1
|
Chilenga C, Masamba K, Kasapila W, Ndhlovu B, Munkhuwa V, Rafoneke L, Machira K. Mycotoxin management in Sub-Saharan Africa: A comprehensive systematic review of policies and strategies in Malawi. Toxicol Rep 2025; 14:101871. [PMID: 39811817 PMCID: PMC11731241 DOI: 10.1016/j.toxrep.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Food safety challenges, such as mycotoxin contamination, pose severe threats to public health, agricultural productivity, and economic development across Sub-Saharan African countries and beyond. This study investigated whether government policies related to food safety adequately address these concerns, using Malawi as a case study. We systematically reviewed 29 government-authored policy documents related to food safety. These documents were categorized into six sectors: Agriculture, Environment, Nutrition, Health, Trade and Industry, and Education. Our analysis revealed critical gaps in addressing mycotoxin concerns in these policies, with only 4 of the 29 policy documents (14 %) addressing food safety and mycotoxin management. In contrast, 13 policy documents (45 %) did not address these issues at all, while 12 policy documents (41 %) focused solely on food safety management without addressing mycotoxin contamination. Notably, Malawi's long-term development blueprint, Malawi 2063 , does not include mycotoxin management, underscoring a critical policy gap and broader systemic challenges in integrating food safety and mycotoxin control into national frameworks. Furthermore, Malawi lacks a dedicated sector responsible for food safety and a comprehensive national food safety policy to coordinate efforts in mycotoxin control. While this study centers on Malawi, the findings resonate globally, particularly in Sub-Saharan Africa and other countries with similar agricultural and economic contexts. Addressing these systemic policy gaps is vital for developing integrated food safety frameworks that combat mycotoxin contamination, strengthen sustainable food systems, enhance public health, and foster economic resilience. These findings also provide a replicable model for policy analysis, contributing to international discourse by emphasizing the importance of aligning food safety governance with global development priorities, such as the Sustainable Development Goals.
Collapse
Affiliation(s)
- Chimwemwe Chilenga
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
- Department of Nutrition, HIV and AIDs, Ministry of Health, P/Bag B401, Lilongwe, Malawi
| | - Kingsley Masamba
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
| | - William Kasapila
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
| | - Brown Ndhlovu
- Browns Consulting Company PO Box 274, Rumphi, Malawi
| | - Victor Munkhuwa
- Lilongwe University of Agriculture and Natural Resources, Bunda College Campus, Department of Food Science and Technology, P.O. Box 219, Lilongwe, Malawi
- Ministry of Health, Lilongwe Health Office, PO Box 1274, Lilongwe, Malawi
| | - Lintle Rafoneke
- Browns Consulting Company PO Box 274, Rumphi, Malawi
- Department of Agricultural Economics, LUANAR, Africa Center of Excellence in Agriculture Policy Analysis (APA), P.O box 219, Lilongwe, Malawi
| | - Kennedy Machira
- Browns Consulting Company PO Box 274, Rumphi, Malawi
- Department of Agricultural Economics, LUANAR, Africa Center of Excellence in Agriculture Policy Analysis (APA), P.O box 219, Lilongwe, Malawi
| |
Collapse
|
2
|
Khouni H, Ben Salah-Abbès J, Badji T, Al-Amiery A, Durand N, Zinedine A, Abbès S, Riba A. Mycotoxins in preharvest, postharvest, and stored wheat grains collected from two climatic regions in Algeria. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-11. [PMID: 39973013 DOI: 10.1080/19393210.2025.2463484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Multi-mycotoxin analysis of 22 mycotoxins in 202 durum wheat samples collected in Algeria from 2019 to 2021 was performed by UHPLCMS/MS. Enniatins were present in 2 out of 45 wheat samples in the 2019 harvest, whereas in the harvest of 2020 37.6% of wheat samples were contaminated by ochratoxin A and/or beauvericin, deoxynivalenol (1076 µg/kg), fumonisin B1, enniatins, and zearalenone (most prevalent in 2020 and 2021 harvest). Mycotoxin contamination increased from 37.6% in 2020 to 55.2% in 2021 harvests. The most frequently observed mycotoxin co-occurrence was the combination of enniatin A1, enniatin B, and enniatin B1 (0.5-126 µg/kg) and DON (1307 µg/kg). AFB1 (0.4-2.6 µg/kg) was found in only one sample collected from the continental region. These results pointed to the necessity of frequent and regular wheat quality controls in order to better evaluate the risk regarding the Algerian population.
Collapse
Affiliation(s)
- Hayat Khouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Tiziri Badji
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| | - Ahmed Al-Amiery
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, Nasiriyah, Iraq
| | - Noel Durand
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Université de Montpellier, Avignon Université, Montpellier, France
| | - Abdellah Zinedine
- BIOMARE Laboratory, Applied Microbiology and Biotechnology, Chouaib Doukkali University, El Jadida, Morocco
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Amar Riba
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| |
Collapse
|
3
|
Stafstrom W, Ngure F, Mshanga J, Wells H, Nelson RJ, Mischler J. Modeling maize aflatoxins and fumonisins in a Tanzanian smallholder system: Accounting for diverse risk factors improves mycotoxin models. PLoS One 2025; 20:e0316457. [PMID: 39804920 PMCID: PMC11729969 DOI: 10.1371/journal.pone.0316457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Human exposure to mycotoxins is common and often severe in underregulated maize-based food systems. This study explored how monitoring of these systems could help to identify when and where outbreaks occur and inform potential mitigation efforts. Within a maize smallholder system in Kongwa District, Tanzania, we performed two food surveys of mycotoxin contamination at local grain mills, documenting high levels of aflatoxins and fumonisins in maize destined for human consumption. A farmer questionnaire documented diverse pre-harvest and post-harvest practices among smallholder farmers. We modeled maize aflatoxins and fumonisins as a function of diverse indicators of mycotoxin risk based on survey data, high-resolution geospatial environmental data (normalized difference vegetation index and soil quality), and proximal near-infrared spectroscopy. Interestingly, mixed linear models revealed that all data types explained some portion of variance in aflatoxin and fumonisin concentrations. Including all covariates, 2015 models explained 27.6% and 20.6% of variation in aflatoxin and fumonisin, and 2019 models explained 39.4% and 40.0% of variation in aflatoxin and fumonisin. This study demonstrates the value of using low-cost risk factors to model mycotoxins and provides a framework for designing and implementing mycotoxin monitoring within smallholder settings.
Collapse
Affiliation(s)
- William Stafstrom
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Francis Ngure
- Independent Research Consultant, Mycotoxins Mitigation and Child Stunting Research Trial, Arusha Tanzania & Nairobi, Limuru, Kenya
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States of America
| | - John Mshanga
- Department of Food Sciences and Biotechnology School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Henry Wells
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Rebecca J. Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - John Mischler
- Sustainability and Environmental Education, Goshen College, Goshen, IN, United States of America
| |
Collapse
|
4
|
Bonkoungou S, Dagno K, Basso A, Ekanao T, Atehnkeng J, Agbetiameh D, Neya A, Toure M, Tiendrebeogo A, Konate M, Outani B, Konlambigue M, Callicott KA, Cotty PJ, Dieng I, Falade TDO, Bandyopadhyay R, Ortega-Beltran A. Mitigation of aflatoxin contamination of maize, groundnut, and sorghum by commercial biocontrol products in farmers' fields across Burkina Faso, Mali, Niger, and Togo. CABI AGRICULTURE AND BIOSCIENCE 2024; 5:106. [PMID: 39539746 PMCID: PMC11554699 DOI: 10.1186/s43170-024-00313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Background Aflatoxin contamination by Aspergillus section Flavi fungi poses a significant threat to food security and public health in sub-Saharan Africa (SSA). Maize, groundnut, and sorghum are staple crops frequently contaminated with aflatoxins, sometimes at dangerous levels. Despite its detrimental effects, many farmers in SSA lack access to effective tools for mitigating aflatoxin contamination. Biocontrol based on atoxigenic isolates of A. flavus is an effective tool to limit aflatoxin contamination. Methods The development, testing, registration, and commercial use of the aflatoxin biocontrol product Aflasafe BF01 for use in Burkina Faso is described. In addition, the deployment of the biocontrol technology across Mali, Niger, and Togo is documented, and for the first time, the use of aflatoxin biocontrol in sorghum is reported. Results In all four countries, treated crops had significantly (P < 0.05) less aflatoxins than crops from untreated fields. Most treated crops met the stringent tolerance threshold for human consumption, 4 ppb total aflatoxin. Using native atoxigenic isolates of A. flavus and employing a multi-disciplinary approach, aflatoxin biocontrol products have demonstrated significant success in reducing aflatoxin levels in treated crops compared to untreated ones. Conclusions This multi-year, multi-funded source study underscores the effectiveness of biocontrol strategies in mitigating aflatoxin contamination at scale, offering a regional approach for sustainable management in West Africa and potentially unlocking significant health and economic benefits for the region. Supplementary Information The online version contains supplementary material available at 10.1186/s43170-024-00313-3.
Collapse
Affiliation(s)
- Saïdou Bonkoungou
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | | | - Adamou Basso
- Institut National de la Recherche Agronomique du Niger, Niamey, Niger
| | | | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- Present Address: IITA, Bukavu, Democratic Republic of Congo
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- Present Address: Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Adama Neya
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | - Mahama Toure
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | - Assiata Tiendrebeogo
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou, Burkina Faso
| | | | - Bibata Outani
- Institut National de la Recherche Agronomique du Niger, Niamey, Niger
| | | | - Kenneth A. Callicott
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ USA
| | - Peter J. Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ USA
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ibnou Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | |
Collapse
|
5
|
Xing S, Cheng S, Tan M. Multi-emitter metal-organic frameworks as ratiometric luminescent sensors for food contamination and spoilage detection. Crit Rev Food Sci Nutr 2023; 64:7028-7044. [PMID: 36794423 DOI: 10.1080/10408398.2023.2179594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Food contamination and spoilage is a worldwide concern considering its adverse effect on public health and food security. Real time monitoring food quality can reduce the risk of foodborne disease to consumers. Particularly, the emergence of multi-emitter luminescent metal-organic frameworks (LMOFs) as ratiometric sensory materials has provided the possibility for food quality and safety detection with high sensitivity and selectivity taking advantage of specific host-guest interactions, pre-concentrating and molecule-sieving effects of MOFs. Furthermore, the excellent sensing performance of multi-emitter MOF-based ratiometric sensors including self-calibration, multi-dimensional recognition and visual signal readout is able to meet the increasing rigor requirement of food safety evaluation. Multi-emitter MOF-based ratiometric sensors have become the focus of food safety detection. This review focuses on design strategies for different multiple emission sources assembly to construct multi-emitter MOFs materials based on at least two emitting centers. The design strategies for creating multi-emitter MOFs can be mainly classified into three categories: (1) multiple emission building blocks assembly in a single MOF phase; (2) single non-luminescent MOF or LMOF phase as a matrix for chromophore guest(s); (3) heterostructured hybrids of LMOF with other luminescent materials. In addition, the sensing signal output modes of multi-emitter MOF-based ratiometric sensors have critically discussed. Next, we highlight the recent progress for the development of multi-emitter MOF as ratiometric sensors in food contamination and spoilage detection. Their future improvement and advancing direction potential for their practical application is finally discussed.
Collapse
Affiliation(s)
- Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Ortega-Beltran A, Bandyopadhyay R. Aflatoxin biocontrol in practice requires a multidisciplinary, long-term approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
One of the most elusive food safety problems is the contamination of staple crops with the highly carcinogenic aflatoxins produced by Aspergillus section Flavi fungi. Governments, farmers, institutions, consumers, and companies demand aflatoxin solutions. Many aflatoxin management technologies exist, but their real-life use and effectiveness is determined by diverse factors. Biocontrol products based on atoxigenic isolates of A. flavus can effectively reduce aflatoxins from field to fork. However, development, testing, and registration of this technology is a laborious process. Further, several barriers prevent the sustainable use of biocontrol products. There are challenges to have the products accepted, to make them available at scale and develop mechanisms for farmers to buy them, to have the products correctly used, to demonstrate their value, and to link farmers to buyers of aflatoxin-safe crops. Developing an effective aflatoxin management technology is the first, major step. The second one, perhaps more complicated and unfortunately seldomly discussed, is to develop mechanisms to have it used at scale, sustainably, and converged with other complementary technologies. Here, challenges and actions to scale the aflatoxin biocontrol technology in several countries in sub-Saharan Africa are described with a view to facilitating aflatoxin management efforts in Africa and beyond.
Collapse
|
7
|
Micro-climatic variations across Malawi have a greater influence on contamination of maize with aflatoxins than with fumonisins. Mycotoxin Res 2022; 39:33-44. [PMID: 36443622 PMCID: PMC10156841 DOI: 10.1007/s12550-022-00471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
This study reports levels of aflatoxin and fumonisin in maize samples (n = 1294) from all agroecological zones (AEZs) in Malawi. Most maize samples (> 75%) were contaminated with aflatoxins and 45% with fumonisins, which co-occurred in 38% of the samples. Total aflatoxins varied across the AEZs, according to mean annual temperature (P < 0.05) of the AEZs. Samples from the lower Shire AEZ (median = 20.8 µg/kg) had higher levels of aflatoxins (P < 0.05) than those from the other AEZs (median = 3.0 µg/kg). Additionally, the majority (75%) of the positive samples from the lower Shire AEZ had aflatoxin levels exceeding the EU regulatory limit (4 µg/kg), whereas 25%, 37%, and 39% of positive samples exceeded the threshold in the mid-elevation, Lake Shore and upper and middle Shire, and highlands AEZs, respectively. The lower Shire AEZ is characterised by higher mean temperatures throughout the year and low erratic rainfall. However, total fumonisins did not show significant variation across AEZs, but all positive samples exceeded 150 µg/kg, required for tolerable daily intake of 1.0 µg/kg body weight per day, established by the European Food Safety Authority Panel on Contaminants in the Food Chain. Therefore, results of this study suggest that contamination of maize with aflatoxin responds to micro-climate more than with fumonisins. In addition, the data will be useful to public health policy-makers and stakeholders to articulate and implement monitoring and mitigation programs.
Collapse
|
8
|
Atehnkeng J, Ojiambo PS, Ortega-Beltran A, Augusto J, Cotty PJ, Bandyopadhyay R. Impact of frequency of application on the long-term efficacy of the biocontrol product Aflasafe in reducing aflatoxin contamination in maize. Front Microbiol 2022; 13:1049013. [PMID: 36504767 PMCID: PMC9732863 DOI: 10.3389/fmicb.2022.1049013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aflatoxins, produced by several Aspergillus section Flavi species in various crops, are a significant public health risk and a barrier to trade and development. In sub-Saharan Africa, maize and groundnut are particularly vulnerable to aflatoxin contamination. Aflasafe, a registered aflatoxin biocontrol product, utilizes atoxigenic A. flavus genotypes native to Nigeria to displace aflatoxin producers and mitigate aflatoxin contamination. Aflasafe was evaluated in farmers' fields for 3 years, under various regimens, to quantify carry-over of the biocontrol active ingredient genotypes. Nine maize fields were each treated either continuously for 3 years, the first two successive years, in year 1 and year 3, or once during the first year. For each treated field, a nearby untreated field was monitored. Aflatoxins were quantified in grain at harvest and after simulated poor storage. Biocontrol efficacy and frequencies of the active ingredient genotypes decreased in the absence of annual treatment. Maize treated consecutively for 2 or 3 years had significantly (p < 0.05) less aflatoxin (92% less) in grain at harvest than untreated maize. Maize grain from treated fields subjected to simulated poor storage had significantly less (p < 0.05) aflatoxin than grain from untreated fields, regardless of application regimen. Active ingredients occurred at higher frequencies in soil and grain from treated fields than from untreated fields. The incidence of active ingredients recovered in soil was significantly correlated (r = 0.898; p < 0.001) with the incidence of active ingredients in grain, which in turn was also significantly correlated (r = -0.621, p = 0.02) with aflatoxin concentration. Although there were carry-over effects, caution should be taken when drawing recommendations about discontinuing biocontrol use. Cost-benefit analyses of single season and carry-over influences are needed to optimize use by communities of smallholder farmers in sub-Saharan Africa.
Collapse
Affiliation(s)
- Joseph Atehnkeng
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Peter S. Ojiambo
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Alejandro Ortega-Beltran
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Joao Augusto
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Peter J. Cotty
- College of Food Science and Engineering, Ocean University of China, Qingdao, China,Agricultural Research Service, United States Department of Agriculture, Tucson, AZ, United States
| | - Ranajit Bandyopadhyay
- Pathology and Mycotoxin, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria,*Correspondence: Ranajit Bandyopadhyay,
| |
Collapse
|
9
|
Falade TDO, Neya A, Bonkoungou S, Dagno K, Basso A, Senghor AL, Atehnkeng J, Ortega-Beltran A, Bandyopadhyay R. Aflatoxin Contamination of Maize, Groundnut, and Sorghum Grown in Burkina Faso, Mali, and Niger and Aflatoxin Exposure Assessment. Toxins (Basel) 2022; 14:700. [PMID: 36287969 PMCID: PMC9611981 DOI: 10.3390/toxins14100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin contamination of staple crops by Aspergillus flavus and closely related fungi is common across the Sahel region of Africa. Aflatoxins in maize, groundnut, and sorghum collected at harvest or from farmers' stores within two weeks of harvest from Burkina Faso, Mali, and Niger were quantified. Thereafter, aflatoxin exposure values were assessed using per capita consumption rates of those crops. Mean aflatoxin concentrations in maize were high, 128, 517, and 659 µg/kg in Mali, Burkina Faso, and Niger, respectively. The estimated probable daily intake (PDI) of aflatoxins from maize ranged from 6 to 69, 29 to 432, and 310 to 2100 ng/kg bw/day in Mali, Burkina Faso, and Niger, respectively. Similarly, mean aflatoxin concentrations in sorghum were high, 76 and 259 µg/kg in Mali and Niger, respectively, with an estimated PDI of 2-133 and 706-2221. For groundnut, mean aflatoxin concentrations were 115, 277, and 628 µg/kg in Mali, Burkina Faso, and Niger, respectively. Aflatoxin exposure values were high with an estimated 9, 28, and 126 liver cancer cases/100,000 persons/year in Mali, Burkina Faso, and Niger, respectively. Several samples were extremely unsafe, exceeding manyfold regulatory levels of diverse countries (up to 2000 times more). Urgent attention is needed across the Sahel for integrated aflatoxin management for public health protection, food and nutrition security, and access to trade opportunities.
Collapse
Affiliation(s)
| | - Adama Neya
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou BP 8645, Burkina Faso
| | - Saïdou Bonkoungou
- Institut de l’Environnement et de Recherches Agricoles, Ouagadougou BP 8645, Burkina Faso
| | - Karim Dagno
- Institut d’Économie Rurale, Bamako BP 258, Mali
| | - Adamou Basso
- Institut National de la Recherche Agronomique du Niger, Niamey P.O. Box 429, Niger
| | | | - Joseph Atehnkeng
- International Institute of Tropical Agriculture (IITA), Bukavu P.O. Box 1222, Democratic Republic of the Congo
| | | | | |
Collapse
|
10
|
Ola OT, Ogedengbe OO, Raji TM, Eze B, Chama M, Ilori ON, Awofisayo MA, Kaptoge L, Bandyopadhyay R, Ortega-Beltran A, Ndarubu AA. Aflatoxin biocontrol effectiveness in the real world—Private sector-led efforts to manage aflatoxins in Nigeria through biocontrol-centered strategies. Front Microbiol 2022; 13:977789. [PMID: 36118233 PMCID: PMC9478371 DOI: 10.3389/fmicb.2022.977789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins are toxic compounds produced by several Aspergillus species that contaminate various crops. The impact of aflatoxin on the health of humans and livestock is a concern across the globe. Income, trade, and development sectors are affected as well. There are several technologies to prevent aflatoxin contamination but there are difficulties in having farmers use them. In Nigeria, an aflatoxin biocontrol product containing atoxigenic isolates of A. flavus has been registered with regulatory authorities and is now being produced at scale by the private company Harvestfield Industries Limited (HIL). The current study reports results of biocontrol effectiveness trials in maize conducted by HIL during 2020 in several locations across Nigeria and compared to untreated maize from nearby locations. Also, maize was collected from open markets to assess levels of contamination. All treated maize met tolerance thresholds (i.e., <4 ppb total aflatoxin). In contrast, most maize from untreated fields had a higher risk of aflatoxin contamination, with some areas averaging 38.5 ppb total aflatoxin. Maize from open markets had aflatoxin above tolerance thresholds with even an average of up to 90.3 ppb. Results from the trials were presented in a National Workshop attended by key officers of Government agencies, farmer organizations, the private sector, NGOs, and donors. Overall, we report (i) efforts spearheaded by the private sector to have aflatoxin management strategies used at scale in Nigeria, and (ii) deliberations of key stakeholders to ensure the safety of crops produced in Nigeria for the benefit of farmers, consumers, and industries.
Collapse
Affiliation(s)
- O. T. Ola
- Harvestfield Industries Limited, Lagos, Nigeria
| | | | - T. M. Raji
- Harvestfield Industries Limited, Lagos, Nigeria
| | - B. Eze
- Harvestfield Industries Limited, Lagos, Nigeria
| | - M. Chama
- Harvestfield Industries Limited, Lagos, Nigeria
| | - O. N. Ilori
- Harvestfield Industries Limited, Lagos, Nigeria
| | | | - L. Kaptoge
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - R. Bandyopadhyay
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - A. A. Ndarubu
- Harvestfield Industries Limited, Lagos, Nigeria
- *Correspondence: A. A. Ndarubu,
| |
Collapse
|
11
|
Mahuku G, Mauro A, Pallangyo B, Nsami E, Boni S, Koyano E, Mponda O, Ortega-Beltran A, Atehnkeng J, Aquiline F, Samuel R, Njela J, Cotty P, Bandyopadhyay R. Atoxigenic-based technology for biocontrol of aflatoxin in maize and groundnuts for Tanzania. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Application of biocontrol products containing atoxigenic isolates of Aspergillus flavus to reduce aflatoxin content in crops is an effective strategy for managing aflatoxin in several regions throughout the world. We report the development and validation of two aflatoxin biocontrol products, Aflasafe TZ01 and Aflasafe TZ02, for use in maize and groundnut in Tanzania, a country frequently affected by aflatoxin contamination. Each product contains four atoxigenic A. flavus genotypes native and widely distributed in Tanzania. Efficacy tests on maize and groundnut were conducted over two years and in four regions of Tanzania where aflatoxin contamination is prevalent. Application of both products significantly (P<0.05) reduced aflatoxin levels in maize and groundnut in both years and in all districts. No differences were observed in total Aspergillus section Flavi population in treated and untreated fields, revealing that application of the biocontrol products do not alter overall Aspergillus populations in the environment. The results indicate that both products are effective tools for aflatoxin mitigation in groundnut and maize. The products were officially registered in 2018. Currently, there are scale-out and-up efforts of aflatoxin biocontrol products in Tanzania through a private sector company that is making the products available to farmers. Protecting maize and groundnut from aflatoxin contamination in Tanzania can result in health, income, and trade benefits.
Collapse
Affiliation(s)
- G. Mahuku
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - A. Mauro
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - B. Pallangyo
- Plant Health Services, Ministry of Agriculture, P.O. Box 2182, Dodoma, Tanzania
| | - E. Nsami
- National Biological Control Center, P.O. Box 30031, Kibaha, Tanzania
| | - S.B. Boni
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
- World Vegetable Center, Eastern and Southern Africa, P.O. Box 10, Duluti, Arusha, Tanzania
| | - E. Koyano
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - O. Mponda
- Department of Research, Ministry of Agriculture, Livestock and Fisheries, P.O. Box 9192, Dar es Salaam, Tanzania
| | - A. Ortega-Beltran
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - J. Atehnkeng
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - F. Aquiline
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - R. Samuel
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - J. Njela
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| | - P.J. Cotty
- USDA-ARS, 416 West Congress Street, Tucson, AZ 85701, USA
| | - R. Bandyopadhyay
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| |
Collapse
|
12
|
Aasa A, Fru F, Adelusi O, Oyeyinka S, Njobeh P. A review of toxigenic fungi and mycotoxins in feeds and food commodities in West Africa. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fungal contamination is a threat to food safety in West Africa with implications for food and feed due to their climate, which is characterised by high temperatures and high relative humidity, which are environmental favourable for fast fungal growth and mycotoxin production. This report gives perspective on studies on toxigenic fungi (Aspergillus, Fusarium and Penicillium) and their toxins, mainly aflatoxins, fumonisins and ochratoxins commonly found in some West African countries, including Benin, Burkina Faso, Gambia, Ghana, Ivory Coast, Mali, Nigeria, Senegal, Sierra Leone, and Togo. Only four of these countries have mycotoxins regulations in place for feeds and food products (Ghana, Ivory Coast, Nigeria, and Senegal). Food commodities that are widely consumed and were thoroughly investigated in this region include cereals, peanuts, cassava chips (flakes), cassava flour, chilies, peanuts, locust beans, melon, and yam products. In conclusion, authorities and scientists needed to consider research and approaches to monitor mycotoxins in foods and feeds produced and consumed in West Africa.
Collapse
Affiliation(s)
- A.O. Aasa
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - F.F. Fru
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - O.A. Adelusi
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - S.A. Oyeyinka
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - P.B. Njobeh
- Department of Biotechnology and Food Technology, Faculty of Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| |
Collapse
|
13
|
Nji QN, Babalola OO, Ekwomadu TI, Nleya N, Mwanza M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins (Basel) 2022; 14:318. [PMID: 35622564 PMCID: PMC9146326 DOI: 10.3390/toxins14050318] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023] Open
Abstract
Africa is one of the regions with high mycotoxin contamination of foods and continues to record high incidences of liver cancers globally. The agricultural sector of most African countries depends largely on climate variables for crop production. Production of mycotoxins is climate-sensitive. Most stakeholders in the food production chain in Africa are not aware of the health and economic effects of consuming contaminated foods. The aim of this review is to evaluate the main factors and their degree of contribution to the high levels of mycotoxins in African foods. Thus, knowledge of the contributions of different factors responsible for high levels of these toxins will be a good starting point for the effective mitigation of mycotoxins in Africa. Google Scholar was used to conduct a systemic search. Six factors were found to be linked to high levels of mycotoxins in African foods, in varying degrees. Climate change remains the main driving factor in the production of mycotoxins. The other factors are partly man-made and can be manipulated to become a more profitable or less climate-sensitive response. Awareness of the existence of these mycotoxins and their economic as well as health consequences remains paramount. The degree of management of these factors regarding mycotoxins varies from one region of the world to another.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
| | - Theodora Ijeoma Ekwomadu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Nancy Nleya
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
14
|
Hitabatuma A, Wang P, Su X, Ma M. Metal-Organic Frameworks-Based Sensors for Food Safety. Foods 2022; 11:382. [PMID: 35159532 PMCID: PMC8833942 DOI: 10.3390/foods11030382] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Food contains a variety of poisonous and harmful substances that have an impact on human health. Therefore, food safety is a worldwide public concern. Food detection approaches must ensure the safety of food at every step of the food supply chain by monitoring and evaluating all hazards from every single step of food production. Therefore, early detection and determination of trace-level contaminants in food are one of the most crucial measures for ensuring food safety and safeguarding consumers' health. In recent years, various methods have been introduced for food safety analysis, including classical methods and biomolecules-based sensing methods. However, most of these methods are laboratory-dependent, time-consuming, costly, and require well-trained technicians. To overcome such problems, developing rapid, simple, accurate, low-cost, and portable food sensing techniques is essential. Metal-organic frameworks (MOFs), a type of porous materials that present high porosity, abundant functional groups, and tunable physical and chemical properties, demonstrates promise in large-number applications. In this regard, MOF-based sensing techniques provide a novel approach in rapid and efficient sensing of pathogenic bacteria, heavy metals, food illegal additives, toxins, persistent organic pollutants (POPs), veterinary drugs, and pesticide residues. This review focused on the rapid screening of MOF-based sensors for food safety analysis. Challenges and future perspectives of MOF-based sensors were discussed. MOF-based sensing techniques would be useful tools for food safety evaluation owing to their portability, affordability, reliability, sensibility, and stability. The present review focused on research published up to 7 years ago. We believe that this work will help readers understand the effects of food hazard exposure, the effects on humans, and the use of MOFs in the detection and sensing of food hazards.
Collapse
Affiliation(s)
| | | | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.H.); (P.W.); (M.M.)
| | | |
Collapse
|
15
|
Kagot V, De Boevre M, Landschoot S, Obiero G, Okoth S, De Saeger S. Comprehensive analysis of multiple mycotoxins and Aspergillus flavus metabolites in maize from Kenyan households. Int J Food Microbiol 2021; 363:109502. [PMID: 34952410 DOI: 10.1016/j.ijfoodmicro.2021.109502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
This study assessed the levels of mycotoxins in maize from Kenyan households. Further, local open pollinated maize varieties were compared with commercial hybrids to evaluate which variety is less susceptible to mycotoxin contamination. Four hundred and eighty (n = 480) maize samples were collected in the years 2018-2020 from households in Eastern, Western, Coastal and Lake Victoria regions of Kenya. Liquid chromatography coupled to tandem mass spectrometry was used to detect and quantify 22 mycotoxins, along with 31 Aspergillus flavus metabolites in the samples. Eastern Kenya had the highest aflatoxin (AF) contamination with 75% of samples having AF levels above the Kenyan regulatory limits (10 μg/kg), the highest concentration was 558.1 μg/kg. In Western Kenya, only 18% of samples had concentration levels above the Kenyan regulatory limits for AF with highest sample having 73.3 μg/kg. The Lake Victoria region had the most fumonisins (F) contamination, with 53% of the samples having fumonisin B1 (FB1) < 1000 μg/kg. However, only 20% of the samples surpassed the Kenyan regulatory limit for total fumonisins (2000 μg/kg) with the highest concentration being 13,022 μg/kg. In addition, 21.6% of samples from the Lake Victoria region had zearalenone (ZEN) and deoxynivalenol (DON) above regulatory limits for European countries (1000 μg/kg). Western region had the least A. flavus metabolites contamination (18%) while the Eastern region had the highest incidence of A. flavus metabolites (81%). Among the A. flavus metabolites, cyclopiazonic acid (CPA), beta-cyclopiazonic acid (β CPA), flavacol (FLV) and methylcitreo-isocoumarin (MIC) positively correlated with each other but negatively correlated with the other metabolites. Significant positive co-occurrence was also noted among Fusarium mycotoxins: nivalenol (NIV) positively correlated with DON (r = 0.81), fusarenon-X (FX) (r = 0.81) and ZEN (r = 0.70). Negative correlations were observed between Aspergillus and Fusarium mycotoxins: aflatoxin B1 (AFB1) negatively correlated with FB1 (r = -0.11), FX (r = -0.17) and ZEN (r = -0.20). Local open-pollinated maize varieties (L-opv) were less susceptible to mycotoxin contamination compared to the commercial hybrids (C-hy). This study reveals that Kenyan maize is contaminated with multiple mycotoxins most of which are not regulated in Kenya despite being regulated in other parts of the world. A comprehensive legislation should therefore be put in place to protect the Kenyan public against chronic exposure to these mycotoxins. In addition to high yield, there is a need for commercial hybrid maize breeders to incorporate mycotoxin resistance as an important trait in germplasm improvement in seeds production.
Collapse
Affiliation(s)
- Victor Kagot
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya.
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - George Obiero
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Sheila Okoth
- School of Biological sciences, University of Nairobi, Nairobi, Kenya
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology & Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Gauteng, Johannesburg, South Africa..
| |
Collapse
|
16
|
Boni S, Beed F, Kimanya M, Koyano E, Mponda O, Mamiro D, Kaoneka B, Bandyopadhyay R, Korie S, Mahuku G. Aflatoxin contamination in Tanzania: quantifying the problem in maize and groundnuts from rural households. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxins are toxic and carcinogenic secondary metabolites, produced by Aspergillus flavus and Aspergillus parasiticus, which contaminate food and feed and threaten human and animal health. To assess the prevalence of aflatoxins in Tanzania, 180 groundnut and 200 maize samples were collected from 9 and 10 districts, respectively. Aflatoxin contamination was quantified using high performance liquid chromatography. Aflatoxins were detected in samples collected from all districts and prevalence ranged from 92 to 100% for groundnuts and 10 to 80% for maize. The mean aflatoxin level for groundnuts was 6.37 μg/kg and the highly contaminated sample had 40.31 μg/kg. For maize, the mean aflatoxin level was 12.47 μg/kg and the highly contaminated sample had 162.40 μg/kg. The estimated average probable daily intake (APDI) of aflatoxin B1 (AFB1) from groundnuts consumption was 1.88 ng/kg body weight/day, while for maize, it ranged between 151.98-272.89 ng/kg body weight/day. The APDI for both groundnut and maize exceeded the provisional maximum tolerable daily intake (PMTDI) of AFB1 for adults (1 ng/kg body weight/day), bringing about health concerns for populations in Tanzania. Another alarming finding was that 75% of the farmers who provided samples for analysis were not aware of aflatoxins or the negative health impacts from consuming contaminated products. Results reported in this paper show that aflatoxin contaminated staple crops are widely distributed in Tanzania and that the risk of human exposure is high due to diet preferences. Awareness campaigns are required to inform and protect farmers and consumers.
Collapse
Affiliation(s)
- S.B. Boni
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
- World Vegetable Center, Eastern and Southern Africa, P.O. Box 10, Duluti, Arusha, Tanzania
| | - F. Beed
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - M.E. Kimanya
- The Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - E. Koyano
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
- World Vision International, P.O. Box 6070, Arusha, Tanzania
| | - O. Mponda
- Department of Research, Ministry of Agriculture, Livestock and Fisheries, P.O. Box 9192 Dar es Salaam, Tanzania
| | - D. Mamiro
- Sokoine University of Agriculture (SUA), P.O. Box 3000 Chuo Kikuu, Morogoro, Tanzania
| | - B. Kaoneka
- Tropical Pesticides Research Institute (TPRI), Ministry of Agriculture, Livestock and Fisheries, P.O. Box 3024 Arusha, Tanzania
| | - R. Bandyopadhyay
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - S. Korie
- IITA Headquarters, PMB 5320, Oyo Road, Ibadan 200001, Oyo State, Nigeria
| | - G. Mahuku
- International Institute of Tropical Agriculture (IITA) Eastern Africa Hub, Plot 25, Mwenge Coca-Cola Road, Mikocheni B, P.O. Box 34441, Dar es Salaam, Tanzania
| |
Collapse
|
17
|
Validation and Application of a Low-Cost Sorting Device for Fumonisin Reduction in Maize. Toxins (Basel) 2021; 13:toxins13090652. [PMID: 34564655 PMCID: PMC8473030 DOI: 10.3390/toxins13090652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Fumonisin mycotoxins are a persistent challenge to human and livestock health in tropical and sub-tropical maize cropping systems, and more efficient methods are needed to reduce their presence in food systems. We constructed a novel, low-cost device for sorting grain, the “DropSort”, and tested its effectiveness on both plastic kernel models and fumonisin-contaminated maize. Sorting plastic kernels of known size and shape enabled us to optimize the sorting performance of the DropSort. The device sorted maize into three distinct fractions as measured by bulk density and 100-kernel weight. The level of fumonisin was lower in the heaviest fractions of maize compared to the unsorted samples. Based on correlations among fumonisin and bulk characteristics of each fraction, we found that light fraction 100-kernel weight could be an inexpensive proxy for unsorted fumonisin concentration. Single kernel analysis revealed significant relationships among kernel fumonisin content and physical characteristics that could prove useful for future sorting efforts. The availability of a low-cost device (materials~USD 300) that can be used to reduce fumonisin in maize could improve food safety in resource-limited contexts in which fumonisin contamination remains a pressing challenge.
Collapse
|
18
|
Ortega-Beltran A, Agbetiameh D, Atehnkeng J, Falade TDO, Bandyopadhyay R. Does Use of Atoxigenic Biocontrol Products to Mitigate Aflatoxin in Maize Increase Fumonisin Content in Grains? PLANT DISEASE 2021; 105:2196-2201. [PMID: 33210967 DOI: 10.1094/pdis-07-20-1447-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the tropics and subtropics, maize (Zea mays) and other crops are frequently contaminated with aflatoxins by Aspergillus flavus. Treatment of crops with atoxigenic isolates of A. flavus formulated into biocontrol products can significantly reduce aflatoxin contamination. Treated crops contain up to 100% fewer aflatoxins compared with untreated crops. However, there is the notion that protecting crops from aflatoxin contamination may result in increased accumulation of other toxins, particularly fumonisins produced by a few Fusarium species. The objective of this study was to determine if treatment of maize with aflatoxin biocontrol products increased fumonisin concentration and fumonisin-producing fungi in grains. Over 200 maize samples from fields treated with atoxigenic biocontrol products in Nigeria and Ghana were examined for fumonisin content and contrasted with maize from untreated fields. Apart from low aflatoxin levels, most treated maize also harbored fumonisin levels considered safe by the European Union (<1 part per million; ppm). Most untreated maize also harbored equally low fumonisin levels but contained higher aflatoxin levels. In addition, during one year, we detected considerably lower Fusarium spp. densities in treated maize than in untreated maize. Our results do not support the hypothesis that treating crops with atoxigenic isolates of A. flavus used in biocontrol formulations results in higher grain fumonisin levels.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Daniel Agbetiameh
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Agro Enterprise Development, Faculty of Applied Science and Technology, Ho Technical University, Ho, Ghana
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Bukavu, D. R. Congo
| | | | | |
Collapse
|
19
|
Bio-competitive exclusion: efficacy of non-aflatoxigenic Aspergillus section Flavi-L morphotypes in control of aflatoxigenic Aspergillus flavus in groundnuts (Arachis hypogaea L.). BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The biological control mechanism of Aspergillus flavus (aflatoxigenic) strains in groundnuts with atoxigenic strains from the same species through competitive exclusion employed the use of endemic and well-adapted strains within the agro-ecological zones of Zimbabwe. The selected elite non-aflatoxigenic isolates of A. flavus native to Zimbabwe were evaluated for their capability to reduce aflatoxin contamination in groundnuts under laboratory conditions.
Results
Average reduction percentages in aflatoxin B concentration for the 2019 and 2020 set of experiments ranged from 91.6 ± 3.4 to 95.8 ± 3.1% and 90.29 ± 3.6% to 95.29 ± 4.1%, respectively. Levels of aflatoxin in the co-inoculation research experiments administered were significantly reduced in all the experimental units carried out. Treatment efficiencies of the tested isolates in this study at 4:1 and 2:1 ranged from 1.20 to 2.52 and from 1.02 to 1.21, respectively. The efficacy of the tested non-aflatoxigenic strains against the aflatoxigenic strain native to Zimbabwe (ZMW 0127) indicates that the non-aflatoxigenic isolates of A. flavus. have sound practical applications against vast communities of aflatoxin-producing fungi across all the agro-ecological zones in Zimbabwe.
Conclusion
The recognized non-aflatoxigenic isolates will be of an incentive as dynamic active ingredients in biocontrol formulations for the decrease in aflatoxins in groundnuts grown in Zimbabwe.
Collapse
|
20
|
Mesfin A, Tesfamariam K, Belachew T, De Saeger S, Lachat C, De Boevre M. Multi-mycotoxin profiling in maize reveals prevalence of Fusarium mycotoxins in South and West Ethiopia. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multi-mycotoxin exposure data are missing to guide risk assessment and legislation in Ethiopia. This study therefore aimed to determine mycotoxin contamination levels in maize samples from 176 randomly selected household storages in three agro ecological zones of South (Sidama zone) and West (Jimma zone) Ethiopia, and to examine the post-harvest practices and household processing. Liquid chromatography coupled to tandem mass spectrometry was used to quantify 23 mycotoxins. The majority of the households regularly consumed maize (more than once per day). More (77%) samples in Sidama were contaminated with Fusarium mycotoxins deoxynivalenol than in Jimma (29%) (P<0.001); Similar distributions of fumonisin B1 (19%), fumonisin B2 (19%) and fumonisin B3 (12%, Sidama vs 13%, Jimma) contamination were observed (P>0.05). In Sidama, only one sample was contaminated with the Aspergillus mycotoxin aflatoxin B2 and another sample with aflatoxin B1. From all samples, 40% were contaminated with 3-5 types of Fusarium mycotoxins and only 4% of the samples were contaminated with 6-8 types of mycotoxins. After the harvested maize was dried on the field, the majority of respondents in Jimma reported that they removed the maize within one day, which was less practiced in Sidama. The majority of households in Sidama, and some in Jimma, reported that they dried maize before storage, mainly using the sun. Close to two third of the study participants in the two zones reported that they applied the chemical dichloro-diphenyl-trichloroethane (DDT) during maize storage. All households in both zones reported that they sorted visible mouldy maize grains before preparation of maize flour while most of them kept the mouldy maize for animal feed. Protective strategies of Fusarium mycotoxin contamination, with special focus on deoxynivalenol and zearalenone, should be well promoted in the study areas as they are possible human and animal health threats.
Collapse
Affiliation(s)
- A. Mesfin
- Centre of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Department of Population and Family Health, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Human Nutrition, College of Agriculture, Hawassa University, Hawassa 1000, Ethiopia
| | - K. Tesfamariam
- Department of Population and Family Health, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Department of Public Health, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - T. Belachew
- Department of Population and Family Health, Institute of Health, Jimma University, Jimma, Ethiopia
| | - S. De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, 2028 Gauteng, South Africa
| | - C. Lachat
- Centre of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M. De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, MYTOX-SOUTH, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
22
|
Neckermann K, Claus G, De Baere S, Antonissen G, Lebrun S, Gemmi C, Taminiau B, Douny C, Scippo ML, Schatzmayr D, Gathumbi J, Uhlig S, Croubels S, Delcenserie V. The efficacy and effect on gut microbiota of an aflatoxin binder and a fumonisin esterase using an in vitro simulator of the human intestinal microbial ecosystem (SHIME®). Food Res Int 2021; 145:110395. [PMID: 34112398 DOI: 10.1016/j.foodres.2021.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Mycotoxin intoxication is in general an acknowledged and tackled issue in animals. However, in several parts of the world, mycotoxicoses in humans still remain a relevant issue. The efficacy of two mycotoxin detoxifying animal feed additives, an aflatoxin bentonite clay binder and a fumonisin esterase, was investigated in a human child gut model, i.e. the in vitro Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Additionally, the effect of the detoxifiers on gut microbiota was examined in the SHIME. After an initial two weeks of system stabilisation, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) were added to the SHIME diet during one week. Next, the two detoxifiers and mycotoxins were added to the system for an additional week. The AFB1, FB1, hydrolysed FB1 (HFB1), partially hydrolysed FB1a and FB1b concentrations were determined in SHIME samples using a validated ultra-performance liquid chromatography-tandem mass spectrometry method. The short-chain fatty acid (SCFA) concentrations were determined by a validated gas chromatography-mass spectrometry method. Colonic bacterial communities were analysed using metabarcoding, targeting the hypervariable V1-V3 regions of the 16S rRNA genes. The AFB1 and FB1 concentrations significantly decreased after the addition of the detoxifiers. Likewise, the concentration of HFB1 significantly increased. Concentrations of SCFAs remained generally stable throughout the experiment. No major changes in bacterial composition occurred during the experiment. The results demonstrate the promising effect of these detoxifiers in reducing AFB1 and FB1 concentrations in the human intestinal environment, without compromising the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Kaat Neckermann
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gregor Claus
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Sarah Lebrun
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Céline Gemmi
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Bernard Taminiau
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Caroline Douny
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| | - Dian Schatzmayr
- BIOMIN Holding GmbH, BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - James Gathumbi
- Department of Pathology, Parasitology and Microbiology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00625 Nairobi, Kenya.
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway.
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Véronique Delcenserie
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium.
| |
Collapse
|
23
|
Senghor AL, Ortega-Beltran A, Atehnkeng J, Jarju P, Cotty PJ, Bandyopadhyay R. Aflasafe SN01 is the First Biocontrol Product Approved for Aflatoxin Mitigation in Two Nations, Senegal and The Gambia. PLANT DISEASE 2021; 105:1461-1473. [PMID: 33332161 DOI: 10.1094/pdis-09-20-1899-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aflatoxin contamination is caused by Aspergillus flavus and closely related fungi. In The Gambia, aflatoxin contamination of groundnut and maize, two staple and economically important crops, is common. Groundnut and maize consumers are chronically exposed to aflatoxins, sometimes at alarming levels, and this has severe consequences on their health and productivity. Aflatoxin contamination also impedes commercialization in local and international premium markets. In neighboring Senegal, an aflatoxin biocontrol product containing four atoxigenic isolates of A. flavus, Aflasafe SN01, has been registered and is approved for commercial use in groundnut and maize. We detected that the four genotypes composing Aflasafe SN01 are also native to The Gambia. The biocontrol product was tested during two years in 129 maize and groundnut fields and compared with corresponding untreated fields cropped by smallholder farmers in The Gambia. Treated crops contained up to 100% less aflatoxins than untreated crops. A large portion of the crops could have been commercialized in premium markets due to the low aflatoxin content (in many cases no detectable aflatoxins), both at harvest and after storage. Substantial aflatoxin reductions were also achieved when commercially produced groundnut received treatment. Here we report for the first time the use and effectiveness of an aflatoxin biocontrol product registered for use in two nations. With the current scale-out and -up efforts of Aflasafe SN01, a large number of farmers, consumers, and traders in The Gambia and Senegal will obtain health, income, and trade benefits.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- A L Senghor
- La Direction de Protection Végétaux, BP20054 Dakar, Senegal
| | - A Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - J Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - P Jarju
- National Food Security, Processing and Marketing Corporation, Denton Bridge, Banjul, The Gambia
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, U.S.A
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
24
|
Zhao Y, Zeng H, Zhu XW, Lu W, Li D. Metal–organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem Soc Rev 2021; 50:4484-4513. [DOI: 10.1039/d0cs00955e] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent progress of MOF-based photoluminescent platforms: a comprehensive overview of their applications in biosensing and underlying mechanisms.
Collapse
Affiliation(s)
- Yifang Zhao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Heng Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Xiao-Wei Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications
- Jinan University
- Guangzhou 510632
- P. R. China
| |
Collapse
|
25
|
Warnatzsch EA, Reay DS, Camardo Leggieri M, Battilani P. Climate Change Impact on Aflatoxin Contamination Risk in Malawi's Maize Crops. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.591792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Malawi is one of the poorest countries in the world, with high levels of malnutrition and little domestic mycotoxin regulation. Domestically grown maize is the largest single source of calories in the country and a large contributor to the economy. This research uses Regional Climate Models (RCMs) to determine the climatic conditions in the three regions of Malawi (Northern, Central and Southern) in 2035 (2020–2049) and 2055 (2040–2069) as compared to the baseline climate of 1971–2000. This climatic data is then used as inputs to the Food and Agriculture Organization's (FAO) AquaCrop model to assess the impact on the growth cycle of two maize varieties grown in each region and sown at three different times during the planting season. Finally, AFLA-maize, a mechanistic model, is applied to determine the impact of these projected changes on the aflatoxin B1 (AFB1) contamination risk. We find that Malawi's climate is projected to get warmer (by 1–2.5°C) and drier (reduction of 0–4% in annual rainfall levels) in all regions, although some uncertainty remains around the changes in precipitation levels. These climatic changes are expected to shorten the growing season for maize, bringing the harvest date forward by between 10 and 25 days for the short-development variety and between 25 and 65 days for the long-development variety. These changes are also projected to make the pre-harvest conditions for Malawian maize more favorable for AFB1 contamination and risk maps for the studied conditions were drawn. Exceedances of EU safety thresholds are expected to be possible in all regions, with the risk of contamination moving northwards in a warming climate.
Collapse
|
26
|
Spatial analysis of dietary exposure of aflatoxins in peanuts and peanut oil in different areas of China. Food Res Int 2020; 140:109899. [PMID: 33648201 DOI: 10.1016/j.foodres.2020.109899] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022]
Abstract
Peanuts in China are heavily contaminated with aflatoxin, which pose a threaten to human health. To compare the dietary exposure risk of aflatoxins (AFT) in peanuts and peanut oil in different areas of China, the spatial distribution of AFT contamination levels in peanuts and peanut oil from different areas was analyzed. The dietary exposure was calculated by simple distributed risk assessment method before characterizing the health risk using both the margin of exposure (MOE) approach proposed by the European Food Safety Authority (EFSA) and the quantitative liver cancer risk approach proposed by the Joint Food and Agricultural Organization/World Health Organization (FAO/WHO) Expert Committee on Food Additives (JECFA). The results showed that the AFT content in peanuts and peanut oil was high with agglomeration in several provinces of East and South China under a subtropical temperate monsoon climate, and the AFT contamination in peanut oil was more substantial than peanuts. On average, the estimated dietary exposure to AFT from the total of peanuts and peanut oil for Chinese general population ranged from 1.776 to 1.940 ng/kg bw/day (LB-UB), from which the MOE values of 88-96 (UB-LB) and liver cancer risk of 0.055-0.060 cases/100,000 persons/year (LB-UB) were calculated. As for different areas in China, the mean AFT exposure ranged between 0.000 and 17.270 ng/kg bw/day. Moreover, the corresponding health risk was estimated at 10-868759 MOE values and 0.000-0.851 liver cancer cases/100,000 persons/year. Guangdong, Fujian and Jiangxi provinces were at a higher risk rank. The liver cancer risk of AFT exposure from peanuts and peanut oil was far below all-cause liver cancer incidence (18.0 cases/100,000 persons/year) in China, but several areas with relatively high risk should be of concern. Compared with other age groups, children aged 2-6 years should be paid more attention because they have the highest AFT exposure level.
Collapse
|
27
|
Massomo SM. Aspergillus flavus and aflatoxin contamination in the maize value chain and what needs to be done in Tanzania. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Yang SL, Liu WS, Li G, Bu R, Li P, Gao EQ. A pH-Sensing Fluorescent Metal-Organic Framework: pH-Triggered Fluorescence Transition and Detection of Mycotoxin. Inorg Chem 2020; 59:15421-15429. [PMID: 33022178 DOI: 10.1021/acs.inorgchem.0c02419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a bipyridyl-tetracarboxylic ligand and composed of 4-fold interpenetrated diamond frameworks. Because the steric hindrance in the ligand prevents metal coordination with the pyridyl group, the MOF features free basic N sites accessible to the small H+ ions, which renders pH responsivity. The aqueous dispersion exhibits an abrupt, high-contrast, and reversible on-off fluorescence transition in the narrow pH range of 5.4-6.2. The sensitive bistable system can be used for the precise monitoring of pH within the range and for use as a pH-triggered optical switch. The responsive mechanism through pyridyl protonation is collaboratively supported by data fitting, absorption spectra, and molecular orbital calculations. In particular, spectral and theoretical analyses reveal the destruction of n → π* transitions and the appearance of intramolecular charge-transfer transitions upon pyridyl protonation. Moreover, by virtue of the pH-responsive fluorescence, the MOF shows appealing sensing performance for the detection of 3-nitropropionic acid, a major mycotoxin in moldy sugar cane.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wan-Shan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Peng Li
- College of Chemistry and Materials Science, Huaibei Normal University, Anhui 235000, China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
29
|
Sulyok M, Krska R, Senyuva H. Profiles of fungal metabolites including regulated mycotoxins in individual dried Turkish figs by LC-MS/MS. Mycotoxin Res 2020; 36:381-387. [PMID: 32671680 PMCID: PMC7536152 DOI: 10.1007/s12550-020-00398-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022]
Abstract
Fungal metabolites including regulated mycotoxins were identified by a validated LC-MS/MS method in 180 individual Turkish dried figs from 2017 and 2018 harvests. Hand-selected dried figs were subjectively classified based on the extent of fluorescence. Forty-three fungal metabolites including eight EU-regulated mycotoxins were identified and quantified. Figs classified as being uncontaminated mostly did not contain aflatoxins above 1 μg/kg. Despite being "uncontaminated" from an aflatoxin perspective, kojic acid was present in significant quantities with a maximum level of 3750 mg/kg (0.375% w/w) and tenuazonic acid was also found (2 μg/kg to 298 mg/kg) in some figs. Notable in the screening of figs has been the presence of significant amounts of aflatoxin M1 (AFM1) in figs also containing significant levels of aflatoxin B1 (AFB1), which is the first time that AFM1 has been reported as naturally occurring in dried figs.
Collapse
Affiliation(s)
- Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.,Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| | - Hamide Senyuva
- FoodLife International Ltd., ODTU Teknokent, 06800, Ankara, Turkey
| |
Collapse
|
30
|
Ayelign A, De Saeger S. Mycotoxins in Ethiopia: Current status, implications to food safety and mitigation strategies. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Matumba L, Kimanya M, Chunga-Sambo W, Munthali M, Ayalew A. Probabilistic dietary based estimation of the burden of aflatoxin-induced hepatocellular carcinoma among adult Malawians. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The risk of aflatoxin-induced hepatocellular carcinoma (HCC) among adults (average body weight of 60 kg) in Malawi was assessed based on aflatoxin B1 (AFB1) exposure through groundnut and maize consumption, by Monte Carlo simulation. The risk (cases per year per 100,000 people) of aflatoxin-induced HCC was estimated based on the AFB1 exposures estimated by this study and hepatitis B virus infection prevalence published for Malawi. AFB1 exposures were estimated by probabilistically combining data of AFB1 contamination in 338 groundnut and 604 maize samples with data of per capita groundnut and maize consumption in 274 households. Aflatoxins in the samples were analysed using validated LC-MS/MS, HPLC and VICAM based methods. The groundnut and maize consumption survey was based on household expenditure technique. The simulated mean AFB1 exposures through consumption of groundnuts, maize, and combination thereof were 28±65, 42±174, and 71±211 ng/kg. body weight (bw)/day, respectively. The estimated HCC risks were 1.26±2.72, 1.86±6.66 and 3.10±6.85 cases per 100,000 persons per year, respectively. Further, hypothetical eradication of hepatitis B virus (HBV) reduced the risk of HCC by 78%. This reaffirms the need for integrating HBV vaccination in the fight of aflatoxin induced HCC.
Collapse
Affiliation(s)
- L. Matumba
- Food Technology and Nutrition Group, Lilongwe University of Agriculture and Natural Resources, (LUANAR), NRC campus, P.O. Box 143, Lilongwe, Malawi
| | - M. Kimanya
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
- Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela – African Institution of Science and Technology, Arusha, Tanzania
| | - W. Chunga-Sambo
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
| | - M. Munthali
- Department of Agricultural Research Services, Chitedze Agricultural Research Station, P.O. Box 158, Lilongwe, Malawi
| | - A. Ayalew
- The Partnership for Aflatoxin Control in Africa, Department of Rural Economy and Agriculture, P.O. Box 3243, Roosevelt Street, Addis Ababa, Ethiopia
| |
Collapse
|
32
|
Nelis JLD, Bura L, Zhao Y, Burkin KM, Rafferty K, Elliott CT, Campbell K. The Efficiency of Color Space Channels to Quantify Color and Color Intensity Change in Liquids, pH Strips, and Lateral Flow Assays with Smartphones. SENSORS 2019; 19:s19235104. [PMID: 31766483 PMCID: PMC6928750 DOI: 10.3390/s19235104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023]
Abstract
Bottom-up, end-user based feed, and food analysis through smartphone quantification of lateral flow assays (LFA) has the potential to cause a paradigm shift in testing capabilities. However, most developed devices do not test the presence of and implications of inter-phone variation. Much discussion remains regarding optimum color space for smartphone colorimetric analyses and, an in-depth comparison of color space performance is missing. Moreover, a light-shielding box is often used to avoid variations caused by background illumination while the use of such a bulky add-on may be avoidable through image background correction. Here, quantification performance of individual channels of RGB, HSV, and LAB color space and ΔRGB was determined for color and color intensity variation using pH strips, filter paper with dropped nanoparticles, and colored solutions. LAB and HSV color space channels never outperformed the best RGB channels in any test. Background correction avoided measurement variation if no direct sunlight was used and functioned more efficiently outside a light-shielding box (prediction errors < 5%/35% for color/color intensity change). The system was validated using various phones for quantification of major allergens (i.e., gluten in buffer, bovine milk in goat milk and goat cheese), and, pH in soil extracts with commercial pH strips and LFA. Inter-phone variation was significant for LFA quantification but low using pH strips (prediction errors < 10% for all six phones compared). Thus, assays based on color change hold the strongest promise for end-user adapted smartphone diagnostics.
Collapse
Affiliation(s)
- Joost Laurus Dinant Nelis
- Institute for Global Food Security, School of Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (Y.Z.); (C.T.E.)
- Correspondence: (J.L.D.N.); (K.C.)
| | - Laszlo Bura
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Yunfeng Zhao
- Institute for Global Food Security, School of Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (Y.Z.); (C.T.E.)
- School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, 125 Stranmillis Road, Belfast BT9 5AH, UK;
| | - Konstantin M. Burkin
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, GSP-1, Moscow 119991, Russia;
| | - Karen Rafferty
- School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, 125 Stranmillis Road, Belfast BT9 5AH, UK;
| | - Christopher T. Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (Y.Z.); (C.T.E.)
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK; (Y.Z.); (C.T.E.)
- Correspondence: (J.L.D.N.); (K.C.)
| |
Collapse
|
33
|
Shenge KC, Adhikari BN, Akande A, Callicott KA, Atehnkeng J, Ortega-Beltran A, Kumar PL, Bandyopadhyay R, Cotty PJ. Monitoring Aspergillus flavus Genotypes in a Multi-Genotype Aflatoxin Biocontrol Product With Quantitative Pyrosequencing. Front Microbiol 2019; 10:2529. [PMID: 31803149 PMCID: PMC6872644 DOI: 10.3389/fmicb.2019.02529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins pose significant food security and public health risks, decrease productivity and profitability of animal industries, and hamper trade. To minimize aflatoxin contamination in several crops, a biocontrol technology based on atoxigenic strains of Aspergillus flavus is commercially used in the United States and some African countries. Significant efforts are underway to popularize the use of biocontrol in Africa by various means including incentives. The purpose of this study was to develop quantitative pyrosequencing assays for rapid, simultaneous quantification of proportions of four A. flavus biocontrol genotypes within complex populations of A. flavus associated with maize crops in Nigeria to facilitate payment of farmer incentives for Aflasafe (a biocontrol product) use. Protocols were developed to confirm use of Aflasafe by small scale farmers in Nigeria. Nested PCR amplifications followed by sequence by synthesis pyrosequencing assays were required to quantify frequencies of the active ingredients and, in so doing, confirm successful use of biocontrol by participating farmers. The entire verification process could be completed in 3-4 days proving a savings over other monitoring methods in both time and costs and providing data in a time frame that could work with the commercial agriculture scheme. Quantitative pyrosequencing assays represent a reliable tool for rapid detection, quantification, and monitoring of multiple A. flavus genotypes within complex fungal communities, satisfying the requirements of the regulatory community and crop end-users that wish to determine which purchased crops were treated with the biocontrol product. Techniques developed in the current study can be modified for monitoring other crop-associated fungi.
Collapse
Affiliation(s)
- Kenneth C. Shenge
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | - Bishwo N. Adhikari
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | | | - Kenneth A. Callicott
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| | - Joseph Atehnkeng
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - P. Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Peter J. Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ, United States
| |
Collapse
|
34
|
Dellafiora L, Galaverna G, Cruciani G, Dall'Asta C. A computational study toward the "personalized" activity of alternariol - Does it matter for safe food at individual level? Food Chem Toxicol 2019; 130:199-206. [PMID: 31128219 DOI: 10.1016/j.fct.2019.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/08/2023]
Abstract
Mycotoxins in food may threat public health at a global scale. However, for most of them, the current body of knowledge does not support a proper risk assessment and more data are needed to clarify their toxicity. In particular, the assessment of "personalized" action may succeed in understanding and counteracting the effects of many toxicants. Therefore, the assessment of "personalized" toxicology of mycotoxins might deserve attention to foster the understanding of their mechanisms of toxicity and to eventually improve the assessment of risk. This work dealt with the early warning analysis of possible differences in eliciting androgenic stimuli by alternariol, a widespread mycotoxin produce by Alternaria species, when mutations on the androgen receptor occur. It was applied a computational study based on docking simulations, pharmacophore modeling and molecular dynamics to assess the capability of alternariol to interact with the androgen receptor bearing the M749I substitution - which confers insensitivity to androgens stimulation. The results collected pointed to possible "protective" effects against alternariol suggesting: i) the likely existence of inter-individual responses to alternariol stimulation; ii) the meaningfulness of collecting data on "personalized" response to mycotoxins toward a more precise paradigm addressing the risk assessment at the individual level.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy.
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Area Parco delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
35
|
Nishimwe K, Bowers E, Ayabagabo JDD, Habimana R, Mutiga S, Maier D. Assessment of Aflatoxin and Fumonisin Contamination and Associated Risk Factors in Feed and Feed Ingredients in Rwanda. Toxins (Basel) 2019; 11:E270. [PMID: 31091663 PMCID: PMC6563260 DOI: 10.3390/toxins11050270] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/25/2022] Open
Abstract
Mycotoxins are fungal metabolites that contaminate crops, food, and animal feeds. Aflatoxins and fumonisins are among the mycotoxins that have been increasingly reported to affect health and productivity of livestock globally. Given that the health and productivity of livestock can directly influence human food safety and security, a study was conducted to assess the levels and factors for aflatoxin and fumonisin contamination in feed and feed ingredients in Rwanda. Aflatoxins and fumonisins were analyzed in 3328 feed and feed ingredient samples collected at six time points between March and October 2017 in all 30 districts of Rwanda. Of the 612 participants providing samples, there were 10 feed processors, 68 feed vendors, 225 dairy farmers, and 309 poultry farmers. Enzyme-Linked Immunosorbent Assay (ELISA) was used for aflatoxin and fumonisin analyses. Mean aflatoxin levels of 108.83 µg/kg (Median (MD): 43.65 µg/kg), 103.81µg/kg (MD: 48.4 µg/kg), 88.64 µg/kg (MD: 30.90 µg/kg), and 94.95 µg/kg (MD: 70.45 µg/kg) were determined for dairy farmers, poultry farmers, feed vendors, and feed processors, respectively. Mean fumonisin levels were 1.52 mg/kg (MD: 0.71 mg/kg), 1.21 mg/kg (MD: 0.56 mg/kg), 1.48 mg/kg (MD: 0.76 mg/kg), and 1.03 mg/kg (MD: 0.47 mg/kg) for dairy farmers, poultry farmers, feed vendors, and feed processors, respectively. Aflatoxin contamination was significantly affected by time of sampling and district from which feed samples originated (p < 0.05). Fumonisins did not show any correlation trends. Ninety-two percent of survey participants were unaware of aflatoxins and fumonisins and their adverse effects. This study has provided the basic understanding of the extent of feed contamination across the country and has established a baseline for future interventions in Rwanda. Further studies are needed to explore strategies for mitigating mycotoxins in the feed value chain in Rwanda.
Collapse
Affiliation(s)
- Kizito Nishimwe
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
- School of Agriculture and Food Science, University of Rwanda, PO Box 4285 Kigali, Rwanda.
| | - Erin Bowers
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Jean de Dieu Ayabagabo
- School of Animal Sciences and Veterinary Medicine, University of Rwanda, PO Box 4285 Kigali, Rwanda.
| | - Richard Habimana
- School of Animal Sciences and Veterinary Medicine, University of Rwanda, PO Box 4285 Kigali, Rwanda.
| | - Samuel Mutiga
- Biosciences Eastern and Central Africa and International Livestock Research Institute (BecA ILRI) Hub, ILRI Complex, Along Old Naivasha Road, PO Box 30709⁻GPO 00100 Nairobi, Kenya.
| | - Dirk Maier
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
36
|
Adebo OA, Kayitesi E, Njobeh PB. Reduction of Mycotoxins during Fermentation of Whole Grain Sorghum to Whole Grain Ting (a Southern African Food). Toxins (Basel) 2019; 11:toxins11030180. [PMID: 30934589 PMCID: PMC6468468 DOI: 10.3390/toxins11030180] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins are fungal secondary metabolites that pose health risks to exposed individuals, requiring necessary measures to reduce them. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), mycotoxins were quantified in whole grain sorghum and ting subsequently derived from two sorghum varieties (high and low tannin). The whole grain (WG) ting samples were obtained by fermenting sorghum with Lactobacillus fermentum strains (FUA 3165 and FUA 3321). Naturally (spontaneously) fermented WG-ting under the same conditions were equally analysed. Among the mycotoxins investigated, fumonisin B1 (FB1), B2 (FB2), B3 (FB3), T-2 toxin (T-2), zearalenone (ZEA), alpha-zearalenol (α-ZOL) and beta-zearalenol (β-ZOL) were detected in sorghum. Results obtained showed that mycotoxin concentrations significantly (p ≤ 0.05) reduced after fermentation. In particular, L. fermentum FUA 3321 showed the capability to significantly (p ≤ 0.05) reduce all the mycotoxins by 98% for FB1, 84% for T-2 and up to 82% for α-ZOL, compared to raw low tannin sorghum. Fermenting with the L. fermentum strains showed potential to effectively reduce mycotoxin contamination in whole grain ting. Thus, we recommended L. fermentum FUA 3321 in particular to be used as a potential starter culture in sorghum fermentation.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
37
|
Challenges and opportunities to tackle the rising prevalence of diet-related non-communicable diseases in Africa. Proc Nutr Soc 2019; 78:506-512. [PMID: 30732666 DOI: 10.1017/s0029665118002823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Africa is experiencing a sharp rise in non-communicable diseases (NCD) related to rapid globalisation and urbanisation leading to shifts in dietary and lifestyle patterns characterised by increased energy intake and physical inactivity. However, unlike more resource-endowed regions, Africa has a double burden of disease: NCD co-exist with infectious diseases including lower respiratory tract infections, HIV/AIDS and diarrhoeal diseases. The African economy is also relatively weaker, making it difficult to cope with this burden. It is postulated that NCD will soon overtake infectious diseases as the number one cause of death in the African region. The recognition of NCD as diseases and obesity as a related risk factor is weak in Africa, compounded by stigma associated with wasting in HIV/AIDS and obesity being perceived as a sign of wealth, achievement and care. There is also a dearth of data on overweight and obesity in the region and little knowledge that infant feeding practices, such as breast-feeding, are linked to reduced risk of NCD in both children and mothers. While complex multi-sectoral approaches to address this NCD menace are needed, Africa may benefit from taking simple initial steps to address NCD risk factors including: (1) behaviour change communication to challenge perceptions on NCD; (2) promoting and protecting breast-feeding; (3) formulating policies and regulations limiting wide availability of unhealthy foods; (4) mainstream nutrition education in school curricula and (5) collection of accurate data based on indicators that can reflect the double burden of disease and malnutrition; and fostering multi-sectoral actions against NCD.
Collapse
|
38
|
Ndemera M, De Boevre M, De Saeger S. Mycotoxin management in a developing country context: A critical review of strategies aimed at decreasing dietary exposure to mycotoxins in Zimbabwe. Crit Rev Food Sci Nutr 2018; 60:529-540. [PMID: 30501517 DOI: 10.1080/10408398.2018.1543252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycotoxins are unavoidable environmental contaminants, which are found throughout the food chain, particularly in cereals. Mycotoxin management is not effective in developing countries, such as Zimbabwe, due to resource constraints, yet human health risk is evident. Various practical mitigation strategies that can be employed to decrease human dietary exposure to mycotoxins as a means of preliminary steps towards risk management are discussed. These strategies were stratified into two categories. First, crop/commodity-centred strategies, mainly the pre-harvest actions of cultivar selection, bio-control, as well as good agricultural practices (GAP), and the post-harvest actions including timeous harvesting, appropriate drying and storage technologies, are elaborated making use of hazard analysis critical control points (HACCP) principles. The role of legislation is also explored as a crop/commodity centred mitigation strategy. Second, human-centred strategies anchored on dietary diversity and the use of socio-cultural approaches as a direct means of reducing mycotoxin exposure are discussed. Finally, an integrated science-based mycotoxin management strategy, encompassing targeted legislation on mycotoxins, consumer education and information sharing, human and institutional capacity building, training and financing, is suggested in addition to GAP, as a means of reducing human health risk associated with mycotoxin exposure in Zimbabwe.HighlightsFarm-to-fork HACCP-based mycotoxin managementHuman-centred mycotoxin management approaches are keyAgronomy, technology and legislation critical in reducing mycotoxin exposure.
Collapse
Affiliation(s)
- Melody Ndemera
- Laboratory of Food Analysis, Ghent University, Ghent, Belgium.,Department of Food, Nutrition and Family Sciences, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | | | - Sarah De Saeger
- Laboratory of Food Analysis, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Njoroge SMC. A Critical Review of Aflatoxin Contamination of Peanuts in Malawi and Zambia: The Past, Present, and Future. PLANT DISEASE 2018; 102:2394-2406. [PMID: 30351226 DOI: 10.1094/pdis-02-18-0266-fe] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important crop in Malawi and Zambia. The crop is valued for soil improvement in cereal-based cropping systems, for improving the livelihoods of farming households who consume it and also sell it for cash, and for earning foreign exchange when exported. Research and development efforts have resulted in an increase in both peanut production area and productivity. However, a key challenge that still needs to be solved in these countries is how to produce peanuts with acceptable levels of aflatoxin contamination. Data continues to show that aflatoxin continues to be a problem in both formal and informal trade. As a result, unlike 30 years ago, most of the peanut trade has now shifted to domestic and regional markets that do not restrict the sale of aflatoxin-contaminated peanuts. Impacts of aflatoxin contamination on health and also on the full cost burden of control are not well documented. Technologies are available for mitigating against aflatoxin contamination. The advantages, disadvantages, and gaps associated with these technologies are discussed. Considerable money and effort continues to be invested in Malawi and Zambia into mitigating aflatoxin contamination, but evidence of long-term success is limited. Based on past and current initiatives, the prospects of eliminating aflatoxin in the near future at the household level and in trade are not promising.
Collapse
Affiliation(s)
- Samuel M C Njoroge
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P. O. Box 1096, Lilongwe, Malawi
| |
Collapse
|
40
|
The application of loop-mediated isothermal amplification (LAMP) assays for the rapid diagnosis of food-borne mycotoxigenic fungi. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Gruber-Dorninger C, Jenkins T, Schatzmayr G. Multi-mycotoxin screening of feed and feed raw materials from Africa. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2292] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As animal feed is prone to infestation with mycotoxin-producing fungi, mycotoxin contamination of feed should be monitored. Here, we report a multi-mycotoxin survey of feed samples from Africa. We determined the concentrations of aflatoxins, fumonisins, deoxynivalenol, T-2 toxin, zearalenone and ochratoxin A in 1,045 samples of finished feed and feed raw materials (maize, maize silage, other cereals, etc.) from South Africa and 318 samples from Algeria, Tunisia, Morocco, Senegal, Côte d’Ivoire, Nigeria, Ghana, Namibia, Uganda, Kenya, Tanzania, Zambia and Madagascar. We compared the measured mycotoxin concentrations to regulatory limits or guidance values that are in effect in the European Union and analysed the co-occurrence of these mycotoxins. To determine the occurrence of other fungal secondary metabolites, a subset of the samples was analysed using a multi-analyte liquid chromatography tandem mass spectrometry-based method for the simultaneous detection of over 700 fungal metabolites. We found that 33.3% of maize samples and 54.4% of finished feed samples from Senegal, Côte d’Ivoire, Nigeria, Ghana, Namibia, Uganda, Kenya and Tanzania exceeded the European regulatory limit of 20 ng/g aflatoxins. The Fusarium mycotoxins zearalenone, fumonisins and deoxynivalenol were prevalent in all commodities from all countries, but concentrations were in most cases below European guidance values. Concentrations of deoxynivalenol and zearalenone were correlated. Several other Fusarium metabolites occurred frequently (e.g. moniliformin, beauvericin, aurofusarin) or in high concentrations (e.g. aurofusarin, fusaproliferin). Furthermore, high levels of diplodiatoxin were occasionally detected in samples from South Africa and the Alternaria metabolite tenuazonic acid was prevalent and reached high concentrations. In conclusion, aflatoxins frequently occurred in African feed samples in potentially unsafe concentrations. While Fusarium mycotoxins mostly occurred in concentrations below European guidance values, a correlation between deoxynivalenol and zearalenone concentrations suggests that toxicological interactions of these compounds deserve attention. Several less investigated fungal secondary metabolites occurred frequently or reached high concentrations.
Collapse
Affiliation(s)
| | - T. Jenkins
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - G. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
42
|
Akram NA, Shafiq F, Ashraf M. Peanut (Arachis hypogaea L.): A Prospective Legume Crop to Offer Multiple Health Benefits Under Changing Climate. Compr Rev Food Sci Food Saf 2018; 17:1325-1338. [PMID: 33350163 DOI: 10.1111/1541-4337.12383] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
Peanut is a multipurpose oil-seed legume, which offer benefits in many ways. Apart from the peanut plant's beneficial effects on soil quality, peanut seeds are nutritious and medicinally and economically important. In this review, insights into peanut origin and its domestication are provided. Peanut is rich in bioactive components, including phenolics, flavonoids, polyphenols, and resveratrol. In addition, the involvement of peanut in biological nitrogen fixation is highly significant. Recent reports regarding peanut responses and N2 fixation ability in response to abiotic stresses, including drought, salinity, heat stress, and iron deficiency on calcareous soils, have been incorporated. As a biotechnological note, recent advances in the development of transgenic peanut plants are also highlighted. In this context, regulation of transcriptional factors and gene transfer for the development of stress-tolerant peanut genotypes are of prime importance. Above all, this review signifies the importance of peanut cultivation and human consumption in view of the scenario of changing world climate in order to maintain food security.
Collapse
Affiliation(s)
| | - Fahad Shafiq
- Dept. of Botany, Government College Univ. Faisalabad, Pakistan
| | | |
Collapse
|
43
|
A monolithic column based on covalent cross-linked polymer gels for online extraction and analysis of trace aflatoxins in food sample. J Chromatogr A 2018; 1548:27-36. [DOI: 10.1016/j.chroma.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023]
|
44
|
Tian D, Liu XJ, Feng R, Xu JL, Xu J, Chen RY, Huang L, Bu XH. Microporous Luminescent Metal-Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5618-5625. [PMID: 29350525 DOI: 10.1021/acsami.7b15764] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Food contamination by toxic mycotoxins not only causes a considerable loss in economy, but importantly poses a huge threat to human health through accidental ingestion. Hence, it is an ongoing and imperative need to develop a convenient, cost-effective method for the detection of the mycotoxin-infected agricultural commodities. To this end, we herein fabricated a novel metal-organic framework-derived composite material that displays a strong solid-state emission in the visible region, by attaching a frequently used fluorescent label, fluorescein isothiocyanate (FITC), via guest adsorption. Significantly, owing to the inherent pH-responsive conformational changes of FITC, the resulting composite material provides, to the best of our knowledge, the first example of the sensitive and selective fluorescence sensing toward 3-nitropropionic acid, which, as a major naturally occurring mycotoxin in moldy sugarcane, has been closely linked to poisoning episodes in human beings and animals.
Collapse
Affiliation(s)
- Dan Tian
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xiao-Jing Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
| | - Rui Feng
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
| | - Jia-Li Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
| | - Jian Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
| | - Rong-Ying Chen
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal- and Molecule-Based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300350, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University , Tianjin 300071, P. R. China
| |
Collapse
|
45
|
Ezekiel CN, Ayeni KI, Misihairabgwi JM, Somorin YM, Chibuzor-Onyema IE, Oyedele OA, Abia WA, Sulyok M, Shephard GS, Krska R. Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment. Compr Rev Food Sci Food Saf 2018; 17:334-351. [DOI: 10.1111/1541-4337.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Chibundu N. Ezekiel
- Dept. of Microbiology; Babcock Univ.; Ilishan Remo Ogun State Nigeria
- Dept. of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry; Univ. of Natural Resources and Life Sciences Vienna (BOKU); Konrad Lorenzstr. 20 A-3430 Tulln Austria
| | - Kolawole I. Ayeni
- Dept. of Microbiology; Babcock Univ.; Ilishan Remo Ogun State Nigeria
| | - Jane M. Misihairabgwi
- Dept. of Biochemistry and Microbiology, School of Medicine; Univ. of Namibia; P. Bag 13301 Windhoek Namibia
| | - Yinka M. Somorin
- Microbiology, School of Natural Sciences; Natl. Univ. of Ireland; Galway Ireland
| | | | | | - Wilfred A. Abia
- School of Toxicology, Occupational Health/Safety and Risk Assessment, COSET; Inst. for Management and Professional Training (IMPT); Yaounde Cameroon
| | - Michael Sulyok
- Dept. of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry; Univ. of Natural Resources and Life Sciences Vienna (BOKU); Konrad Lorenzstr. 20 A-3430 Tulln Austria
| | - Gordon S. Shephard
- Mycotoxicology and Chemoprevention Research Group, Inst. of Biomedical and Microbial Biotechnology; Cape Peninsula Univ. of Technology; PO Box 1906 Bellville 7535 South Africa
| | - Rudolf Krska
- Dept. of Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry; Univ. of Natural Resources and Life Sciences Vienna (BOKU); Konrad Lorenzstr. 20 A-3430 Tulln Austria
| |
Collapse
|
46
|
Socas-Rodríguez B, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MÁ. Recent applications of nanomaterials in food safety. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Misihairabgwi JM, Ezekiel CN, Sulyok M, Shephard GS, Krska R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007-2016). Crit Rev Food Sci Nutr 2017; 59:43-58. [PMID: 28799776 DOI: 10.1080/10408398.2017.1357003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major staple foods in Southern Africa are prone to mycotoxin contamination, posing health risks to consumers and consequent economic losses. Regional climatic zones favor the growth of one or more main mycotoxin producing fungi, Aspergillus, Fusarium and Penicillium. Aflatoxin contamination is mainly reported in maize, peanuts and their products, fumonisin contamination in maize and maize products and patulin in apple juice. Lack of awareness of occurrence and risks of mycotoxins, poor agricultural practices and undiversified diets predispose populations to dietary mycotoxin exposure. Due to a scarcity of reports in Southern Africa, reviews on mycotoxin contamination of foods in Africa have mainly focused on Central, Eastern and Western Africa. However, over the last decade, a substantial number of reports of dietary mycotoxins in South Africa have been documented, with fewer reports documented in Botswana, Lesotho, Malawi, Mozambique, Zambia and Zimbabwe. Despite the reported high dietary levels of mycotoxins, legislation for their control is absent in most countries in the region. This review presents an up-to-date documentation of the epidemiology of mycotoxins in agricultural food commodities and discusses the implications on public health, current and recommended mitigation strategies, legislation, and challenges of mycotoxin research in Southern Africa.
Collapse
Affiliation(s)
- J M Misihairabgwi
- a Department of Biochemistry and Microbiology, School of Medicine , University of Namibia , Windhoek, Namibia. P. Bag 13301, Windhoek , Namibia
| | - C N Ezekiel
- b Department of Microbiology , Babcock University, Ilishan Remo , Ogun State , Nigeria
| | - M Sulyok
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| | - G S Shephard
- d Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology , Cape Peninsula University of Technology , PO Box 1906, Bellville , South Africa
| | - R Krska
- c Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln) , University of Natural Resources and Life Sciences Vienna (BOKU) , Konrad Lorenz Str. 20, Tulln , Austria
| |
Collapse
|
48
|
Aflatoxin risk management in commercial groundnut products in Malawi (Sub-Saharan Africa): a call for a more socially responsible industry. J Verbrauch Lebensm 2017. [DOI: 10.1007/s00003-017-1129-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Matumba L, Singano L, Pungulani L, Mvula N, Matumba A, Singano C, Matita G. Aflatoxins, discolouration and insect damage in dried cowpea and pigeon pea in Malawi and the effectiveness of flotation/washing operation in eliminating the aflatoxins. Mycotoxin Res 2017; 33:129-137. [DOI: 10.1007/s12550-017-0272-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022]
|
50
|
Aflatoxin B1 levels in groundnut products from local markets in Zambia. Mycotoxin Res 2017; 33:113-119. [DOI: 10.1007/s12550-017-0270-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|