydrolysis and the antioxidant activity of the hydrolysates generated. The antioxidant activity of SPI hydrolysates was analyzed by 1,1-dipheny-2-picrylhydrazyl (DPPH). The sizes and structures of the SPI-soluble aggregate after HPH treatment were analyzed using dynamic and static laser light scattering. The changes in the secondary structure, as measured by Fourier transform infrared spectroscopy (FTIR) and the macromorphology of SPI, were measured by scanning electron microscope (SEM). These results suggested that the HPH treatment (66.65%) could increase the antioxidant activities of the SPI hydrolysates compared with the control (54.18%). SPI hydrolysates treated at 20 MPa for four cycles obtained higher DPPH radical-scavenging activity than other samples. The control was predicted to be a hard sphere, and SPI treatment at 10 MPa was speculated to be Gaussian coil, polydisperse, and then the high-pressure treated SPI became a hollow sphere. Changes in the secondary structures showed protein aggregate formation and rearrangements. The image of SPI varied from a globular to a clump structure, as observed by the SEM. In conclusion, combining HPH treatment and enzymolysis could be an effective way to improve the antioxidant activity of the SPI.
Collapse
|
41
|
Gupta J, Bower CG, Cavender GA, Sullivan GA. Effectiveness of different myoglobin states to minimize high pressure induced discoloration in raw ground beef. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Potekhin SA. High-Pressure Scanning Microcalorimetry – A New Method for Studying Conformational and Phase Transitions. BIOCHEMISTRY (MOSCOW) 2018; 83:S134-S145. [DOI: 10.1134/s0006297918140110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Misiou O, van Nassau TJ, Lenz CA, Vogel RF. The preservation of Listeria -critical foods by a combination of endolysin and high hydrostatic pressure. Int J Food Microbiol 2018; 266:355-362. [DOI: 10.1016/j.ijfoodmicro.2017.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
|
44
|
Xue S, Xu X, Shan H, Wang H, Yang J, Zhou G. Effects of high-intensity ultrasound, high-pressure processing, and high-pressure homogenization on the physicochemical and functional properties of myofibrillar proteins. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Zheng HB, Han MY, Yang HJ, Xu XL, Zhou GH. The effect of pressure-assisted heating on the water holding capacity of chicken batters. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Warner R, McDonnell C, Bekhit A, Claus J, Vaskoska R, Sikes A, Dunshea F, Ha M. Systematic review of emerging and innovative technologies for meat tenderisation. Meat Sci 2017; 132:72-89. [DOI: 10.1016/j.meatsci.2017.04.241] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
|
47
|
Chen X, Tume RK, Xiong Y, Xu X, Zhou G, Chen C, Nishiumi T. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Crit Rev Food Sci Nutr 2017; 58:2981-3003. [DOI: 10.1080/10408398.2017.1347557] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xing Chen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Ronald Keith Tume
- Honorary Visiting Professor, Nanjing Agricultural University, Jiangsu, China
| | - Youling Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Conggui Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Tadayuki Nishiumi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
48
|
Wang K, Sun DW, Pu H, Wei Q. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Chen X, Tume RK, Xu X, Zhou G. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Crit Rev Food Sci Nutr 2017; 57:3260-3280. [DOI: 10.1080/10408398.2015.1110111] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Xing Chen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ron K. Tume
- Key Laboratory of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
50
|
Buckow R, Bingham J, Daglas S, Lowther S, Amos-Ritchie R, Middleton D. High pressure inactivation of selected avian viral pathogens in chicken meat homogenate. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|