1
|
Zhong X, Deng X, Yang Y, Xie X, Li B, Peng X. Immuno-engineered macrophage membrane-coated nanodrug to restore immune balance for rheumatoid arthritis treatment. Acta Biomater 2025; 197:374-385. [PMID: 40097125 DOI: 10.1016/j.actbio.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Current immunosuppressive therapies for rheumatoid arthritis (RA) lack disease specificity, primarily targeting inflammation while causing debilitating side effects. To address this limitation, we developed a biomimetic nanodrug MP@NEs/CT to induce antigen-specific immune tolerance for precise, effective and safe RA immunotherapy. MP@NEs/CT features a core of multiepitope citrullinated peptide (CitP) and triptolide (TPL) co-loaded nanoemulsion and coated with a macrophage membrane harvested from IFN-γ treated RAW264.7 cells. CitP, an RA autoantigen, specifically targets the immune response, while TPL acts as an immunosuppressant by inhibiting dendritic cells (DCs) maturation. IFN-γ treatment upregulates programmed death-ligand 1 (PD-L1) expression, facilitating MP@NEs/CT accumulation within inflamed tissues via programmed death-1 (PD-1) binding following intravenous administration. Additionally, the immune-engineered macrophage membrane sequesters proinflammatory cytokines, further dampening local inflammation. A significant reduction of CII-specific IgG levels in collagen-induced arthritis (CIA) mice model provides the evidence of CitP in restoring antigen-specific immune tolerance. Importantly, a low dose of TPL within MP@NEs/CT promotes tolerogenic DCs and generation of anti-inflammatory cytokines, ultimately leading to upregulation of antigen-specific regulatory T cells (Tregs) and B cells (Bregs) and a reduction in pro-inflammatory cytokine levels. Consequently, the nanodrug demonstrates synergistic and effective anti-inflammatory and immunosuppressive effects, alleviating autoimmune damage in a CIA mice model. STATEMENT OF SIGNIFICANCE: : Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by dysregulated immune responses, leading to synovial hyperplasia, tissue destruction, and irreversible disability. Early work in RA therapy mainly applying anti-inflammatory drugs which focuses on delaying joint deformity, but have no effects on the aberrant immune response. However, these drugs often require high doses and long-term administration, leading to potential adverse effects. In this work, we reported a therapeutic system that co-delivery of autoantigens with immune modulators promotes antigen-specific tolerance for effective and safe RA immunotherapy.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/therapy
- Mice
- Macrophages/immunology
- RAW 264.7 Cells
- Nanoparticles/chemistry
- Diterpenes/pharmacology
- Diterpenes/chemistry
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Cell Membrane/chemistry
- Cell Membrane/immunology
- Phenanthrenes/pharmacology
- Phenanthrenes/chemistry
- Mice, Inbred DBA
- Immunotherapy
- Coated Materials, Biocompatible/pharmacology
- Coated Materials, Biocompatible/chemistry
- Epoxy Compounds
Collapse
Affiliation(s)
- Xiaofang Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xiaoyu Deng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Yongqing Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Xin Xie
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|
2
|
Ozgolet M, Karasu S, Kasapoglu MZ. Development of Gluten-Free Cakes Using Protein Concentrate Obtained from Cold-Pressed Terebinth ( Pistacia terebinthus L.) Oil By-Products. Foods 2025; 14:1049. [PMID: 40232076 PMCID: PMC11942047 DOI: 10.3390/foods14061049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
The present research aimed to incorporate terebinth seed protein into gluten-free cakes in order to increase their protein content and improve their technological properties. The terebinth protein replaced the rice flour-corn starch mixture used in control cakes at varying levels (3%, 6%, 9%, and 12%). The rheological properties of the cake batters were evaluated, along with the physicochemical attributes, textural properties, sensory attributes, and oxidative stability of the baked cakes. As the protein concentration increased, the consistency index of the cake batters also increased. All batters showed shear-thinning behavior, indicating pseudoplastic fluid behavior, and showed a viscoelastic nature reflected by the storage modulus (G') exceeding the loss modulus (G″). Both G' and G″ values increase with increasing protein content. The softest texture was observed in the control cake produced with wheat flour, followed by the cakes with 3% and 6% protein addition, while higher protein levels (9% and 12%) resulted in firmer cakes. Furthermore, oxidative stability improved with a higher level of protein. The addition of protein did not negatively affect sensory quality across all measured parameters. This study demonstrates the potential of terebinth protein to enhance the protein content and oxidative stability of gluten-free cakes that maintain their sensory attributes.
Collapse
Affiliation(s)
- Muhammed Ozgolet
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul, Turkey;
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul, Turkey;
| | - Muhammed Zahid Kasapoglu
- Istanbul Teknokent, Istanbul University-Cerrahpaşa, Teknokent Building, Istanbul 34320, Avcılar, Turkey;
| |
Collapse
|
3
|
Cen S, Li S, Meng Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res Int 2024; 191:114703. [PMID: 39059910 DOI: 10.1016/j.foodres.2024.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Fat plays a pivotal role in the appearance, flavor, texture, and palatability of food. However, excessive fat consumption poses a significant risk for chronic ailments such as obesity, hypercholesterolemia, and cardiovascular disease. Therefore, the development of green, healthy, and stable protein-based emulsion gel as an alternative to traditional fats represents a novel approach to designing low-fat food. This paper reviews the emulsification behavior of proteins from different sources to gain a comprehensive understanding of their potential in the development of emulsion gels with fat-analog properties. It further investigates the emulsifying potential of protein combined with diverse substances. Then, the mechanisms of protein-stabilized emulsion gels with fat-analog properties are discussed, mainly involving single proteins, proteins-polysaccharides, as well as proteins-polyphenols. Moreover, the potential applications of protein emulsion gels as fat analogues in the food industry are also encompassed. By combining natural proteins with other components such as polysaccharides, polyphenols, or biopolymers, it is possible to enhance the stability of the emulsion gels and improve its fat-analog texture properties. In addition to their advantages in protecting oil oxidation, limiting hydrogenated oil intake, and delivering bioactive substances, protein-based emulsion gels have potential in food 3D printing and the development of specialty fats for plant-based meat.
Collapse
Affiliation(s)
- Shaoyi Cen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Shaoyang Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Yang B, Chen J, Mis Solval K. Microencapsulated polyphenol extracts from Georgia-grown pomegranate peels delay lipid oxidation in salad dressing during accelerated and ambient storage conditions. Food Sci Nutr 2024; 12:370-384. [PMID: 38268867 PMCID: PMC10804111 DOI: 10.1002/fsn3.3776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 01/26/2024] Open
Abstract
Lipid oxidation is a major cause of quality deterioration in salad dressings. This study evaluated the effect of incorporating microencapsulated polyphenol extracts via spray drying from pomegranate peels (MPP) to delay lipid oxidation in Italian-style salad dressings (ISD) during accelerated (55°C) and ambient (25°C) storage conditions. ISDs, prepared at high (5000 rpm) and low (250 rpm) shear rates conditions, were formulated with unencapsulated polyphenol extracts from pomegranate peels (PPP), MPP, and/or grape seed extract (GSE). Lipid oxidation in ISDs was evaluated by measuring peroxide value (PV), iodine value (IV), and TBARS, stored in accelerated and ambient conditions for 21 days and 8 weeks, respectively. Tannis in extracts were measured via HPLC-DAD and the total hydrolyzable tannin content of PPP and MPP was 283.09 and 427.74 (mg/g extract), respectively. Condensed tannins were not detected in PPP and MPP but were found in GSE (348.53 mg/g extract). Salad dressings prepared at high shear rates had significantly (p < .05) higher emulsion stability than those homogenized at low shear rates. Mixing conditions did not affect the lipid oxidative stability of IDSs. Salad dressing stored under accelerated storage had higher lipid oxidation (higher PV, lower IV, and higher TBARS) after 21 days than IDSs stored under ambient conditions for 8 weeks. ISDs prepared with MPPP showed significantly (p < .05) lower lipid oxidation than the other ISDs at the end of the shelf life studies. Results from the accelerated storage suggested that incorporating MPP could have extended the shelf life of IDSs by 20% compared to using unencapsulated polyphenol extracts. The study demonstrated that MPP delays lipid oxidation in ISDs during storage more effectively than unencapsulated extracts. MPP may serve as a natural and effective functional food ingredient for controlling lipid oxidation in high-lipid and acidified foods.
Collapse
Affiliation(s)
- Boran Yang
- Department of Food Science and TechnologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Jinru Chen
- Department of Food Science and TechnologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Kevin Mis Solval
- Department of Food Science and TechnologyUniversity of GeorgiaGriffinGeorgiaUSA
| |
Collapse
|
5
|
Gao TT, Liu JX, Gao X, Zhang GQ, Tang XZ. Stability and Digestive Properties of a Dual-Protein Emulsion System Based on Soy Protein Isolate and Whey Protein Isolate. Foods 2023; 12:2247. [PMID: 37297491 PMCID: PMC10252216 DOI: 10.3390/foods12112247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The stability and digestive properties of a dual-protein emulsion consisting of soy protein isolate (SPI) and whey protein isolate (WPI) have been systematically studied. The results showed that the particle size and viscosity of the dual-protein emulsion system decreased continuously with the increase in WPI, and this might be related to the large amount of electric charge on the surface of the emulsion droplets. Dual-protein emulsions with ratios of 3:7 and 5:5 showed the highest emulsion activity, while emulsion stability increased with the increase in WPI. The thicker adsorption layer formed at the interface might have contributed to this phenomenon. After in-vitro-simulated digestion, the emulsion droplet particle size increased substantially due to the weakened electrostatic repulsion on the droplet surface, especially for the intestinal digestion phase. Meanwhile, WPI accelerated the release of free fatty acids in the digestion process, which played a positive role in the nutritional value of the dual-protein emulsion. In accelerated oxidation experiments, WPI also improved the antioxidant properties of the dual-protein emulsion system. This study will provide a new insight and necessary theoretical basis for the preparation of dual-protein emulsions.
Collapse
Affiliation(s)
- Ting-Ting Gao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jing-Xue Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xin Gao
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Guo-Qi Zhang
- College of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiao-Zhi Tang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
6
|
Zhang M, Fan L, Liu Y, Li J. Effects of interface generation, droplet size and antioxidant partitioning on the oxidation rate and oxidative stability of water–in–oil emulsions: A comparison of coarse emulsions and nanoemulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review paper focuses on the antioxidant properties of phenolic compounds in oil in water (o/w) emulsion systems. The authors first provide an overview of the most recent studies on the activity of common, naturally occurring phenolic compounds against the oxidative deterioration of o/w emulsions. A screening of the latest literature was subsequently performed with the aim to elucidate how specific parameters (polarity, pH, emulsifiers, and synergistic action) affect the phenolic interfacial distribution, which in turn determines their antioxidant potential in food emulsion systems. An understanding of the interfacial activity of phenolic antioxidants could be of interest to food scientists working on the development of novel food products enriched with functional ingredients. It would also provide further insight to health scientists exploring the potentially beneficial properties of phenolic antioxidants against the oxidative damage of amphiphilic biological membranes (which link to serious pathologic conditions).
Collapse
|
8
|
Zhang M, Fan L, Liu Y, Huang S, Li J. Effects of proteins on emulsion stability: The role of proteins at the oil-water interface. Food Chem 2022; 397:133726. [PMID: 35908463 DOI: 10.1016/j.foodchem.2022.133726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
To obtain a stable protein-added emulsion system, researchers have focused on the design of the oil-water interface. This review discussed the updated details of protein adsorption behavior at the oil-water interface. We evaluated methods of monitoring interfacial proteins as well as their strengths and limitations. Based on the effects of structure on protein adsorption, we summarized the contribution of pre-changing methods to adsorption. In addition, the interaction of proteins and other surface-active molecules at the interface had been emphasized. Results showed that protein adsorption is affected by conformation, oil polarity and aqueous environments. The monitoring of interfacial proteins through spectroscopic properties in actual emulsion systems is an emerging trend. Pre-changing could improve the protein adsorption and the purpose of pre-changing of proteins is similar. In the interaction with other surface-active molecules, co-adsorption is desirable. By co-adsorption, the respective advantages can be exploited to obtain a more stable emulsion system.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengquan Huang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou 510931, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Zhang M, Fan L, Liu Y, Li J. A mechanistic investigation of the effect of dispersion phase protein type on the physicochemical stability of water–in–oil emulsions. Food Res Int 2022; 157:111293. [DOI: 10.1016/j.foodres.2022.111293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
|
10
|
Combination of microwave heating and transglutaminase cross-linking enhances the stability of limonene emulsion carried by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Rezvankhah A, Emam‐Djomeh Z, Safari M, Salami M, Askari G. Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amir Rezvankhah
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Zahra Emam‐Djomeh
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
- Center of Excellence in Biothermodynamics University of Tehran Tehran Iran
| | - Mohammad Safari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Controlled Release Center, Department of Food Science, Technology and Engineering University College of Agriculture & Natural Resources, University of Tehran, Karaj Campus Karaj Iran
- Functional Food Research Core (FFRC) University of Tehran Tehran Iran
| |
Collapse
|
12
|
Lu J, Li X, Qiu C, McClements DJ, Jiao A, Wang J, Jin Z. Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Foods 2022; 11:foods11030450. [PMID: 35159600 PMCID: PMC8834252 DOI: 10.3390/foods11030450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to fabricate food-grade Pickering emulsions stabilized by chitosan-phytic acid-β-cyclodextrin (CS-PA-CD) nanoparticles. The CS-PA-CD nanoparticles were characterized with FITR, XRD, and TGA to prove its successfully crosslinking, then characterized by DLS system and scanning electron microscopy showing the smallest average particle size was 434.2 ± 2.5 nm and it increased with the ratio of PA-CD to CS increasing. Pickering emulsions stabilized by CS-PA-CD nanoparticles was prepared and it showed the best stability at around pH 6. The particle concentration higher than 1.0% (w/v) and the oil fraction above 0.5% (v/v) could reach the emulsion stability. In addition, the Pickering emulsions were stable at various temperature (30–70 °C) and influenced by the certain change of ionic strength (0–500 mM). These CS-PA-CD Pickering emulsions showed great application in the formation of functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- Jiaxin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | | | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China;
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
- Correspondence:
| |
Collapse
|
13
|
Bravo-Díaz C. Advances in the control of lipid peroxidation in oil-in-water emulsions: kinetic approaches †. Crit Rev Food Sci Nutr 2022; 63:6252-6284. [PMID: 35104177 DOI: 10.1080/10408398.2022.2029827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large efforts have been, and still are, devoted to minimize the harmful effects of lipid peroxidation. Much of the early work focused in understanding both the lipid oxidation mechanisms and the action of antioxidants in bulk solution. However, food-grade oils are mostly present in the form of oil-in-water emulsions, bringing up an increasing complexity because of the three-dimensional interfacial region. This review presents an overview of the kinetic approaches employed in controlling the oxidative stability of edible oil-in-water emulsions and of the main outcomes, with particular emphasis on the role of antioxidants and on the kinetics of the inhibition reaction. Application of physical-organic chemistry methods, such as the pseudophase models to investigate antioxidant partitioning, constitute a remarkable example on how kinetic methodologies contribute to model chemical reactivity in multiphasic systems and to rationalize the role of interfaces, opening new opportunities for designing novel antioxidants with tailored properties and new prospects for modulating environmental conditions in attempting to optimize their efficiency. Here we will summarize the main kinetic features of the inhibition reaction and will discuss on the main factors affecting its rate, including the determination of antioxidant efficiencies from kinetic profiles, structure-reactivity relationships, partitioning of antioxidants and concentration effects.
Collapse
Affiliation(s)
- Carlos Bravo-Díaz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
14
|
Hinderink EB, Schröder A, Sagis L, Schroën K, Berton-Carabin CC. Physical and oxidative stability of food emulsions prepared with pea protein fractions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Impact of Tetrapeptide-FSEY on Oxidative and Physical Stability of Hazelnut Oil-In-Water Emulsion. Foods 2021; 10:foods10061400. [PMID: 34204278 PMCID: PMC8234661 DOI: 10.3390/foods10061400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study investigates the antioxidant behaviors of a hazelnut tetrapeptide, FSEY (Phe-Ser-Glu-Tyr), in an oil-in-water emulsion. The emulsion was prepared with stripped hazelnut oil at a ratio of 10%. O/W emulsions, both with and without antioxidants (FSEY and TBHQ), were incubated at 37 °C. The chemical stabilities, including those of free radicals and primary and secondary oxidation productions, along with the physical stabilities, which include particle size, zeta-potential, color, pH, and ΔBS, were analyzed. Consequently, FSEY displayed excellent antioxidant behaviors in the test system by scavenging free lipid radicals. Both primary and secondary oxidation products were significantly lower in the FSEY groups. Furthermore, FSEY assisted in stabilizing the physical structure of the emulsion. This antioxidant could inhibit the increase in particle size, prevent the formation of creaming, and stabilize the original color and pH of the emulsion. Consequently, FSEY may be an effective antioxidant additive to use in emulsion systems.
Collapse
|
16
|
Zhang M, Wang L, Liu Y, Li J. Effects of antioxidants, proteins, and their combination on emulsion oxidation. Crit Rev Food Sci Nutr 2021; 62:8137-8160. [PMID: 33998841 DOI: 10.1080/10408398.2021.1925869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipid oxidation largely determines the quality of emulsion systems as well as their final products. Therefore, an increasing number of studies have focused on the control of lipid oxidation, particularly on its mechanism. In this review, we discuss the factors affecting the efficiency of antioxidants in emulsion systems, such as the free radical scavenging ability, specifically emphasizing on the interfacial behavior and the influence of surfactants on the interfacial distribution of antioxidants. To enhance the antioxidant efficiency of antioxidants in emulsion systems, we discussed whether the combination of antioxidants and proteins can improve antioxidant effects. The types, mixing applications, structures, interface behaviors, effects of surfactants on interfacial proteins, and the location of proteins are associated with the antioxidant effects of proteins in emulsion systems. Antioxidants and proteins can be combined in both covalent and non-covalent ways. The fabrication conditions, conjugation methods, interface behaviors, and characterization methods of these two combinations are also discussed. Our review provides useful information to guide better strategies for providing stability and controlling lipid oxidation in emulsions. The main challenges and future trends in controlling lipid oxidation in complex emulsion systems are also discussed.
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
17
|
Ferreira da Silveira TF, Laguerre M, Bourlieu-Lacanal C, Lecomte J, Durand E, Figueroa-Espinoza MC, Baréa B, Barouh N, Castro IA, Villeneuve P. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Tian L, Kejing Y, Zhang S, Yi J, Zhu Z, Decker EA, McClements DJ. Impact of tea polyphenols on the stability of oil-in-water emulsions coated by whey proteins. Food Chem 2020; 343:128448. [PMID: 33158675 DOI: 10.1016/j.foodchem.2020.128448] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 01/12/2023]
Abstract
The ability of tea polyphenols (0, 0.01, 0.02 or 0.04 w/v %) to inhibit lipid and protein oxidation in walnut oil-in-water (O/W) emulsions was examined, as well as to alter their stability to aggregation and creaming. The lipid droplets in these emulsions were coated by whey proteins. The physical stability of the emulsions during storage (50 °C, 96 h) was improved by addition of 0.01% tea polyphenols, but reduced when higher levels were added. Low levels (0.01%) of tea polyphenols inhibited lipid oxidation (lipid hydroperoxide and 2-thiobarbituric acid-reactive substance formation) and protein oxidation (carbonyl and Schiff base formation, sulfhydryl and intrinsic fluorescence loss, and molecular weight changes). However, high levels (0.04%) of tea polyphenols were less effective at inhibiting lipid oxidation, and actually promoted protein oxidation. Tea polyphenols are natural antioxidants that can enhance the quality and shelf life of emulsified polyunsaturated lipids when used at an appropriate concentration.
Collapse
Affiliation(s)
- Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road, An yang, Henan 455000, PR China.
| | - Yang Kejing
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, China.
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road, An yang, Henan 455000, PR China.
| | - Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, China.
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, China.
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | | |
Collapse
|
19
|
Yi J, Qiu M, Liu N, Tian L, Zhu X, Decker EA, McClements DJ. Inhibition of Lipid and Protein Oxidation in Whey-Protein-Stabilized Emulsions Using a Natural Antioxidant: Black Rice Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10149-10156. [PMID: 32833451 DOI: 10.1021/acs.jafc.0c03978] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The food industry is exploring the natural environment to identify botanical extracts that can be used as functional ingredients that can replace synthetic ingredients in foods. In the present study, the ability of black rice anthocyanins as natural antioxidants to inhibit both lipid and protein oxidation in protein-stabilized oil-in-water emulsions was examined. Whey-protein-stabilized emulsions were prepared containing 0, 0.02, 0.04, and 0.06% (w/v) anthocyanins, and then the impact of this plant-based extract on their physical and chemical stabilities was evaluated. The addition of the anthocyanins improved the physical stability of the emulsions in a dose-dependent manner by inhibiting droplet aggregation during storage (35 °C for 5 days). The anthocyanins also exhibited good antioxidant activity in a dose-dependent manner, as seen by their capacity for inhibiting both lipid oxidation (reduced lipid hydroperoxides and malondialdehyde) and protein oxidation (reduced carbonyl and Schiff base formation, intrinsic fluorescence loss, and molecular weight changes). Black rice anthocyanins may therefore be an effective botanical extract for improving the stability of protein-stabilized food emulsions by inhibiting oxidative reactions.
Collapse
Affiliation(s)
- Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, People's Republic of China
| | - Manyan Qiu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, People's Republic of China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, People's Republic of China
| | - Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road, Anyang, Henan 455000, People's Republic of China
| | - Xinpeng Zhu
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, Shaanxi 725000, People's Republic of China
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Kiokias S, Proestos C, Oreopoulou V. Phenolic Acids of Plant Origin-A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020; 9:E534. [PMID: 32344540 PMCID: PMC7231038 DOI: 10.3390/foods9040534] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
Nature has generously offered a wide range of herbs (e.g., thyme, oregano, rosemary, sage, mint, basil) rich in many polyphenols and other phenolic compounds with strong antioxidant and biochemical properties. This paper focuses on several natural occurring phenolic acids (caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) and first gives an overview of their most common natural plant sources. A summary of the recently reported antioxidant activities of the phenolic acids in o/w emulsions is also provided as an in vitro lipid-based model system. Exploring the interfacial activity of phenolic acids could help to further elucidate their potential health properties against oxidative stress conditions of biological membranes (such as lipoproteins). Finally, this review reports on the latest literature evidence concerning specific biochemical properties of the examined phenolic acids.
Collapse
Affiliation(s)
- Sotirios Kiokias
- Research Executive Agency (REA), Place Charles Rogier 16, 1210 Bruxelles, Belgium;
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece;
| | - Vassiliki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou, 9, 15780 Athens, Greece
| |
Collapse
|
21
|
Riquelme N, Sepúlveda C, Arancibia C. Influence of Ternary Emulsifier Mixtures on Oxidative Stability of Nanoemulsions Based on Avocado Oil. Foods 2020; 9:E42. [PMID: 31947752 PMCID: PMC7022498 DOI: 10.3390/foods9010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
The aim of this work was to study the effect of two emulsifiers (M1: SL-soy lecithin, Tw80-Tween 80 and CasCa-calcium caseinate and M2: SL-soy lecithin, Tw80-Tween 80 and SE-sucrose esters) on the oxidative stability of avocado oil-based nanoemulsions. Oil-in-water nanoemulsions were prepared using 3.6% w/w of two emulsifier mixtures, which were optimized by mixture experimental design in order to minimize particle size (PS) and polydispersity index (PdI). Then, the oxidative stability of nanoemulsions was evaluated through both an induction period and a quantification of hydroperoxides and thiobarbituric acid reactive species (TBARs) under accelerated storage conditions. The simplex-centroid mixture design showed that PS and PdI varied when proportions of different emulsifiers were modified, obtaining an optimized concentration for each mixture of: 85% SL, 10% Tw80 and 5%CasCa (M1) and 85% SL, 7.4% Tw80 and 7.6% SE (M2) that produced nanoemulsions with PS ~116 nm and PdI < 0.2. Nanoemulsions elaborated with M1 and M2 presented similar particle characteristics and physical stability to the control sample with Tw80. However, M1 nanoemulsions were more stable against lipid oxidation, since they showed the highest induction period and lower formation of hydroperoxides and TBARs during storage.
Collapse
Affiliation(s)
- Natalia Riquelme
- Food Science and Technology Department, Technological Faculty, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central 9170201, Chile; (N.R.); (C.S.)
- Food Science and Chemical Technology Department, Universidad de Chile, Santos Dumont 964, Independencia 8380494, Chile
| | - Camila Sepúlveda
- Food Science and Technology Department, Technological Faculty, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central 9170201, Chile; (N.R.); (C.S.)
| | - Carla Arancibia
- Food Science and Technology Department, Technological Faculty, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central 9170201, Chile; (N.R.); (C.S.)
| |
Collapse
|
22
|
Samadani F, Behzad T, Enayati MS. Facile strategy for improvement properties of whey protein isolate/walnut oil bio-packaging films: Using modified cellulose nanofibers. Int J Biol Macromol 2019; 139:858-866. [DOI: 10.1016/j.ijbiomac.2019.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
23
|
Huang X, Lee EJ, Ahn DU. Development of non-dairy creamer analogs/mimics for an alternative of infant formula using egg white, yolk, and soy proteins. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:881-890. [PMID: 30744367 PMCID: PMC6498084 DOI: 10.5713/ajas.18.0738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE A study was conducted to develop non-dairy creamer analogs/mimics using egg white, egg yolk, soy protein and their combinations, and their nutrient content, shelf-life and flavor acceptability were compared. METHODS Spray dried egg white, egg yolk, and soy protein isolate were purchased from manufacturers and used for the formulae. RESULTS The protein contents of the non-dairy creamer analogs/mimics were about 8.5% as calculated. The amounts of oleic and linoleic acid content increased as the amount of yolk increased in the formula, but the increases of polyunsaturated fatty acids were <0.5% of total fat. Addition of egg yolk to the formula increased choline and lutein content in the products, but the amounts were <0.4 mg/g for choline and 4 μg/g for lutein. The lutein in the products continued to decrease over the storage time, and only about 15% to 20% of the 0-month amounts were left after 3 months of storage. Although the thiobarbituric acid reactive substances values of the spray-dried non-dairy creamer analogs/mimics increased as storage time increased, the values were still low. Yellowness, darkness, and egg flavor/odor of the non-dairy creamer analogs/mimics increased as the amount of egg yolk in the formula increased. The overall acceptability of the non-dairy creamer analogs/mimics was closely related to the intensity of egg flavor/odor, but storage improved their overall acceptance because most of the off-odor volatiles disappeared during the storage. Water temperature was the most important parameter in dissolving spray-dried non-dairy creamer analogs/mimics, and 55°C to 75°C was the optimal water temperature conditions to dissolve them. CONCLUSION Higher amounts of yolk and soy protein combinations in place of egg white reduced the cost of the products significantly and those products contained better and balanced nutrients than the commercial coffee creamers. However, off-flavor and solubility were two important issues in the products.
Collapse
Affiliation(s)
- Xi Huang
- College of Food Science & Technology, Huazhong Agricultural University, Egg Processing Technology Local Joint National Engineering Research Center, National R&D Center for Egg Processing, Wuhan, Hubei 430070,
China
| | - Eun Joo Lee
- Department of Food and Nutrition, University of Wisconsin-Stout, Menomonie, WI 54751,
USA
| | - Dong U. Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011,
USA
| |
Collapse
|
24
|
Yi J, Ning J, Zhu Z, Cui L, Decker EA, McClements DJ. Impact of interfacial composition on co-oxidation of lipids and proteins in oil-in-water emulsions: Competitive displacement of casein by surfactants. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Zhu Z, Zhao C, Yi J, Liu N, Cao Y, Decker EA, McClements DJ. Impact of Interfacial Composition on Lipid and Protein Co-Oxidation in Oil-in-Water Emulsions Containing Mixed Emulisifers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4458-4468. [PMID: 29648824 DOI: 10.1021/acs.jafc.8b00590] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The impact of interfacial composition on lipid and protein co-oxidation in oil-in-water emulsions containing a mixture of proteins and surfactants was investigated. The emulsions consisted of 5% v/v walnut oil, 0.5% w/v whey protein isolate (WPI), and 0 to 0.4% w/v Tween 20 (pH 3 and pH 7). The protein surface load, magnitude of the ξ-potential, and mean particle diameter of the emulsions decreased as the Tween 20 concentration was increased, indicating the whey proteins were displaced by this nonionic surfactant. The whey proteins were displaced from the lipid droplet surfaces more readily at pH 3 than at pH 7, which may have been due to differences in the conformation or interactions of the proteins at the droplet surfaces at different pH values. Emulsions stabilized by whey proteins alone had relatively low lipid oxidation rates when incubated in the dark at 45 °C for up to 8 days, as determined by measuring lipid hydroperoxides and 2-thiobarbituric acid-reactive substances (TBARS). Conversely, the whey proteins themselves were rapidly oxidized, as shown by carbonyl formation, intrinsic fluorescence, sulfhydryl group loss, and electrophoresis measurements. Displacement of whey proteins from the interface by Tween 20 reduced protein oxidation but promoted lipid oxidation. These results indicated that the adsorbed proteins were more prone to oxidation than the nonadsorbed proteins, and therefore, they could act as better antioxidants. Protein oxidation was faster, while lipid oxidation was slower at pH 3 than at pH 7, which was attributed to a higher antioxidant activity of whey proteins under acidic conditions. These results highlight the importance of interfacial composition and solution pH on the oxidative stability of emulsions containing mixed emulsifiers.
Collapse
Affiliation(s)
- Zhenbao Zhu
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xuefu Road , Xi'an , Shaanxi 710021 , China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Cui Zhao
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xuefu Road , Xi'an , Shaanxi 710021 , China
| | - Jianhua Yi
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xuefu Road , Xi'an , Shaanxi 710021 , China
| | - Ning Liu
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xuefu Road , Xi'an , Shaanxi 710021 , China
| | - Yuangang Cao
- School of Food and Biological Engineering , Shaanxi University of Science and Technology , Xuefu Road , Xi'an , Shaanxi 710021 , China
| | - Eric A Decker
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
26
|
Akcicek A, Karasu S. Utilization of cold pressed chia seed oil waste in a low-fat salad dressing as natural fat replacer. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alican Akcicek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| |
Collapse
|
27
|
McClements DJ, Decker E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:20-35. [PMID: 29227097 DOI: 10.1021/acs.jafc.7b05066] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
There has been strong interest in developing effective strategies to inhibit lipid oxidation in emulsified food products due to the need to incorporate oxidatively labile bioactive lipids, such as ω-3 fatty acids, conjugated linoleic acids, or carotenoids. Emulsifiers or coemulsifiers can be utilized to inhibit lipid oxidation in emulsions. Both of these molecular types can adsorb to droplet surfaces and inhibit lipid oxidation, but emulsifiers can also stabilize droplets against aggregation whereas coemulsifiers cannot. There are a host of existing emulsifiers, covalent conjugates, or physical complexes that have the potential to inhibit lipid oxidation by a variety of mechanisms. Existing emulsifiers with antioxidant potential consist of surfactants, phospholipids, proteins, polysaccharides, and colloidal particles. Conjugates and complexes are typically formed by covalently or physically linking together a surface-active molecule with an antioxidant molecule. This article reviews the molecular and physicochemical basis for the surface and antioxidant activities of emulsifiers and coemulsifiers, highlights the important properties of interfacial layers that can be engineered to control lipid oxidation, and outlines different kinds of existing emulsifiers, conjugates, and complexes that can be used to inhibit oxidation.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Eric Decker
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
28
|
Gumus CE, Decker EA, McClements DJ. Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins. Food Res Int 2017; 100:175-185. [PMID: 28888438 DOI: 10.1016/j.foodres.2017.08.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
Emulsion-based delivery systems are being developed to incorporate ω-3 fatty acids into functional foods and beverages. There is interest in formulating these delivery systems from more sustainable and label-friendly ingredients. The aim of this study was therefore to examine the impact of plant-protein emulsifiers on the oxidative stability of 1wt% fish oil-in-water emulsions. Fish oil emulsions stabilized by three types of legume protein (lentil, pea, and faba bean) were produced using a high-pressure microfluidizer. The formation of primary (peroxides) and secondary (TBARS) lipid oxidation products was measured when the emulsions were stored at 37°C under accelerated (+100μM iron sulfate) or non-accelerated (no added iron) conditions for 21 or 33days, respectively. The particle size, charge and microstructure of the emulsions were monitored during storage using light scattering and microscopy to detect changes in physical stability. Emulsions stabilized by whey protein isolate, a commonly used animal-based protein, were utilized as a control. The emulsions formed using whey protein had smaller initial particle sizes, better physical stability, and slightly better stability to lipid oxidation than the ones formed using plant-based proteins. The impact of protein location (adsorbed versus non-adsorbed) on the oxidative stability of the emulsions was also investigated. The presence of non-adsorbed proteins inhibited lipid oxidation, presumably by binding transition metals and reducing their ability to interact with ω-3 fatty acids in the lipid droplets. Overall, these results have important implications for fabricating emulsion-based delivery systems for bioactive lipids, e.g., they indicate that including high levels of non-adsorbed proteins could improve oxidative stability.
Collapse
Affiliation(s)
- Cansu Ekin Gumus
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|