1
|
Gao HX, Chen N, He Q, Zeng WC. A novel microemulsion loaded with Ligustrum robustum (Rxob.) Blume polyphenols: Preparation, characterization, and application. Food Chem 2025; 476:143495. [PMID: 39986085 DOI: 10.1016/j.foodchem.2025.143495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The low solubility of phenolic compounds in oils limits their protective effect on oil quality. In the present study, novel microemulsions were designed and prepared with Ligustrum robustum (Rxob.) Blume polyphenols extract (LRE) using soybean oil as the oil phase, a combination of Tween80 and Span80 as surfactants, and ethanol as the co-surfactant, and subsequently characterized and evaluated their properties and performance in oil. Results showed that the amount of LRE dissolved in prepared microemulsions could reach 0.025 g/g oil. According to the droplet size, rheology, differential scanning calorimetry, and transmission electron microscopy measurements, LRE had no negative effects on microemulsion structure and increased the particle size, viscosity, and interfacial strength of microemulsion. Moreover, LRE exhibited remarkable antioxidant activities, and the LRE-loaded microemulsions showed no obvious cytotoxicity on Caco-2 cells. Furthermore, the LRE-loaded microemulsions exhibited superior effectiveness in inhibiting oil oxidation during storage, compared to the direct addition of LRE. All results suggest that the microemulsion has the potential used as an embedded material for natural antioxidants in food industry.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Mehany T, González-Sáiz JM, Pizarro C. Hydroxytyrosol-Infused Extra Virgin Olive Oil: A Key to Minimizing Oxidation, Boosting Antioxidant Potential, and Enhancing Physicochemical Stability During Frying. Antioxidants (Basel) 2025; 14:368. [PMID: 40227391 PMCID: PMC11939150 DOI: 10.3390/antiox14030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
The current research aims to monitor the physicochemical changes in various varieties of extra virgin olive oils (EVOOs) supplemented with exogenous polyphenolic extract from olive fruit, enriched with hydroxytyrosol (HTyr) and its derivatives, compared to numerous refined olive oils, sunflower oil, and high oleic sunflower oil under different deep-frying conditions (170-210 °C for 3 to 6 h, with/without added HTyr. Acidity, K232, K270, ∆K, peroxide value (PV), anisidine value (AnV), TOTOX, refractive index (RI), carotenoids, chlorophyll, and antioxidant capacity using DPPH (2,2-diphenyl-1-picrylhydrazyl) approach were evaluated. The results show that EVOO varieties generally exhibit lower acidity and thermal degradation compared to refined olive oils, particularly when deep-fried at 170 °C for 3 h with exogenous HTyr (the best treatment). Royuela, Koroneiki, Empeltre, Manzanilla, and Arbosana EVOO varieties demonstrated lower K232 values (1.36, 1.67, 1.79, 1.82, and 1.81, respectively). Under optimal deep-frying conditions, all EVOO varieties fell within the standard K232 limit for EVOO (≤2.5), except for Cornicabra. Regarding K270, only Royuela (0.11) and Manzanilla (0.22) were below the standard limit of ≤0.22. These two varieties also exhibited the lowest ΔK values (0.00). The findings further revealed that Royuela, Koroneiki, and Manzanilla had the lowest TOTOX values, with 20.76, 23.38, and 23.85, respectively. Moreover, Koroneiki and Arbosana had the highest carotenoid ratios, with values of 17.5 mg/kg and 13.7 mg/kg, respectively. Koroneiki, Arbosana, and olive oil 1° also displayed the highest chlorophyll concentrations, with values of 50.2, 53.7, and 47.5 mg/kg, respectively. Furthermore, the findings from the best deep-frying treatment indicated that all olive oil categories exhibited high scavenging radical activity toward DPPH, even in refined olive oil categories and low-quality original olive oil due to the addition of HTyr. In conclusion, deep-fried EVOOs enriched with HTyr at 170 °C/3 h are thermally stable, exhibiting low hydrolysis, low oxidation, higher antioxidant potential, and stable chlorophyll and carotenoid levels. The addition of HTyr to deep-frying oils not only enhances the health benefits of EVOO, supporting EFSA health claims but also acts as a promising stabilizer for the olive oil industry, particularly under high-temperature processing conditions over prolonged periods. This highlights its potential for industrial use as a natural alternative to synthetic antioxidants, not only for olive oil but also for other edible oils, with practical applications in the food industry to improve the quality and stability of frying oils.
Collapse
Affiliation(s)
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain; (T.M.); (J.M.G.-S.)
| |
Collapse
|
3
|
Tokarczyk G, Bienkiewicz G, Biernacka P, Przybylska S, Sawicki W, Tabaszewska M. Effect of Frying Temperature on Lipid Binding, Fatty Acid Composition, and Nutritional Quality of Fish Crackers Prepared from Carp ( Ciprinus carpio L.) and Tapioca Starch ( Manihot esculentus). Molecules 2025; 30:1139. [PMID: 40076362 PMCID: PMC11901817 DOI: 10.3390/molecules30051139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Background: The growing consumption of snack foods such as chips driving demand for healthier, more nutritious alternatives. This study investigated the effect of frying temperature on oil absorption, oil binding capacity, and fatty acid composition of fish-based snacks made from a 1:1 ratio of tapioca starch and carp meat obtained after the separation of the remains of its industrial filleting. Methods: The snacks were deep-fried at 160 °C, 170 °C, and 180 °C, and analyzed for expansion, oil absorption, oil binding capacity, fatty acid profiles, and nutritional indices. Oxidation levels and free fatty acids were also measured, ensuring compliance with legal limits. Results: Deep-frying at 180 °C resulted in significantly higher snack expansion (95.20%) than the 50% expansion observed at 160 °C and 170 °C. However, snacks deep-fried at 180 °C absorbed the most oil (29.07%) and exhibited the lowest oil binding capacity (8.84%), whereas deep-frying at 160 °C and 170 °C led to oil binding capacities of 15.83% and 18.58%, respectively. Fatty acid profiles also showed temperature-dependent changes, with increased oil absorption reducing omega-3 to omega-6 ratios. Importantly, deep-frying for 45 s at all temperatures did not lead to excessive oxidation or free fatty acid levels beyond regulatory thresholds. Nutritional indices of the deep-fried product were comparable to those of vegetable oils, while before deep-frying, they resembled those of seafood products like shellfish and seaweed. Conclusions: While higher frying temperatures improve the texture and expansion of fish-based snacks, they also increase oil absorption and reduce oil binding. Based on these findings, deep-frying at 180 °C was suggested as the optimal condition to balance product texture, oil absorption, and nutritional quality, making the snacks a healthier alternative to conventional deep-fried products.
Collapse
Affiliation(s)
- Grzegorz Tokarczyk
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71-459 Szczecin, Poland; (G.T.); (S.P.)
| | - Grzegorz Bienkiewicz
- Department of Commodity Science, Quality Assessment, Process Engineering and Human Nutrition, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71-459 Szczecin, Poland;
| | - Patrycja Biernacka
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71-459 Szczecin, Poland; (G.T.); (S.P.)
| | - Sylwia Przybylska
- Department of Fish, Plant and Gastronomy Technology, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71-459 Szczecin, Poland; (G.T.); (S.P.)
| | - Wojciech Sawicki
- Department of Applied Microbiology and Physiology of Human Nutrition, West Pomeranian University of Technology in Szczecin, Papieża Pawła VI 3, 71-459 Szczecin, Poland;
| | - Małgorzata Tabaszewska
- Department of Plant Products Technology and Nutrition Hygiene, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego Street 24, 71-460 Szczecin, Poland
| |
Collapse
|
4
|
Michel MR, Pacheco-Lara M, Rojas R, Martínez-Ávila GCG, Ascacio-Valdés JA, Aguilar-Zárate M, Aguilar-Zárate P. Antioxidant Activity of Pomegranate Husk Ellagitannins in Enhancing Oxidative Stability of Canola Oil During Frying. Foods 2025; 14:226. [PMID: 39856892 PMCID: PMC11765100 DOI: 10.3390/foods14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
This study evaluated the antioxidant efficacy of ellagitannins from a pomegranate husk in preventing vegetable canola oil (VCO) oxidation during French fry preparation. Ellagitannins were extracted using 80% acetone, purified via Amberlite XAD-16 resin chromatography, and incorporated into VCO at 0.05%, 0.1%, and 0.2% concentrations. VCO oxidation was assessed at 145 °C, 160 °C, and 190 °C, with frying experiments conducted at 160 °C for five 10 min cycles. Primary lipid oxidation (peroxide values) was measured using the AOCS Cd 8-53 method, and molecular structural changes were analyzed by infrared spectroscopy. Results showed that ellagitannins significantly mitigated VCO oxidation across all temperatures, with 0.05% identified as the optimal concentration. This concentration reduced peroxide values to 4.66 ± 1.15 meq O/kg, remaining stable and below acceptable limits during frying. Infrared spectroscopy confirmed no significant structural changes in VCO. These findings highlight ellagitannins as effective antioxidants for enhancing VCO oxidative stability during frying, offering a natural, sustainable solution for improving oil quality and extending its usability in the food industry.
Collapse
Affiliation(s)
- Mariela R. Michel
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico; (M.R.M.); (M.P.-L.)
| | - Maritza Pacheco-Lara
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico; (M.R.M.); (M.P.-L.)
| | - Romeo Rojas
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Autonomous University of Nuevo Leon, Francisco Villa S/N, Ex Hacienda El Canadá, General Escobedo 66050, Nuevo Leon, Mexico; (R.R.); (G.C.G.M.-Á.)
| | - Guillermo Cristian G. Martínez-Ávila
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Autonomous University of Nuevo Leon, Francisco Villa S/N, Ex Hacienda El Canadá, General Escobedo 66050, Nuevo Leon, Mexico; (R.R.); (G.C.G.M.-Á.)
| | - Juan Alberto Ascacio-Valdés
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | - Mayra Aguilar-Zárate
- Facultad de Ciencias Químicas-CIEP, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, San Luis Potosí, Mexico
| | - Pedro Aguilar-Zárate
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos-LaNAEPBi, Unidad de Servicio Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, San Luis Potosí, Mexico; (M.R.M.); (M.P.-L.)
| |
Collapse
|
5
|
Wang Y, Yu Z, Cao Q, Liu C, Qin Y, Wang T, Wang C. A new approach to biotransformation and value of kitchen waste oil driven by gut microorganisms in Hermetia illucens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123046. [PMID: 39447358 DOI: 10.1016/j.jenvman.2024.123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Hermetia illucens larvae are known for their ability to recycle organic waste, but their capacity to recover waste oils and the role of gut microorganisms in this process are not fully understood. To gain further insights, the biological recovery of waste frying oil into valuable lipids and the influence of gut bacteria on this biotransformation were investigated. The larvae efficiently digested and absorbed waste frying oil, demonstrating their potential for converting various oils into insect fat. The presence of different fatty acids in their diet significantly altered gut bacterial communities, enriching certain genera such as Actinomyces, Enterococcus, and Providencia. Redundancy analysis revealed that the composition and structure of these bacterial communities were predictive of their function in the biotransformation of fatty acids and the lipid biosynthesis in the larvae. Specific bacteria, including Corynebacterium_1, Providencia, Actinomyces, Escherichia-Shigella, and others, were identified to play specialized roles in the digestion and absorption of fatty acids, contributing to lipid synthesis and storage. These findings highlight the potential of Hermetia illucens in the biological recovery of waste frying oil and underscore the crucial role of gut microbiota in this process, offering a sustainable approach to waste management and bioenergy production.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zuojian Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
6
|
Zhou Z, Gao P, Zhou Y, Wang X, Yin J, Zhong W, Reaney MJT. Comparative Analysis of Frying Performance: Assessing Stability, Nutritional Value, and Safety of High-Oleic Rapeseed Oils. Foods 2024; 13:2788. [PMID: 39272553 PMCID: PMC11394795 DOI: 10.3390/foods13172788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Frying is a critical process in the food industry, where selecting appropriate vegetable oils is key to achieving optimal results. In this study, French fries were fried at 175 °C with five different oils, the changes in the physicochemical indexes and free radical scavenging rate of the oils during the frying process were investigated, and the most suitable oils for frying were identified through comparative analysis using principal component analysis (PCA). We assessed the frying performances of hot-pressed high-oleic-acid rapeseed oil (HHRO), cold-pressed high-oleic-acid rapeseed oil (CHRO), soybean oil, rice bran oil, and palm oil utilizing principal component analysis over an 18 h period. The HHRO and CHRO showed lower acid values (0.31, 0.26 mg/g), peroxide values (2.09, 1.96 g/100 g), p-anisidine values (152.48, 178.88 g/mL), and total polar compound percentages (27.60%, 32.10%) than other oils. Furthermore, both the HHRO and CHRO demonstrated enhanced free radical scavenging abilities, indicative of their higher antioxidant capacities, as corroborated by the PCA results. Benzopyridine, 3-monochloropropane-1,2-diol ester, squalene, tocopherols, and polyphenol from the HHRO and CHRO during frying were compared. A comprehensive examination of harmful substances versus nutrient retention during frying revealed that the HHRO contained fewer hazardous compounds, while CHRO retained more nutrients. Therefore, this study analyzes the oxidation regulation of HHRO in frying applications, highlights the prospects of HHRO for frying in terms of health and economy, and contributes valuable insights for informed vegetable oil selection within the food industry.
Collapse
Affiliation(s)
- Zhenglin Zhou
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pan Gao
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Department of Food Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Yuan Zhou
- Wuhan Institute for Food and Cosmetic Control, Wuhan 430012, China
| | - Xingye Wang
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiaojiao Yin
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wu Zhong
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Martin J T Reaney
- Department of Food Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
7
|
Yao Y, Yuan H, Zheng Y, Wang M, Li C. An Insight into the Thermal Degradation Pathway of γ-Oryzanol and the Effect on the Oxidative Stability of Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5757-5765. [PMID: 38445360 DOI: 10.1021/acs.jafc.3c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Thermal stability and antioxidant ability of γ-oryzanol in oil have been widely studied. However, further research is needed to explore its thermal degradation products and degradation pathways. The thermal degradation products of γ-oryzanol in stripped soybean oil were identified and quantified by employing high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) during heating at 180 °C. The results revealed that γ-oryzanol undergoes ester bond cleavage to form trans-ferulic acid and free sterols, and trans-ferulic acid generated intermediate compound 4-vinylguaiacol, which ultimately generated vanillin. Analysis of kinetic and thermodynamic parameters revealed the thermal stability ranking of the four components of γ-oryzanol as follows: CampFA > CAFA > 24MCAFA > SitoFA. Furthermore, γ-oryzanol exhibited superior antioxidant activity at lower temperatures. The results of this study provide a theoretical basis for a better understanding of the thermal stability and antioxidant properties of γ-oryzanol in oil under thermal oxidation conditions.
Collapse
Affiliation(s)
- Yunping Yao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Yuan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yue Zheng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengda Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changmo Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Guo M, Yang L, Li X, Tang H, Li X, Xue Y, Duan Z. Antioxidant Efficacy of Rosemary Extract in Improving the Oxidative Stability of Rapeseed Oil during Storage. Foods 2023; 12:3583. [PMID: 37835236 PMCID: PMC10572867 DOI: 10.3390/foods12193583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Rapeseed oil is an important source of edible oil in the human diet and is also highly susceptible to oxidative deterioration. It has been demonstrated that rosemary extract (RE) can increase the oxidative stability of oils. In this work, the antioxidant capacity of rapeseed oil after the addition of RE during storage and the optimum addition of RE in rapeseed oil were investigated. Oxidative stability evaluation results demonstrate that the shelf life of rapeseed oil with the incorporation of 100 mg/kg of RE was equivalent to that with the addition of 50 mg/kg of tert-butyl hydroxyquinone (TBHQ). Storage test analysis results show that RE remarkably delayed the oxidation of rapeseed oil when the storage container was unsealed. The optimum amount of RE as an addition was 50-200 mg/kg under room temperature storage, while it was 150 mg/kg under Schaal oven storage. The antioxidant capacity of rapeseed oil with 50 mg/kg of RE added was remarkably higher than that with 50 mg/kg of TBHQ added after 20 d of storage, according to the Schaal oven test. Additionally, the addition of RE delayed the degradation of endogenous α-tocopherol in rapeseed oil. This study comprehensively evaluated the antioxidant properties of rapeseed oil when RE was added and it provides a new strategy for establishing healthy, nutritious, and safe oil preservation measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 102209, China; (M.G.); (L.Y.); (X.L.); (H.T.); (X.L.); (Y.X.)
| |
Collapse
|
9
|
Iglesias-Carres L, Racine KC, Chadwick S, Nunn C, Kalambur SB, Neilson AP, Ferruzzi MG. Mechanism of off-color formation in potato chips fried in oil systems containing ascorbic acid as a stabilizer. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Chen J, Zhao Y, Wu R, Yin T, You J, Hu B, Jia C, Rong J, Liu R, Zhang B, Zhao S. Changes in the Quality of High-Oleic Sunflower Oil during the Frying of Shrimp ( Litopenaeus vannamei). Foods 2023; 12:foods12061332. [PMID: 36981256 PMCID: PMC10048579 DOI: 10.3390/foods12061332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Shrimp fried in vegetable oil is a very popular food, so it is important to study the changes in the quality of the oil during frying. In order to more precisely study the nature of frying oil during the cooking process, this study investigated the quality changes of high-oleic sunflower oil during the frying of South American white shrimp (Litopenaeus vannamei). The oxidation and hydrolysis products of frying oils were investigated by integrating the proton nuclear magnetic resonance technique with traditional oil evaluation indexes in an integrated manner. The results showed that the color difference as measured using the ΔE* value increased gradually during the process. Moreover, the acid value, carbonyl value, and total oxidation significantly increased with prolonged frying time. The major oxidation products formed during frying were (E,E)-2-alkenals, (E,E)-2,4-alkadienals, and E,E-conjugated hydroperoxides. This indicated that longer treatment times corresponded with an increased accumulation of aldehydes and ketones, and an increased degree of oxidative deterioration of the oil. However, the proportion of oleic acid in the frying oil increased with the frying of shrimp, reaching 80.05% after 24 h. These results contribute to our understanding of the oxidative deterioration of high-oleic oils during frying, and provide an important reference for the application properties of high-oleic oils.
Collapse
Affiliation(s)
- Jiechang Chen
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Runlin Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yin
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan You
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Benlun Hu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Rong
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Effects of amino acids on the formation and distribution of glycerol core aldehydes during deep frying. Food Res Int 2023; 163:112257. [PMID: 36596168 DOI: 10.1016/j.foodres.2022.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Glyceryl core aldehyde (GCAs) are hazard factors produced during the frying process using oils and fats, and GCAs control and mitigation research is very important. This study investigated the effects of adding amino acids (methionine, glycine, and histidine) at 2.5, 5, and 10 mM on the formation and distribution of four GCAs during frying. High oleic sunflower oil (HOSO) was selected as frying oil for French fries. After 12 h of frying, the content of GCAs in the tert-butylhydroquinone-treated group (0.02 wt%, 1.1 mM) decreased by 29 % compared with the control group. The addition of methionine, glycine, and histidine decreased the total GCAs by 51 %, 28 %, and 27 %, respectively. The total GCAs content was best inhibited by methionine, while glycine and histidine were not significantly different from TBHQ. Methionine addition significantly reduced GCAs (9-oxo), GCAs (10-oxo-8), and GCAs (11-oxo-9) by 39 %, 78 %, and 80 %, respectively, while histidine was the most potent inhibitor of GCAs (8-oxo), which decreased by 40 %. Methionine also proved effective in slowing degradation of frying oil quality. These results provide a new direction for decreasing GCAs in frying systems.
Collapse
|
12
|
Efficacy of exogenous natural antioxidants in stability of polyunsaturated oils under frying temperature. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Gao HX, Chen N, He Q, Shi B, Yu ZL, Zeng WC. Effects of Ligustrum robustum (Rxob.) Blume extract on the quality of peanut and palm oils during storage and frying process. J Food Sci 2022; 87:4504-4521. [PMID: 36124403 DOI: 10.1111/1750-3841.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
The potential uses of Ligustrum robustum (Rxob.) Blume extract as a natural antioxidant to protect the quality of different oils during storage and frying process were studied. The results showed that L. robustum extract has been shown to retard the decline in the quality of both oils based on the tests of acid value, peroxide value, p-anisidine value, color, volatile flavor, and fatty acid compositions, and the protective effect of L. robustum extract on the quality of peanut oil was better than that of palm oil. By the component analysis, L. robustum extract was found to have a total phenols content of 140.75 ± 1.52 mg/g, and ligurobustoside C was identified as the main phenolic compound. The thermogravimetric and differential scanning calorimetry results showed that L. robustum extract enhanced the oxidative stability of peanut and palm oils. In addition, Fourier transform infrared results indicated that L. robustum extract had protective effects on the C=C bond and ester bond of oil molecule. Moreover, by using electron spin resonance technique, L. robustum extract showed the ability to inhibit and scavenge alkyl-free radicals in both oils. The present results suggested that L. robustum extract may protect the quality of oils during the storage and frying process by inhibiting the oxidation of unsaturated fatty acids and might be a potential natural antioxidant in the food industry. PRACTICAL APPLICATIONS: The excellent antioxidant ability of Ligustrum robustum (Rxob.) Blume extract on the oxidation of different oils and its low price indicated that it could be used as a new low-cost natural antioxidant in oil processing.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Bi Shi
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, PR China
| | - Zhi-Long Yu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Saint-Anne-de-Bellevue, QC, Canada
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China.,The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|
14
|
Harzalli Z, Willenberg I, Medfai W, Matthäus B, Mhamdi R, Oueslati I. Potential use of the bioactive compounds of the olive mill wastewater: Monitoring the aldehydes, phenolic compounds and polymerized triacylglycerols in sunflower and olive oil during frying. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zina Harzalli
- Centre of Biotechnology of Borj‐Cedria, LR15CBBC05, Laboratory of Olive Biotechnology Hammam‐Lif Tunisia
- Max Rubner‐Institut (MRI), Department of Safety and Quality of Cereals Working Group for Lipid Research Detmold Germany
| | - Ina Willenberg
- Max Rubner‐Institut (MRI), Department of Safety and Quality of Cereals Working Group for Lipid Research Detmold Germany
| | - Wafa Medfai
- Centre of Biotechnology of Borj‐Cedria, LR15CBBC05, Laboratory of Olive Biotechnology Hammam‐Lif Tunisia
| | - Bertrand Matthäus
- Max Rubner‐Institut (MRI), Department of Safety and Quality of Cereals Working Group for Lipid Research Detmold Germany
| | - Ridha Mhamdi
- Centre of Biotechnology of Borj‐Cedria, LR15CBBC05, Laboratory of Olive Biotechnology Hammam‐Lif Tunisia
| | - Imen Oueslati
- Centre of Biotechnology of Borj‐Cedria, LR15CBBC05, Laboratory of Olive Biotechnology Hammam‐Lif Tunisia
| |
Collapse
|
15
|
Amran NA, Bello U, Hazwan Ruslan MS. The role of antioxidants in improving biodiesel's oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review. Heliyon 2022; 8:e09846. [PMID: 35832341 PMCID: PMC9272357 DOI: 10.1016/j.heliyon.2022.e09846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Global competitiveness thrives on meeting energy demand, and the need to counter the effects of environmental threads dispatched by the combustion of fossil fuels became the driving forces that upended the renewed commitment and growing interest in renewables. Alternatively, green energy provides a twofold solution to energy and environmental crisis in a sustainable, economically viable, and eco-friendly manner. However, energy from biomass, especially biodiesel is considered an attractive substitute for mineral diesel, with the proficiency of meeting future energy demand. Inevitably, biodiesel exhibits poor cold flow properties leading to plugging and gumming of filters, whereas oxidation stability results in sediments and gum formation. These effects present a legitimate concern to producers and the automotive sector. Many reviews on the use of antioxidants to improve biodiesel's cold flow and oxidative stability flooded the literature independently. Yet, a review encompassing the factors inducing biodiesel's poor cold flow, oxidation stability, their effects on engine performance, and the inhibitory role of antioxidants appears vacant. Hence, this paper put together the above-stated aspects, with the first part discussing the factors initializing and accelerating oxidation, the mechanism of oxidation, and biodiesel cold flow were subsequently discussed. Next, the inhibitory functions of antioxidants on biodiesel's oxidation stability and poor cold flow were also explained. Finally, this review reflects on the research trends and sustainability prospects of using antioxidants for improving biodiesel's poor flow and oxidative stability without hindrance to the engine system.
Collapse
Affiliation(s)
- Nurul Aini Amran
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
- HICoE—Centre for Biofuel and Biochemical Research (CBBR), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | - Usman Bello
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
| | | |
Collapse
|
16
|
Sehrawat R, Rathee P, Akkol EK, Khatkar S, Lather A, Redhu N, Khatkar A. Phenolic Acids - Versatile Natural Moiety With Numerous Biological Applications. Curr Top Med Chem 2022; 22:1472-1484. [PMID: 35747974 DOI: 10.2174/1568026622666220623114450] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Medicinal uses of natural phenolic acids and its synthetic derivatives have been augmented in recent years. Phenolic acids are chemically defined secondary plant metabolitesand being moieties or leads are much versatile in nature with a widescope of biological activities which seek the attention of researchers across the worldto synthesize different derivatives of phenolic acids and screen them for their various biological properties.These compounds are of meticulous interest due to the properties they possess and their occurrence.Based on the convincing evidences reported in the literature, it is suggested that phenolic acids andtheir derivatives are promising molecules as a drug. OBJECTIVE The present review article aims to bring together the information on the biosynthesis, metabolism, and sources of phenolic acids and emphasize on the therapeutic potential of phenolic acid and its synthetic derivatives to comprehensively portray the current scenery for researchers interested in designing drugs for furthering this study. CONCLUSION Phenolic acids being moieties or lead are much versatile in nature as they possess a wide range of biological activities like antimicrobial, antioxidant, antiviral, antiulcer, anti-inflammatory, antidiabetic, anticancer and many more which offers researchers to explore more about these or many untapped benefits in medicinal field. The information mentioned in this article will be helpful to the forthcoming researchers working in this area. Phenolic acids have massive potential to be investigated for novel medicinal possibilities and for the development of new chemical moieties to treat different diseases of clinical importance.
Collapse
Affiliation(s)
| | - Priyanka Rathee
- SBMN Institute of Pharmaceutical Sciences and Research, B.M.U., Rohtak
| | - Esra Küpelli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak
| | - Amit Lather
- Vaish Institute of Pharmaceutical Education and Research, Rohtak
| | - Neelam Redhu
- Former Research Scholar, Department of Microbiology, M.D.University, Rohtak
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, M.D.University, Rohtak
| |
Collapse
|
17
|
Xu L, Mei X, Wu G, Karrar E, Jin Q, Wang X. Inhibitory effect of antioxidants on key off-odors in French fries and oils and prolong the optimum frying stage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Does adding thyme and rosemary essential oils to sunflower oil during shallow-frying increase the lipid quality of Atlantic bonito? Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Erickson MD, Yevtushenko DP, Lu ZX. Oxidation and Thermal Degradation of Oil during Frying: A Review of Natural Antioxidant Use. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2039689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maxwell D. Erickson
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | | | - Zhen-Xiang Lu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
20
|
Tao J, Liu L, Ma Q, Ma KY, Chen ZY, Ye F, Lei L, Zhao G. Effect of γ-oryzanol on oxygen consumption and fatty acids changes of canola oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Mnari Bhouri A, Ghnimi H, Amri Z, Koubaa N, Hammami M. Effect of tunisian pomegranate peel extract on the oxidative stability of corn oil under heating conditions. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.1010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of pomegranate peel extract (PPE) on the oxidative stability of corn oil during heating was studied. Oxidation was followed by determining peroxide value (PV), p-anisidine value (p-AV), free fatty acid value (FFA), conjugated dienes (CD), conjugated trienes hydroperoxides (CT) and the calculated total oxidation value (TOTOX). Polyphenol (TPC) and ortho-diphenol (TOPC) contents as well as the antioxidant activity of each oil sample were evaluated before and after heating. PPE showed a significant inhibitory effect on lipid oxidation. Heating samples for 8 hours supplemented by PPE to a level of 1000 ppm resulted in the highest significant decreases in investigated indices compared to the control and BHT values. It was concluded that the antioxidant activity of PPE delayed oxidation and can be used in the food industry to prevent and reduce lipid deterioration in oil.
Collapse
|
22
|
Yang H, Wang D, Lu X, Wang X, Blasi F. Eugenol, obtained from the bioassay-guided fractionation of Coriandrum sativum essential oil, displayed antioxidant effect in deep-frying procedure of sunflower oil and improved sensory properties of fried products, Caijiao. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2050955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Haoduo Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Dongying Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Xinjian Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Xuede Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, Henan, China
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, Via San Costanzo, Perugia, Italy
| |
Collapse
|
23
|
Whether the degradation of frying oil affects oil absorption: Tracking fresh and degraded oil in fried potato strips during frying and cooling and microstructure characterization. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tokur B, Korkmaz K, Uçar Y. The addition of commercial sage essential oil to sunflower oil: Improving the lipid quality of fried dark muscle fish. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bahar Tokur
- Fatsa Faculty of Marine Sciences Ordu University Ordu Turkey
| | - Koray Korkmaz
- Fatsa Faculty of Marine Sciences Ordu University Ordu Turkey
| | - Yılmaz Uçar
- Fatsa Faculty of Marine Sciences Ordu University Ordu Turkey
| |
Collapse
|
25
|
Shen J, Zhang M, Zhao L, Mujumdar AS, Wang H. Schemes for enhanced antioxidant stability in frying meat: a review of frying process using single oil and blended oils. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34961384 DOI: 10.1080/10408398.2021.2019672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deep-fried meat products are widely popular. However, harmful compounds produced by various chemical reactions during frying have been shown to be detrimental to human health. It is of great necessity to raise practical suggestions for improving the oxidation problem of frying oils and frying conditions in some aspects. Vegetable oils are not as thermally stable as saturated fats, and blended oils have higher thermal stability than single oil. In this review, we discussed the oxidation problems frying oils and meats are subject to during frying, starting from the oil oxidation mechanism, the effects of different oils and fats on the quality of different fried meats under different conditions were concluded to alleviate the oxidation problem, to highlight the necessity of applying blended oils for frying, and effective antioxidants added to frying oils are also introduced, that would provide more convenient and practical options for obtaining higher quality of fried meat products and offer better understanding of the potential of blended frying oils for frying meat products.
Collapse
Affiliation(s)
- Ju Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- R&D Centre, Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Tokur B, Korkmaz K, Uçar Y. Enhancing sunflower oil by the addition of commercial thyme and rosemary essential oils: The effect on lipid quality of Mediterranean horse mackerel and anchovy during traditional pan-frying. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
|
28
|
Keramat M, Golmakani M, Durand E, Villeneuve P, Hosseini SMH. jfppA comparison of antioxidant activities by eugenyl acetate and eugenyl butyrate at frying temperature. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Malihe Keramat
- Department of Food Science and Technology, School of Agriculture Shiraz University Shiraz Iran
| | | | - Erwann Durand
- CIRAD, UMR QualiSud, F‐34398 Montpellier France
- QualiSud, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, IRD, Univ Réunion Montpellier France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F‐34398 Montpellier France
- QualiSud, Univ Montpellier, CIRAD, Institut Agro, Univ Avignon, IRD, Univ Réunion Montpellier France
| | | |
Collapse
|
29
|
Han Z, Yang X, Li X, Xiao Z, Wu Z, Shao JH. The thermal oxidation evolution and relationship of unsaturated fatty acids and characteristic functional groups in blended oils with raspberry seed oil during deep-frying process by low field nuclear magnetic resonance and 1H nuclear magnetic resonance. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Gao HX, Yu J, Chen N, Zeng WC. Effects and mechanism of tea polyphenols on the quality of oil during frying process. J Food Sci 2020; 85:3786-3796. [PMID: 32990338 DOI: 10.1111/1750-3841.15470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
The effects and action mechanism of tea polyphenols (TP) on the quality of rapeseed oil during frying process were investigated. Results showed that compared with control, TP (0.04%, w/w) exhibited the remarkable ability to inhibit the deterioration of acid value, peroxide value, anisidine value, viscosity, and color of frying oil. By using gas chromatography-mass spectrometry, frying oil with TP showed the higher content of unsaturated fatty acids (72.79%) and lower content of trans fatty acids (3.36%) than those of control. Meanwhile, frying oil with TP had a higher total phenolic content than control at the same frying time. In addition, the thermo gravimetric-differential scanning calorimetry results showed that TP could increase the oxidation stability of rapeseed oil. Furthermore, according to the Fourier transform infrared and molecular dynamic simulation results, TP could reduce the breaking degree of = C-H bond, C-O-C bond, and C = C bond in oil molecules, and inhibit the oxidation of oil components by inhibiting the generation of free radicals and eliminating free radicals. All present results suggested that TP showed the potential value to be used for protecting the quality of oil during the frying process in food and chemical industries. PRACTICAL APPLICATIONS: The inhibitory effect of tea polyphenols on the deterioration of quality of rapeseed oil during frying was found and the mechanism had also preliminarily interpretation. This work provided a method for monitoring the quality of fry oil and provided the theoretical basis for the use of tea polyphenols in frying.
Collapse
Affiliation(s)
- Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Jie Yu
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, 610065, PR China.,The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
31
|
Wiege B, Fehling E, Matthäus B, Schmidt M. Changes in Physical and Chemical Properties of Thermally and Oxidatively Degraded Sunflower Oil and Palm Fat. Foods 2020; 9:foods9091273. [PMID: 32932773 PMCID: PMC7555029 DOI: 10.3390/foods9091273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 11/30/2022] Open
Abstract
Deep-fat frying is an important process used worldwide for the preparation of foods. Due to oxidation, hydrolysis, decomposition and oligomerization, numerous polar compounds are formed. These compounds change the physical, nutritional and sensory properties of the oil or fat. The standard methods of the German Society for Fat Science for the assessment of the quality of frying fats are time consuming and cost intensive. Therefore, alternative cost-effective and sensitive rapid methods, which ideally allow the quantitative determination of the quality of frying fats “in-line” in the deep-frying pan are needed. Sunflower oil and palm fat were thermally and oxidatively degraded in a beaker at atmospheric pressure under intensive stirring for 76 h at 175 °C. To evaluate the development of the physical properties during heat treatment, the viscosity and dielectric constant of these oils were measured. The temperature in a deep-frying pan can vary within a wide range (160–190 °C), and the viscosity and dielectric constant show a strong temperature dependence. Therefore, it was necessary to measure the temperature dependence of the viscosity and dielectric constant of the different degraded oils. Additionally, their chemical properties were characterized by high-performance gel permeation chromatography and Fourier-transform infrared spectroscopy (FTIR). The determination of the dielectric constant, which is directly correlated with the concentration of polar compounds, seems to be the best method for the assessment of the quality of used frying oils.
Collapse
|
32
|
|
33
|
Goh KM, Wong YH, Abas F, Lai OM, Mat Yusoff M, Tan TB, Wang Y, Nehdi IA, Tan CP. Changes in 3-, 2-Monochloropropandiol and Glycidyl Esters during a Conventional Baking System with Addition of Antioxidants. Foods 2020; 9:E739. [PMID: 32512737 PMCID: PMC7353568 DOI: 10.3390/foods9060739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Shortening derived from palm oil is widely used in baking applications. However, palm oil and the related products are reported to contain high levels of monochloropropandiol (MCPD) ester and glycidyl ester (GE). MCPD and glycidol are known as process contaminants, which are carcinogenic and genotoxic compounds, respectively. The objective was to evaluate the effects of antioxidant addition in palm olein and stearin to the content of MCPD esters and GE in baked cake. Butylated hydroxyanisole (BHA), rosemary extract and tocopherol were used to fortify the samples at 200 mg/kg and in combinations (400, 600 and 800 mg/kg rosemary or tocopherol combined with 200 mg/kg BHA). The MCPD esters and GE content, radical formation and the quality of the fats portion were analyzed. The results showed that palm olein fortified with rosemary extract yielded less 2-MCPD ester. The GE content was lower when soft stearin was fortified with rosemary. ESR spectrometry measurements showed that the antioxidants were effective to reduce radical formation. The synergistic effects of combining antioxidants controlled the contaminants formation. In conclusion, oxidation stability was comparable either in the single or combined antioxidants. Tocopherol in combination with BHA was more effective in controlling the MCPD esters and GE formation.
Collapse
Affiliation(s)
- Kok Ming Goh
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.M.G.); (Y.H.W.); (M.M.Y.); (T.B.T.)
- Guangdong Research Center of Lipid Science Applied Engineering Technology, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Yu Hua Wong
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.M.G.); (Y.H.W.); (M.M.Y.); (T.B.T.)
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Masni Mat Yusoff
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.M.G.); (Y.H.W.); (M.M.Y.); (T.B.T.)
| | - Tai Boon Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.M.G.); (Y.H.W.); (M.M.Y.); (T.B.T.)
| | - Yonghua Wang
- Guangdong Research Center of Lipid Science Applied Engineering Technology, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Imeddedine Arbi Nehdi
- Chemistry Department, College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia;
- Chemistry Department, El Manar Preparatory Institute for Engineering Studies, Tunis El Manar University, P.O. Box 244, Tunis 2092, Tunisia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (K.M.G.); (Y.H.W.); (M.M.Y.); (T.B.T.)
| |
Collapse
|
34
|
Wu G, Chang C, Hong C, Zhang H, Huang J, Jin Q, Wang X. Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Chang D, Li H, Qian C, Wang Y. DiOHF Protects Against Doxorubicin-Induced Cardiotoxicity Through ERK1 Signaling Pathway. Front Pharmacol 2019; 10:1081. [PMID: 31611788 PMCID: PMC6777440 DOI: 10.3389/fphar.2019.01081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is an effective anticancer agent. Its clinical use is, however, limited due to its detrimental side effects, especially the cardiotoxicity caused by ROS, mitochondrial dysfunction and apoptosis. 3’,4’-dihydroxyflavonol (DiOHF) is a recently developed potent synthetic flavonoid which has been reported to exert anti-oxidative activity in myocardial ischemia–reperfusion injury and maintain the normal mitochondrial function. The aim of this study was to explore the protective effects of DiOHF on the DOX-induced cardiotoxicity. We established DOX-induced cardiotoxicity in H9C2 cells by incubation with 1 μM DOX and in BALB/c mice by DOX injection. DiOHF effectively prevented and reversed the DOX-induced cardiotoxicity, including ROS production, mitochondrial dysfunction, and apoptosis. The DOX-induced cardiotoxicity was accompanied by ERK1/2 activation and abolished by the silence of ERK1, rather than ERK2. Furthermore, DOX treatment in mice induced an increase in serum CK-MB level and myocardial fibrosis with a reduction in left ventricular (LV) function. These detrimental effects were blunted by DiOHF administration. Conclusion: DiOHF suppresses and reverses the DOX-induced cardiotoxicity by inhibiting ROS release, stabilizing mitochondrial function and reducing apoptosis through activation of the ERK1 signaling.
Collapse
Affiliation(s)
- Danqi Chang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cheng Qian
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Effect of Sowing Dates on Fatty Acids and Phytosterols Patterns of Carthamus tinctorius L. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Field experiments were carried out at the Regional Centre of Experimentation in Organic agriculture at Auch (near Toulouse, South west of France). Due to the high potential applications for its oil components such as fatty acids and phytosterols, safflower (Carthamus tinctorius L.) is considered as an emerging crop. Safflower plants, as many other oil crops, are submitted to environmental stresses that modify seed composition. Nevertheless, few reports are available about the effects of environmental conditions on fatty acid and phytosterol compositions in safflower. Different rainfall supplies can be managed by delaying the sowing dates. In this study, fatty acid and phytosterol contents have been evaluated in safflower seeds cultivated at two sowing dates (conventional and late) that led to a differential of rainfall during seed development. At harvest, seeds were used for oil extraction. Fatty acid composition was performed by using GC-FID. A set of seeds was dehulled to separate the almond (embryo) and hull to release the extraction and measurement of sterol contents in the two compartments by GC-FID. A delay of sowing increased the content of all sterol categories but induced a significant decrease in fatty acids. The ratio of saturated to unsaturated fatty acids increased under a delaying sowing. The repartition of phytosterols was ¾ and ¼ of total sterols in the embryo and the hull, respectively. These results could make the use of hull (considered as waste) possible, help breeders to improve safflower oil composition and develop new industrial applications.
Collapse
|
37
|
Lou-Bonafonte JM, Martínez-Beamonte R, Sanclemente T, Surra JC, Herrera-Marcos LV, Sanchez-Marco J, Arnal C, Osada J. Current Insights into the Biological Action of Squalene. Mol Nutr Food Res 2018; 62:e1800136. [PMID: 29883523 DOI: 10.1002/mnfr.201800136] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/08/2018] [Indexed: 01/24/2023]
Abstract
Squalene is a triterpenic compound found in a large number of plants and other sources with a long tradition of research since it was first reported in 1926. Herein a systematic review of studies concerning squalene published in the last 8 years is presented. These studies have provided further support for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties in vivo and in vitro. Moreover, an antineoplastic effect in nutrigenetic-type treatments, which depends on the failing metabolic pathway of tumors, has also been reported. The bioavailability of squalene in cell cultures, animal models, and in humans has been well established, and further progress has been made in regard to the intracellular transport of this lipophilic molecule. Squalene accumulates in the liver and decreases hepatic cholesterol and triglycerides, with these actions being exerted via a complex network of changes in gene expression at both transcriptional and post-transcriptional levels. Its presence in different biological fluids has also been studied. The combination of squalene with other bioactive compounds has been shown to enhance its pleiotropic properties and might lead to the formulation of functional foods and nutraceuticals to control oxidative stress and, therefore, numerous age-related diseases in human and veterinary medicine.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, E-22002, Spain.,Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain
| | - Roberto Martínez-Beamonte
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22071, Spain
| | - Teresa Sanclemente
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22071, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22071, Spain
| | - Luis V Herrera-Marcos
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| | - Javier Sanchez-Marco
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| | - Jesús Osada
- Instituto Agroalimentario de Aragón, CITA-Universidad de Zaragoza, E-50013, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain
| |
Collapse
|
38
|
Xie H, Zhou D, Hu X, Liu Z, Song L, Zhu B. Changes in Lipid Profiles of Dried Clams ( Mactra chinensis Philippi and Ruditapes philippinarum) during Accelerated Storage and Prediction of Shelf Life. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7764-7774. [PMID: 29965751 DOI: 10.1021/acs.jafc.8b03047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To predict the shelf life through an Arrhenius model and evaluate the changes in lipid profiles, two types of dried clams were stored at 50 and 65 °C and collected periodically for analysis. The predicted shelf life values of the two dried clam samples were 530 ± 14 and 487 ± 24 h (24 °C), and the relative errors between the actual and predicted values were 5.7 and 6.8%, respectively. During accelerated storage, the peroxide value, p-anisidine value, thiobarbituric acid-reactive substances value, total oxidation value, acid value, and free fatty acid content all increased, while the levels of triacylglycerol, phosphatidylcholine, phosphatidylethanolamine, major glycerophospholipid molecular species, and polyunsaturated fatty acid (PUFA) decreased. Moreover, content of phospholipid containing PUFA decreased significantly than that of triacylglycerol containing PUFA. Results indicated that the Arrhenius model was suitable for the shelf life prediction of dried clams and accelerated storage caused loss in quality of dried clams in terms of lipids.
Collapse
Affiliation(s)
- Hongkai Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian 116034 , People's Republic of China
| | - Dayong Zhou
- National Engineering Research Center of Seafood , Dalian 116034 , People's Republic of China
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Xiaopei Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian 116034 , People's Republic of China
| | - Zhongyuan Liu
- National Engineering Research Center of Seafood , Dalian 116034 , People's Republic of China
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Liang Song
- National Engineering Research Center of Seafood , Dalian 116034 , People's Republic of China
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian 116034 , People's Republic of China
- School of Food Science and Technology , Dalian Polytechnic University , Dalian 116034 , People's Republic of China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center , Tianjin 300457 , People's Republic of China
| |
Collapse
|
39
|
Rudzińska M, Hassanein MMM, Abdel-Razek AG, Kmiecik D, Siger A, Ratusz K. Influence of composition on degradation during repeated deep-fat frying of binary and ternary blends of palm, sunflower and soybean oils with health-optimised saturated-to-unsaturated fatty acid ratios. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Magdalena Rudzińska
- Faculty of Food Sciences and Nutrition; Poznań University of Life Sciences; Wojska Polskiego 28 60-637 Poznań Poland
| | - Minar M. M. Hassanein
- Fats and Oils Department; National Research Centre; 33 El Buhouth St. Dokki 12622 Cairo Egypt
| | - Adel G. Abdel-Razek
- Fats and Oils Department; National Research Centre; 33 El Buhouth St. Dokki 12622 Cairo Egypt
| | - Dominik Kmiecik
- Faculty of Food Sciences and Nutrition; Poznań University of Life Sciences; Wojska Polskiego 28 60-637 Poznań Poland
| | - Aleksander Siger
- Faculty of Food Sciences and Nutrition; Poznań University of Life Sciences; Wojska Polskiego 28 60-637 Poznań Poland
| | - Katarzyna Ratusz
- Faculty of Food Sciences; Warsaw University of Life Sciences - SGGW; Nowoursynowska 159 02-776 Warsaw Poland
| |
Collapse
|
40
|
Fhaner M, Hwang HS, Winkler-Moser JK, Bakota EL, Liu SX. Protection of fish oil from oxidation with sesamol. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Matthew Fhaner
- Department of Chemistry and Biochemistry; University of Michigan-Flint; Flint MI USA
| | - Hong-Sik Hwang
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research; Functional Foods Research; Peoria IL USA
| | - Jill K. Winkler-Moser
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research; Functional Foods Research; Peoria IL USA
| | - Erica L. Bakota
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research; Functional Foods Research; Peoria IL USA
| | - Sean X. Liu
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research; Functional Foods Research; Peoria IL USA
| |
Collapse
|
41
|
Aladedunye FA. Curbing thermo-oxidative degradation of frying oils: Current knowledge and challenges. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Felix A. Aladedunye
- Human Nutritional Sciences; University of Manitoba; Winnipeg Manitoba Canada
| |
Collapse
|