1
|
Lee M, Kwon JS, Kim SH, Woo S, Oh SS. Electrochemical pan-variant detection of SARS-CoV-2 through host cell receptor-mimicking molecular recognition. Biosens Bioelectron 2025; 278:117311. [PMID: 40044551 DOI: 10.1016/j.bios.2025.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The persistent emergence of new SARS-CoV-2 variants has presented significant challenges to vaccines and antiviral therapeutics, highlighting the need for the development of methods that ensure variant-independent responses. This study introduces a unique sensor capable of electrochemically detecting SARS-CoV-2 across a wide range of variants. The comprehensive detection is achieved by using a peptide-DNA hybrid, R7-02, as the capture probe, mimicking the binding interface between a SARS-CoV-2 spike protein and a host cell receptor, hACE2. Since the first step of viral infection is the binding of the spike protein to hACE2 regardless of variant type, the hACE2-mimicking probe can naturally acquire the pan-variant recognition capability. In constructing the sensor, the R7-02 probes are positioned on electrodes via a tetrahedral DNA nanostructure for enhanced detection efficiency. Since R7-02 directly captures the externally-exposed spike protein, our approach does not require sample pretreatments, such as virus particle lysis, unlike conventional diagnostic methods. The R7-02-embedded sensor demonstrated high sensitivity towards Omicron and its major subvariants-commonly known as 'stealth Omicron' (BA.5, BA.2.75, BQ.1.1, and XBB.1.5)-with a detection limit as low as 811.9 pM, along with robust specificity for SARS-CoV-2 against influenza and other human coronaviruses. The sensor also successfully detected SARS-CoV-2 directly from non-treated saliva samples of COVID-19-positive patients. Given the comprehensive and sensitive detection capability, combined with its simple operation, our receptor-mimicking probe-based electrochemical sensor holds the potential to be a sustainable and effective point-of-care diagnostic tool, offering a promising solution to the constant challenges posed by the endemic presence of SARS-CoV-2.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Ji-Soo Kwon
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sungwook Woo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
2
|
Brown F, Soltanahmadi S, Mackie AR, He Q, Pfeifer J, Sarkar A. Comparing frictional behaviour of plant and dairy proteins: Case study on high protein concentration. Food Res Int 2025; 209:116322. [PMID: 40253211 DOI: 10.1016/j.foodres.2025.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
The aim of this study was to understand the frictional behaviour of non-purified plant proteins (i.e. pea protein concentrate (PPc) and soy protein isolate (SPI)) compared to dairy proteins (whey protein isolate (WPI) and sodium caseinate (NaCas)). The comparison was conducted for aqueous dispersions of the proteins at 10 and 20 wt% at pH 6.8. Owing to protein-protein aggregation and lower solubilities, plant proteins showed prominent shear thinning behaviour, unlike dairy proteins, which showed less shear dependence. Addition of proteins reduced the boundary friction coefficients (μ) with NaCas showing the lowest boundary μ (p < 0.05). In general, the dairy proteins showed larger hydrodynamic size and better lubricity whilst the plant proteins increased the mixed μ with twice as high a calculated fluid film thickness (hmin) required for onset of the elastohydrodynamic regime as compared with that of dairy proteins. Such low μ values in dairy proteins might be attributed to increased adsorption (∼1.5-5× more) of the elastic films as compared to plant proteins. Findings suggest that product development towards more sustainable formulations, requires innovative strategies to reduce poor lubrication and aggregation when using higher concentrtaions of plant proteins.
Collapse
Affiliation(s)
- Frances Brown
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Siavash Soltanahmadi
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom.
| | - Alan R Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Qi He
- Mondelēz International, Reading, United Kingdom
| | | | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
3
|
Tian S, Wang Q, Huang X, Zhu S, Zhang H, Ren Z, Liu Y, Yang M, Huang J, Jin X. Saliva Proteomics Highlights Potential BMI-Related Biomarkers for Forensic and Medical Research. Electrophoresis 2025; 46:250-257. [PMID: 39945443 DOI: 10.1002/elps.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Obesity and underweight pose significant threats to human health as non-communicable diseases. In addition, body shape (like obesity or emaciation) is an important investigative clue in forensic practice. Body mass index (BMI) is a common indicator to reflect body shape of an individual. However, there is a lack of rapid, simple, and effective methods for identifying different BMI individuals. This research aimed to delve into the correlations between salivary proteins and BMI. A total of 418 differential expression proteins (DEPs) were identified through four-dimensional data independent acquisition quantitative proteomics analysis. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were primarily involved in oxidative phosphorylation, protein processing in the endoplasmic reticulum, and cholesterol metabolism pathways. Finally, we identified 17 protein markers that were correlated with BMI. Two machine-learning models (random forest and support vector machine) were also built based on these 17 markers. Obtained results demonstrated the efficacy of these 17 protein markers in accurately distinguishing different BMI individuals. In conclusion, our study not only provides potential salivary protein markers for identifying obesity and underweight individuals, it could also present a novel method for inferring BMI of saliva-related samples in forensic case investigation.
Collapse
Affiliation(s)
- Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Shengjie Zhu
- School of Cyber Science and Technology, University of Science and Technology of China, Hefei, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Żyła K, Duda A. Towards Improved Bioavailability of Cereal Inositol Phosphates, Myo-Inositol and Phenolic Acids. Molecules 2025; 30:652. [PMID: 39942756 PMCID: PMC11820786 DOI: 10.3390/molecules30030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Cereals are among the foods rich in myo-inositol hexakisphosphate (phytic acid, IP6), lower myo-inositol phosphates (IPx), a wide range of phenolic compounds, as well as vitamins, minerals, oligosaccharides, phytosterols and para-aminobenzoic acid, and are attributed with multiple bioactivities, particularly associated with the prevention of metabolic syndrome and colon cancer. The bran fraction of wheat, maize, brown rice and other cereals contains high levels of phytate, free and total phenolics, and endogenous enzymes such as amylases, phytase, xylanase, β-glucanase and feruloyl esterase, whose activities can be increased by germination. The preliminary steps of digestion begin in the oral cavity where substrates for the action of endogenous cereal and salivary enzymes start to be released from the food matrix. IP6 released from phytate complexes with arabinoxylans, starch and protein bodies would eventually enhance the absorption of nutrients, including phenolics, by regulating tight junctions and, together with ferulic acid (FA), would maintain cell barrier integrity and epithelial antibacterial immunity. In addition, both IP6 and FA exert potent and complementary antioxidant effects, while FA together with IPx generated through advanced hydrolysis of IP6 by endogenous and microbial phytases may affect digestive enzyme activity and incretin secretion, resulting in modulated insulin and glucagon release and prevention of various diabetic complications. Contrary to widespread negative attitudes towards phytate, in this review, we present the strategy of selecting cereals with high phytate and phenolic content, as well as high endogenous phytase, feruloyl esterase and endoxylanase activities, to produce value-added health-promoting foods. The advanced hydrolysis of phytate and phenolic compounds by cereal and/or microbial enzymes would generate substantial amounts of "enzymatically generated inositol" (EGI), including IP6, IPx and myo-inositol, the compounds that, together with free FA, provide enhanced bioavailability of cereal nutrients through multiple synergistic effects not previously realised.
Collapse
Affiliation(s)
- Krzysztof Żyła
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
| | - Aleksandra Duda
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland
| |
Collapse
|
5
|
Samodova D, Stankevic E, Søndergaard MS, Hu N, Ahluwalia TS, Witte DR, Belstrøm D, Lubberding AF, Jagtap PD, Hansen T, Deshmukh AS. Salivary proteomics and metaproteomics identifies distinct molecular and taxonomic signatures of type-2 diabetes. MICROBIOME 2025; 13:5. [PMID: 39794871 PMCID: PMC11720885 DOI: 10.1186/s40168-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics. RESULTS We conducted ultrafast, in-depth MS-based proteomic and metaproteomic profiling of saliva from 15 newly diagnosed T2D individuals and 15 age-/BMI-matched healthy controls (HC). Using state-of-the-art proteomics, over 4500 human and bacterial proteins were identified in a single 21-min run. Bioinformatic analysis revealed host signatures of altered immune-, lipid-, and glucose-metabolism regulatory systems, increased oxidative stress, and possible precancerous changes in T2D saliva. Abundance of peptides for bacterial genera such as Neisseria and Corynebacterium were altered showing biomarker potential, offering insights into disease pathophysiology and microbial applications for T2D management. CONCLUSIONS This study presents a comprehensive mapping of salivary proteins and microbial communities, serving as a foundational resource for enhancing understanding of T2D pathophysiology. The identified biomarkers hold promise for advancing diagnostics and therapeutic approaches in T2D and its associated long-term complication Video Abstract.
Collapse
Affiliation(s)
- Diana Samodova
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Evelina Stankevic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | | | - Naiyu Hu
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
- Department of Biology, The Bioinformatics Center, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Bartholins Allé 2, Building 1260, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 11, Entrance A, Aarhus, 8200, Denmark
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, University of Copenhagen, Nørre Allé 20, Copenhagen, 2200, Denmark
| | | | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 420 Washington Ave SE, Minneapolis, MN, 55455, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
| |
Collapse
|
6
|
Duijsens D, Verkempinck SHE, Grauwet T. Impact of the stepwise implementation of INFOGEST semi-dynamic conditions on in vitro starch and protein digestion: A case study on lentil cotyledon cells. Food Res Int 2024; 197:115214. [PMID: 39593300 DOI: 10.1016/j.foodres.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The impact of food design parameters on digestion is mostly studied using static in vitro digestion models. In this work, the complexity of the static model was gradually increased, by implementing several dynamic gastric reactor conditions, i.e., gradual (i) acidification, (ii) pepsin addition, and (iii) emptying, as well as (iv) saliva in the oral phase. As a relevant case study, starch and protein digestion was studied in lentil cotyledon cells under these conditions. Implementation of these dynamic parameters affected gastric proteolysis, linked to the pH-dependence of pepsin, and amylolysis, linked to the pH-dependence of salivary amylase activity. Though gastrointestinal hydrolysis kinetics were affected by the applied simulation conditions, similar levels of starch and protein digestion were generally reached at the end of the simulated digestion. Salivary amylase was not completely inactivated at the low gastric pH conditions, resulting in significantly higher levels of small intestinal starch digestion upon saliva inclusion. Gastric emptying significantly affected macronutrient hydrolysis kinetics. In that regard, an approach separately considering gastric samples taken upon different gastric emptying times should be preferred over the pooling of gastric samples before simulating small intestinal digestion.
Collapse
Affiliation(s)
- D Duijsens
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - S H E Verkempinck
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - T Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Hazt B, Read DJ, Harlen OG, Poon WCK, O'Connell A, Sarkar A. Mucoadhesion across scales: Towards the design of protein-based adhesives. Adv Colloid Interface Sci 2024; 334:103322. [PMID: 39489118 DOI: 10.1016/j.cis.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.
Collapse
Affiliation(s)
- Bianca Hazt
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK
| | - Daniel J Read
- School of Mathematics, University of Leeds, LS2 9JT, UK
| | | | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Adam O'Connell
- Polymer Science Platform, Reckitt Benckiser Healthcare (UK) Ltd, Dansom Lane S, Hull, HU8 7DS, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Lavoisier A, Jamme T, Rousseau F, Morzel M. Impact of saliva incorporation on the rheological properties of in vitro gastric contents formulated from sour cream. J Texture Stud 2024; 55:e12851. [PMID: 38952153 DOI: 10.1111/jtxs.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted atγ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s atγ ̇ $$ \dot{\gamma} $$ = 20 s-1).
Collapse
Affiliation(s)
| | - Tino Jamme
- INRAE, Institut Agro, STLO, Rennes, France
| | | | | |
Collapse
|
9
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
10
|
Zhao Z, Yang Y, Wu S, Yao D. Role of Secretory Mucins in the Occurrence and Development of Cholelithiasis. Biomolecules 2024; 14:676. [PMID: 38927079 PMCID: PMC11201413 DOI: 10.3390/biom14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cholelithiasis is a common biliary tract disease. However, the exact mechanism underlying gallstone formation remains unclear. Mucin plays a vital role in the nuclear formation and growth of cholesterol and pigment stones. Excessive mucin secretion can result in cholestasis and decreased gallbladder activity, further facilitating stone formation and growth. Moreover, gallstones may result in inflammation and the secretion of inflammatory factors, which can further increase mucin expression and secretion to promote the growth of gallstones. This review systematically summarises and analyses the role of mucins in gallstone occurrence and development and its related mechanisms to explore new ideas for interventions in stone formation or recurrence.
Collapse
Affiliation(s)
| | | | | | - Dianbo Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang 110004, China; (Z.Z.); (Y.Y.); (S.W.)
| |
Collapse
|
11
|
Shirazi HA, Lee S, Ullah S, Almdal K. Structural and tribological studies on the interaction of porcine gastric mucin with non- and cationic-modified β-lactoglobulins. Colloids Surf B Biointerfaces 2024; 238:113924. [PMID: 38669751 DOI: 10.1016/j.colsurfb.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
β-lactoglobulin (BLG) is the major whey protein with negative charges at neutral pH in aqueous media. Thus, the interaction with mucins, the major polyanionic component of mucus, is very weak due to the electrostatic repulsion between them. The present study postulates that cationization of BLG molecules may reverse the interaction characteristics between BLG and mucin from repulsive to associative. To this end, cationic-modified BLGs were prepared by grafting positively charged ethylenediamine (EDA) moieties into the negatively charged carboxyl groups on the aspartic and glutamic acid residues and compared with non-modified BLG upon mixing with porcine gastric mucin (PGM). To characterize the structural and conformational features of PGM, non/cationized BLGs, and their mixtures, various spectroscopic approaches, including zeta potential, dynamic light scattering (DLS), and circular dichroism (CD) spectroscopy were employed. Importantly, we have taken surface adsorption with optical waveguide lightmode spectroscopy (OWLS), and tribological properties with pin-on-disk tribometry at the sliding interface as the key approaches to determine the interaction nature between them as mixing PGM with polycations can lead to synergistic lubrication at the nonpolar substrate in neutral aqueous media as a result of an electrostatic association. All the spectroscopic studies and a substantial improvement in lubricity collectively supported a tenacious and associative interaction between PGM and cationized BLGs, but not between PGM and non-modified BLG. This study demonstrates a unique and successful approach to intensify the interaction between BLG and mucins, which is meaningful for a broad range of disciplines, including food science, macromolecular interactions, and biolubrication etc.
Collapse
Affiliation(s)
- Hadi Asgharzadeh Shirazi
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 JT9, Leeds, The United Kingdom.
| | - Saif Ullah
- Department of Chemistry, Technical University of Denmark, DTU Chemistry, DK-2800, Kgs. Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark, DTU Chemistry, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Barallat-Pérez C, Pedrotti M, Oliviero T, Martins S, Fogliano V, de Jong C. Drivers of the In-Mouth Interaction between Lupin Protein Isolate and Selected Aroma Compounds: A Proton Transfer Reaction-Mass Spectrometry and Dynamic Time Intensity Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8731-8741. [PMID: 38579129 PMCID: PMC11036385 DOI: 10.1021/acs.jafc.3c08819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Plant proteins often carry off-notes, necessitating customized aroma addition. In vitro studies revealed protein-aroma binding, limiting release during consumption. This study employs in vivo nose space proton transfer reaction-time-of-flight-mass spectrometry and dynamic sensory evaluation (time intensity) to explore in-mouth interactions. In a lupin protein-based aqueous system, a sensory evaluation of a trained "green" attribute was conducted simultaneously with aroma release of hexanal, nonanal, and 2-nonanone during consumption. Results demonstrated that enlarging aldehyde chains and relocating the keto group reduced maximum perceived intensity (Imax_R) by 71.92 and 72.25%. Protein addition decreased Imax_R by 30.91, 36.84, and 72.41%, indicating protein-aroma interactions. Sensory findings revealed a perceived intensity that was lower upon protein addition. Aroma lingering correlated with aroma compounds' volatility and hydrophobicity, with nonanal exhibiting the longest persistence. In vitro mucin addition increased aroma binding four to 12-fold. Combining PTR-ToF-MS and time intensity elucidated crucial food behavior, i.e., protein-aroma interactions, that are pivotal for food design.
Collapse
Affiliation(s)
- Cristina Barallat-Pérez
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | | | - Teresa Oliviero
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | - Sara Martins
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
- AFB
International EU, Oss, LZ 5342, The Netherlands
| | - Vincenzo Fogliano
- Department
of Agrotechnology and Food Science, Wageningen
University & Research, Wageningen, WG 6708, The Netherlands
| | - Catrienus de Jong
- Wageningen
Food and Biobased Research, Wageningen University
& Research, Wageningen, WG 6708, The Netherlands
| |
Collapse
|
13
|
Xi Y, Yu M, Cao R, Li X, Zeng X, Li J. Decoding the interaction mechanism between bis(2-methyl-3-furyl) disulfide and oral mucin. Food Chem 2024; 436:137762. [PMID: 37866101 DOI: 10.1016/j.foodchem.2023.137762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The interactions between mucin and aroma compounds have been shown to affect aroma perception. This study aimed to investigate the binding behavior between mucin and bis(2-methyl-3-furyl) disulfide and reveal the interaction mechanism at different pH levels. Based on our results, the binding percentages between mucin and bis(2-methyl-3-furyl) disulfide ranged from 37.03 % to 71.87 % at different contents. The complexes formation between mucin and bis(2-methyl-3-furyl) disulfide was confirmed by turbidity, particle size, zeta-potential, and surface hydrophobicity analyses. According to the results of multispectral techniques and molecular dynamic simulation, mucin could interact with bis(2-methyl-3-furyl) disulfide by hydrogen bonding, hydrophobic interactions, and van der Waals force. Furthermore, the binding constants of mucin to bis(2-methyl-3-furyl) disulfide were 1.26 × 103, 1.14 × 103, and 9.13 × 103 L mol-1 at pH 5.0, 7.0, and 8.5, respectively. These findings contribute to the comprehensive knowledge on the interaction mechanism between bis(2-methyl-3-furyl) disulfide and mucin, providing insights for flavor modulation in meat products.
Collapse
Affiliation(s)
- Yu Xi
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Meihong Yu
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Rui Cao
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Xuejie Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Xiangquan Zeng
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
14
|
Duijsens D, Verkempinck SHE, Somers E, Hendrickx MEG, Grauwet T. From static to semi-dynamic in vitro digestion conditions relevant for the older population: starch and protein digestion of cooked lentils. Food Funct 2024; 15:591-607. [PMID: 38098462 DOI: 10.1039/d3fo04241c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In the context of adequately feeding the rising older population, lentils have an important potential as sources of (plant-based) protein as well as slowly digestible bio-encapsulated starch and fibre. This study evaluated in vitro digestion of protein and starch in lentils under conditions representing the gastrointestinal tract of older adults. Both static and semi-dynamic simulations were applied to analyze the effect of specific gastrointestinal conditions (healthy versus older adult) on macronutrient digestion patterns. Gastric proteolysis was strongly dependent on applied gastric pH (gradient), leading to a lower extent of protein hydrolysis for simulations relevant for older adults. Fewer and smaller (lower degree of polymerization, DP) bioaccessible peptides were formed during gastric proteolysis under older adult compared to healthy adult conditions. These differences, developed during the in vitro gastric phase, were compensated during small intestinal digestion, yielding similar final proteolysis levels regardless of the applied simulation conditions. In contrast, in the presence of saliva, amylolysis was generally accelerated under older adult conditions. Moreover, the current work highlighted the importance of considering saliva (or salivary amylase) incorporation in simulations where the applied gastric pH (gradient) allows salivary amylase activity. Under both healthy and older adult conditions, in vitro starch hydrolysis bio-encapsulated in cotyledon cells of cooked lentils was attenuated, compared to a white bread reference.
Collapse
Affiliation(s)
- Dorine Duijsens
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Emma Somers
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc E G Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
15
|
Zhang Y, Zhang R, Lu Y, Gao Y, Mao L. Effect of simulated saliva on rheological and tribological properties of oleogel-in-water HIPEs during oral processing. J Colloid Interface Sci 2024; 653:1018-1027. [PMID: 37778151 DOI: 10.1016/j.jcis.2023.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
HYPOTHESIS High internal phase emulsions (HIPEs) have great potentials in the food industry to control fat consumption. Textural perception of HIPEs during oral processing is strongly influenced by saliva, which has not been systematically investigated. Therefore, we investigated the roles of saliva in the rheological and tribological properties of HIPEs during oral processing. EXPERIMENTS HIPEs (O/W) stabilized by oleogel and a protein were fabricated. Small (SAOS) and large (LAOS) amplitude oscillatory shearing measurements and tribological tests were performed, in combination with structural characterization of the emulsions. FINDINGS Particle size and CLSM observation indicated that saliva induced coalescence of droplets by weakening the interface and more EC resulted in faster clustering. SAOS tests revealed that emulsions mixed with saliva had weaker structural strength and lower resistance to deformation. Particularly in large deformation, the HIPEs mixed with saliva presented an acceleration in the droplet-droplet structure breakdown, which led to the pronounced strain-thinning behavior and energy dissipation. Tribological curves further revealed that the corporation of saliva contributed to the release of oil to reduce friction coefficient.
Collapse
Affiliation(s)
- Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yao Lu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Agorastos G, van Uitert E, van Halsema E, Scholten E, Bast A, Klosse P. The effect of cations and epigallocatechin gallate on in vitro salivary lubrication. Food Chem 2024; 430:136968. [PMID: 37527573 DOI: 10.1016/j.foodchem.2023.136968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Ionic valency influences oral processing by changing salivary behavior and merits more attention since little is known. In this study, the influence of three ionic valences (monovalent, divalent and trivalent), ionic strength and epigallocatechin gallate (EGCG) on lubricating properties of saliva were investigated. Tribological measurements were used to characterize the lubrication response of KCl, MgCl2, FeCl3, and AlCl3 in combination with EGCG to the ex vivo salivary pellicle. KCl at 150 mM ionic strength provided extra lubrication via hydration lubrication. Contrarily, trivalent salts aggregated together with the salivary mucins via ionic cross-link interactions, which led to a decrease in salivary lubrication. FeCl3 and AlCl3 affected the salivary lubrication differently, which was attributed to changes in the pH. Finally, in presence of EGCG, FeCl3 interacted with EGCG via chelating interactions, preventing salivary protein aggregation. This resulted in less desorption of the salivary film, retaining the lubrication ability of salivary proteins.
Collapse
Affiliation(s)
- Georgios Agorastos
- Faculty of Science and Engineering, Campus Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, the Netherlands; T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands; Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands.
| | - Eva van Uitert
- Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands
| | - Emo van Halsema
- T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands
| | - Elke Scholten
- Physics and Physical Chemistry of Food, Wageningen University, Bornse Weilanden 9, 6708 PG Wageningen, the Netherlands
| | - Aalt Bast
- Faculty of Science and Engineering, Campus Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, the Netherlands
| | - Peter Klosse
- T.A.S.T.E. Foundation, 6611 KS, Garstkampsestraat 11, Overasselt, the Netherlands
| |
Collapse
|
17
|
Koidl L, Gentile SA, Untersmayr E. Allergen Stability in Food Allergy: A Clinician's Perspective. Curr Allergy Asthma Rep 2023; 23:601-612. [PMID: 37665560 PMCID: PMC10506954 DOI: 10.1007/s11882-023-01107-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE OF REVIEW The globally rising food allergy prevalence is associated with the urgent need for new disease prevention methods, efficient treatment, and reliable risk assessment methods for characterization of food allergens. Due to inter-individual variations in the digestive system, food allergens are degraded to a different extent in each person. Food processing also influences allergen digestion. RECENT FINDINGS In this review, we provide an overview of the digestive system with focus on relevance for food allergy. Main food proteins causing allergic reactions are evaluated, and the combined role of food processing and digestion for allergen stability is highlighted. Finally, clinical implications of this knowledge are discussed. Recent literature shows that allergen digestibility is dependent on food processing, digestive conditions, and food matrix. Digestion affects proteins allergenicity. It is currently not possible to predict the immunogenicity of allergens solely based on protein stability.
Collapse
Affiliation(s)
- Larissa Koidl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Salvatore Alessio Gentile
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, E3Q, 1090, Vienna, Austria.
| |
Collapse
|
18
|
Shi J, Wang Y, Liu Y, Xu Y. Analysis of Phospholipids in Digestion Using Hybrid IDA and SWATH Acquisition: An Example for Krill Oil. Foods 2023; 12:foods12102020. [PMID: 37238838 DOI: 10.3390/foods12102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The composition and digestion of phospholipid-rich foods have important effects on the health of the body. Herein, a model-assisted liquid chromatography coupling mass spectrometry (LC-MS) method was established to analyze the phosphatidylcholine (PC) and lyso-phosphatidylcholine (LPC) species in krill oil before and after digestion. According to the confirmed PC and LPC species in the IDA (information dependent acquisition) results, three categories of mathematical models were set up, involving the retention time (RT), carbon number and unsaturation degree of the fatty acyl chain. All of the regression coefficient values (R2) were greater than 0.90, showing satisfactory fitting results. On this basis, using the computationally created precursor ion mass of PC and LPC species, 12 extra PC species and 4 LPC species were found in the SWATH (sequential windowed acquisition of all theoretical fragment ions) results. The PC and LPC compositions in the final digestive products had obvious differences among the different krill oils with different phospholipid content. Furthermore, more than half of the LPC species in the final digestive products were newly generated, indicating that LPC was one of basic constituents in the digestive products of krill oil. In conclusion, model-assisted hybrid IDA and SWATH acquisition has excellent detection performance, contributing to deep studies of the formations and functions of phospholipids.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
19
|
Qin S, Li R, Chen M, Zeng F, Dai Y, Wu G, Zhou W, Li J. Oat Milk Tea Model System: Exploring the Stability of Milk Tea and the Bioaccessibility of Green Tea Polyphenols. Foods 2023; 12:foods12071402. [PMID: 37048223 PMCID: PMC10093375 DOI: 10.3390/foods12071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oat milk has become preferential because of its low calorie nature and high dietary fiber content, but its ability to “curdle” when mixed with tea can affect the consumer acceptability for oat milk tea. In this study, a model system for oat milk tea was made by combining oat milk and green tea extract to evaluate the impacts of the oat milk matrix and green tea extract concentration on the stability and polyphenol bioaccessibility. The stability analysis results showed that adding green tea extract to oat milk influenced the stability of the oat milk tea model systems. In contrast, the 3.0% fat oat milk tea model system exhibited a higher stability than the 1.5% fat oat milk tea model system. In simulated gastrointestinal digestive experiments, tea polyphenols in the oat milk tea model systems were relatively stable in oral and stomach digestive stages, while they clearly degraded in the small intestine digestive stage. Furthermore, the bioaccessibility of tea polyphenols was higher for the 3.0% fat oat milk tea model system than for the 1.5% fat oat milk tea model system, especially at low concentrations of green tea extracts (0.05%~0.25%). These results may provide a theoretical reference and data for the formulation of oat milk tea and the bioaccessibility of tea polyphenols in food matrices.
Collapse
Affiliation(s)
- Sirui Qin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- Correspondence: ; Tel.: +86-0759-2221090
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Guang Wu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| |
Collapse
|
20
|
Effect of mucin on β-lactoglobulin and lactose interaction. J DAIRY RES 2023. [DOI: 10.1017/s0022029923000092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Functions of mucin, as the major macromolecular component in saliva or gastric fluids, are drawing increasing attention in the context of understanding the oral processing or digestion of dairy foods at the molecular level. This study was designed to investigate the interactions between β-lactoglobulin (BLG)-lactose, mucin-lactose and BLG-lactose-mucin at the molecular level under different temperature and pH conditions using fluorescence spectroscopy in combination with scanning electron microscopes (sem). It is the first study of its kind. There was no lactose-dependent quenching on BLG fluorophore in the range of 0–10 mM lactose concentration. On the contrary, there was a continuous increase in the fluorescence intensity of the BLG protein when the lactose concentration increased, especially at 25°C. BLG-lactose complex became thermally unstable at 37 and 45°C. Moreover, BLG exhibited a pH dependent conformational change and had higher fluorescence intensity at pH 3 than pH 6.8. The fluorescence result was in correspondence with sem images where we observed lactose crystals gathering around and on the BLG molecule, but lactose molecules could not be seen in the presence of mucin. It was anticipated that mucin molecules interacted with BLG-lactose complex via electrostatic attraction and formed an extra protective layer around the BLG molecules to avoid solvent exposure.
Collapse
|
21
|
Oral bio-interfaces: Properties and functional roles of salivary multilayer in food oral processing. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Assad-Bustillos M, Cázares-Godoy A, Devezeaux de Lavergne M, Schmitt C, Hartmann C, Windhab E. Assessment of the interactions between pea and salivary proteins in aqueous dispersions. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Factors influencing thirst perception during the consumption of oral nutritional supplements in older adults. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Pajic P, Shen S, Qu J, May AJ, Knox S, Ruhl S, Gokcumen O. A mechanism of gene evolution generating mucin function. SCIENCE ADVANCES 2022; 8:eabm8757. [PMID: 36026444 PMCID: PMC9417175 DOI: 10.1126/sciadv.abm8757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/12/2022] [Indexed: 05/12/2023]
Abstract
How novel gene functions evolve is a fundamental question in biology. Mucin proteins, a functionally but not evolutionarily defined group of proteins, allow the study of convergent evolution of gene function. By analyzing the genomic variation of mucins across a wide range of mammalian genomes, we propose that exonic repeats and their copy number variation contribute substantially to the de novo evolution of new gene functions. By integrating bioinformatic, phylogenetic, proteomic, and immunohistochemical approaches, we identified 15 undescribed instances of evolutionary convergence, where novel mucins originated by gaining densely O-glycosylated exonic repeat domains. Our results suggest that secreted proteins rich in proline are natural precursors for acquiring mucin function. Our findings have broad implications for understanding the role of exonic repeats in the parallel evolution of new gene functions, especially those involving protein glycosylation.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Alison J. May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
25
|
Mapping of β-lactoglobulin − mucin interactions in an in vitro astringency model: Phase compatibility, adsorption mechanism and thermodynamic analysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Corvera-Paredes B, Sánchez-Reséndiz AI, Medina DI, Espiricueta-Candelaria RS, Serna-Saldívar S, Chuck-Hernández C. Soft Tribology and Its Relationship With the Sensory Perception in Dairy Products: A Review. Front Nutr 2022; 9:874763. [PMID: 35662955 PMCID: PMC9161289 DOI: 10.3389/fnut.2022.874763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, dairy products, especially fermented products such as yogurt, fromage frais, sour cream and custard, are among the most studied foods through tribological analysis due to their semi-solid appearance and close relationship with attributes like smoothness, creaminess and astringency. In tribology, dairy products are used to provide information about the friction coefficient (CoF) generated between tongue, palate, and teeth through the construction of a Stribeck curve. This provides important information about the relationship between friction, food composition, and sensory attributes and can be influenced by many factors, such as the type of surface, tribometer, and whether saliva interaction is contemplated. This work will review the most recent and relevant information on tribological studies, challenges, opportunity areas, saliva interactions with dairy proteins, and their relation to dairy product sensory.
Collapse
Affiliation(s)
| | | | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapán de Zaragoza, Mexico
| | | | | | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- *Correspondence: Cristina Chuck-Hernández
| |
Collapse
|
27
|
Asimakopoulou E, Giotis C, Andreadis I, Fatouros DG, Ritzoulis C. Stability and rheology of plant-derived hydrocolloid - mucin mixtures. J Texture Stud 2022; 53:558-562. [PMID: 35578394 DOI: 10.1111/jtxs.12694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Mixtures of mucin with pectin were investigated in a range of pectin to mucin ratios and pH values. The phase stability was first studied as absorbance measured at 500 nm (turbidity). Co-existence of the two materials did not result in co-sedimentation or relevant phase separations, while lower pH enhanced aggregation and partial sedimentation of individual components, especially for mucin. The above are in line with the recorded zeta potential values, which are negative for both components at neutral pH and drop down to almost zero at acidic values. The sizes of the particles, as recorded by dynamic light scattering, show a similar trend to the absorbance values, indicating that phase separations are in line with events at the scale of a few hundred nm. Such interactions reflect in shear rheology: The viscosity corresponding to 50 s-1 decreases upon substitution of pectin with mucin at pH 7 and pH 3, suggesting a flow dominated by changes in the space occupancy by the two components and by changes in the size of the self-assembled structures. The results were compared to those of more complex and typical hydrocolloids extracted from olive compost: The overall shape of the stability diagram of the two ingredients match, suggesting similar modes of action in the presence of mucin for other natural materials. These data throw some light in the norms during the co-existence of food polysaccharides and mucin in oral and gastrointestinal environments.
Collapse
Affiliation(s)
- E Asimakopoulou
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, Greece
| | - C Giotis
- Department of Food Science and Technology, Ionian University, Vergoti Avenue, 28100 Argostoli, Greece
| | - I Andreadis
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - D G Fatouros
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, Greece
| |
Collapse
|
28
|
Yan J, Yang Z, Qiao X, Kong Z, Dai L, Wu J, Xu X, McClements DJ. Interfacial characteristics and in vitro digestion of emulsion coated by single or mixed natural emulsifiers: lecithin and/or rice glutelin hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2990-2999. [PMID: 34773407 DOI: 10.1002/jsfa.11639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The interfacial characteristics and in vitro digestion of emulsion were related to emulsifier type. The mean droplet diameter, ζ-potential, microstructure, interfacial tension, Quartz crystal microbalance with dissipation (QCM-D) and in vitro gastrointestinal fate of emulsions stabilized by soybean lecithin, hydrolyzed rice glutelin (HRG) and their mixture were researched. RESULTS The value of interfacial tension was much more dramatically declined for the sample containing 20 g kg-1 of HRG. For QCM-D, a rigid layer was formed for all the samples after rinsing. The layer thickness was 0.87 ± 0.20, 2.11 ± 0.31 and 2.63 ± 0.22 nm, and adsorbed mass was 87.17 ± 10.31, 210.56 ± 20.12 and 263.09 ± 23.23 ng cm-2 , for HRG, lecithin and HRG/lecithin, respectively, indicating both HRG and lecithin were adsorbed at the oil-water interface. Structural rearrangements at the interface occurred for HRG/lecithin. The kinetics and final amount of lipid digestion depended on emulsifier type: lecithin > HRG/lecithin > HRG. These differences in digestion rate were primarily due to differences in the aggregation state of the emulsifiers. CONCLUSION The incorporation of lecithin into HRG emulsions had better interfacial properties comparing with HRG emulsion and facilitated lipid digestibility. These results provide important information for the rational design of plant-based functional food. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiakai Yan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhenyu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Qiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhihao Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
29
|
Shirazi HA, Lee S. Complexation between porcine gastric mucin (PGM) and lysozyme: Influence of heat treatment of lysozyme on the tribological properties. Int J Biol Macromol 2022; 203:212-221. [PMID: 35093433 DOI: 10.1016/j.ijbiomac.2022.01.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022]
Abstract
The influence of complexation between porcine gastric mucin (PGM) and lysozyme (LYZ) solutions (pH⁓7.0) on their lubricating properties was studied at a hydrophobic self-mated polydimethylsiloxane (PDMS) tribopair. To this end, LYZ solutions with varying heating time, namely 1hr, 3hr-, and 6hr at 90 °C, as well as unheated LYZ solution, were prepared. The lubricating capability of PGM and LYZ solutions and also their mixtures was characterized using pin-on-disk tribometry. In parallel, to precisely investigate the interaction between PGM and LYZ solutions, an array of the well-known experiments including electrophoretic-dynamic light scattering, circular dichroism spectroscopy and optical waveguide light-mode spectroscopy were employed. These experiments were utilized to elucidate the key features e.g. zeta potential, hydrodynamic diameter, conformational structure and mass adsorption. The tribometry results indicated that both PGM and unheated LYZ solutions had poor lubricating properties in the boundary lubrication regime (sliding speed lower than 10 mm/s). Mixing PGM with unheated LYZ led to a slight decrease in the friction coefficient, but no desirable lubricity was observed. An optimum slippery characteristic was achieved by incorporating 1hr heated LYZ solution into PGM one. Excellent lubricity of PGM/1hr heated LYZ may stem from surface charge compensation, tenaciously compact aggregation, unique conformational structure and considerable mass adsorption onto PDMS. This finding revealed that a strong interaction between PGM and LYZ molecules and as a result, the promising lubricating capability of PGM/LYZ mixtures, can be administered by varying heat-treatment duration of LYZ proteins.
Collapse
Affiliation(s)
- Hadi Asgharzadeh Shirazi
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Gallego M, Barat JM, Grau R, Talens P. Compositional, structural design and nutritional aspects of texture-modified foods for the elderly. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Tang RC, Chen TC, Lin FH. Design Strategy for a Hydroxide-Triggered pH-Responsive Hydrogel as a Mucoadhesive Barrier to Prevent Metabolism Disorders. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58340-58351. [PMID: 34871495 PMCID: PMC8802295 DOI: 10.1021/acsami.1c17706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Excess nutrient uptake is one of the main factors of complications related to metabolism disorders. Therefore, efforts have emerged to modulate nutrient transport in the intestine. However, current approaches are mainly invasive interventions with various side effects. Here, a pH-responsive hydrogel is formulated by acidifying the hydroxide compounds within sucralfate to allow electrostatic interactions between pectin and aluminum ions. The pH responsiveness relies on the alternation of cations and hydroxide species, providing reversible shifting from a hydrogel to a complex coacervate system. It acts as a transient physical barrier coating to inhibit intestinal absorption and changes the viscosity and barrier function in different parts of the gastrointestinal tract, showing enhanced mucoadhesive properties. The therapeutic hydrogel remarkably lowers the immediate blood glucose response by modulating nutrient contact with bowel mucosa, suggesting potential in treating diabetes. In addition, it significantly reduces weight gain, fat accumulation, and hepatic lipid deposition in rodent models. This study provides a novel strategy for fabricating pH-responsive hydrogels, which may serve as a competent candidate for metabolism disorder management.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (ROC)
| | - Tzu-Chien Chen
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (ROC)
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan (ROC)
| | - Feng-Huei Lin
- Department
of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (ROC)
- Department
of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd., Taipei 10672, Taiwan (ROC)
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Rd., Zhunan, Miaoli County 35053, Taiwan (ROC)
| |
Collapse
|
32
|
3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics 2021; 13:pharmaceutics13122143. [PMID: 34959423 PMCID: PMC8708498 DOI: 10.3390/pharmaceutics13122143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.
Collapse
|
33
|
Abad I, Conesa C, Sánchez L. Development of Encapsulation Strategies and Composite Edible Films to Maintain Lactoferrin Bioactivity: A Review. MATERIALS 2021; 14:ma14237358. [PMID: 34885510 PMCID: PMC8658689 DOI: 10.3390/ma14237358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Lactoferrin (LF) is a whey protein with various and valuable biological activities. For this reason, LF has been used as a supplement in formula milk and functional products. However, it must be considered that the properties of LF can be affected by technological treatments and gastrointestinal conditions. In this article, we have revised the literature published on the research done during the last decades on the development of various technologies, such as encapsulation or composite materials, to protect LF and avoid its degradation. Multiple compounds can be used to conduct this protective function, such as proteins, including those from milk, or polysaccharides, like alginate or chitosan. Furthermore, LF can be used as a component in complexes, nanoparticles, hydrogels and emulsions, to encapsulate, protect and deliver other bioactive compounds, such as essential oils or probiotics. Additionally, LF can be part of systems to deliver drugs or to apply certain therapies to target cells expressing LF receptors. These systems also allow improving the detection of gliomas and have also been used for treating some pathologies, such as different types of tumours. Finally, the application of LF in edible and active films can be effective against some contaminants and limit the increase of the natural microbiota present in meat, for example, becoming one of the most interesting research topics in food technology.
Collapse
Affiliation(s)
- Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
| | - Celia Conesa
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain; (I.A.); (C.C.)
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-761-585
| |
Collapse
|
34
|
Interactions of β-Lactoglobulin with Bovine Submaxillary Mucin vs. Porcine Gastric Mucin: The Role of Hydrophobic and Hydrophilic Residues as Studied by Fluorescence Spectroscopy. Molecules 2021; 26:molecules26226799. [PMID: 34833889 PMCID: PMC8623809 DOI: 10.3390/molecules26226799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate binding interactions between β-lactoglobulin (BLG) and two different mucins, bovine submaxillary mucins (BSM) and porcine gastric mucin (PGM), using intrinsic and extrinsic fluorescence spectroscopies. Intrinsic fluorescence spectra showed an enhanced decrease of fluorescence intensity of BLG at all pH conditions when BLG was mixed with PGM rather than with BSM. We propose that, unlike BSM, the tertiary structure of PGM changes and the hydrophobic regions are exposed at pH 3 due to protonation of negatively charged residues. Results suggest that PGM also facilitated the structural unfolding of BLG and its binding with PGM by a hydrophobic interaction, especially at acidic pH, which was further supported by extrinsic fluorescence spectroscopy. Hydrophobic interaction is suggested as the dominant interaction mechanism between BLG and PGM at pH 3, whereas electrostatic interaction is the dominant one between BLG and BSM.
Collapse
|
35
|
McDermott M, Cerullo AR, Parziale J, Achrak E, Sultana S, Ferd J, Samad S, Deng W, Braunschweig AB, Holford M. Advancing Discovery of Snail Mucins Function and Application. Front Bioeng Biotechnol 2021; 9:734023. [PMID: 34708024 PMCID: PMC8542881 DOI: 10.3389/fbioe.2021.734023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mucins are a highly glycosylated protein family that are secreted by animals for adhesion, hydration, lubrication, and other functions. Despite their ubiquity, animal mucins are largely uncharacterized. Snails produce mucin proteins in their mucous for a wide array of biological functions, including microbial protection, adhesion and lubrication. Recently, snail mucins have also become a lucrative source of innovation with wide ranging applications across chemistry, biology, biotechnology, and biomedicine. Specifically, snail mucuses have been applied as skin care products, wound healing agents, surgical glues, and to combat gastric ulcers. Recent advances in integrated omics (genomic, transcriptomic, proteomic, glycomic) technologies have improved the characterization of gastropod mucins, increasing the generation of novel biomaterials. This perspective describes the current research on secreted snail mucus, highlighting the potential of this biopolymer, and also outlines a research strategy to fulfill the unmet need of examining the hierarchical structures that lead to the enormous biological and chemical diversity of snail mucus genes.
Collapse
Affiliation(s)
- Maxwell McDermott
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Antonio R Cerullo
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - James Parziale
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Eleonora Achrak
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Sharmin Sultana
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Jennifer Ferd
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Safiyah Samad
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - William Deng
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Adam B Braunschweig
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States.,Advanced Science Research Center, Graduate Center of New York, Graduate Department of Biochemistry, New York, NY, United States.,PhD Programs in Biochemistry and Chemistry Graduate Center of the City University of New York, New York, NY, United States
| | - Mandë Holford
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States.,PhD Programs in Biochemistry and Chemistry Graduate Center of the City University of New York, New York, NY, United States.,PhD Program in Biology Graduate Center of the City University of New York, New York, NY, United States.,Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, United States
| |
Collapse
|
36
|
Xanthan gum − mucin complexation: Molecular interactions, thermodynamics, and rheological analysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Brown FN, Mackie AR, He Q, Branch A, Sarkar A. Protein-saliva interactions: a systematic review. Food Funct 2021; 12:3324-3351. [PMID: 33900320 DOI: 10.1039/d0fo03180a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food industries are challenged to reformulate foods and beverages with higher protein contents to lower fat and sugar content. However, increasing protein concentration can reduce sensory acceptability due to astringency perception. Since the properties of food-saliva mixtures govern mouthfeel perception, understanding how saliva and protein interact is key to guide development of future protein-rich reformulations with optimal sensory attributes. Hence, this systematic review investigated protein-saliva interaction using both model and real human saliva, including a quality assessment. A literature search of five databases (Medline, Pubmed, Embase, Scopus and Web of Science) was undertaken covering the last 20 years, yielding 36 604 articles. Using pre-defined criteria, this was reduced to a set of 33 articles with bulk protein solutions (n = 17), protein-stabilized emulsions (n = 13) and protein-rich food systems (n = 4). Interaction of dairy proteins, lysozyme and gelatine with model or human saliva dominated the literature. The pH was shown to have a strong effect on electrostatic interaction of proteins with negatively-charged salivary mucins, with greater interactions occurring below the isoelectric point of proteins. The effect of protein concentration was unclear due to the limited range of concentrations being studied. Most studies employed a 1 : 1 w/w protein : saliva ratio, which is not representative of true oral conditions. The interaction between protein and saliva appears to affect mouthfeel through aggregation and increased friction. The searches identified a gap in research on plant proteins. Accurate simulation of in vivo oral conditions should clarify understanding of protein-saliva interaction and its influence on sensory perception.
Collapse
Affiliation(s)
- Frances N Brown
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
38
|
Norton V, Lignou S, Methven L. Influence of Age and Individual Differences on Mouthfeel Perception of Whey Protein-Fortified Products: A Review. Foods 2021; 10:433. [PMID: 33669435 PMCID: PMC7920461 DOI: 10.3390/foods10020433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Protein needs are considered to increase with age, with protein consumption being associated with many positive outcomes. Protein-fortified products are often used to improve nutritional status and prevent age-related muscle mass loss in older adults. Accordingly, older adults are commonly provided with products fortified with whey protein; however, such products can cause mouthdrying, limiting consumption and product enjoyment. Currently, the extent to which age and individual differences (e.g., saliva, oral health, food oral processing) influence the perception of whey protein-derived mouthdrying is relatively unclear. Previous research in this area has mainly focused on investigating mouthdrying, without taking into account individual differences that could influence this perception within the target population. Therefore, the main focus of this review is to provide an overview of the relevant individual differences likely to influence mouthfeel perception (specifically mouthdrying) from whey protein-fortified products, thereby enabling the future design of such products to incorporate better the needs of older adults and improve their nutritional status. This review concludes that age and individual differences are likely to influence mouthdrying sensations from whey protein-fortified products. Future research should focus more on the target population and individual differences to maximise the benefits from whey protein fortification.
Collapse
Affiliation(s)
| | | | - Lisa Methven
- Department of Food and Nutritional Sciences, Harry Nursten Building, University of Reading, Whiteknights, Reading RG6 6DZ, UK; (V.N.); (S.L.)
| |
Collapse
|
39
|
McClements DJ. Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Lee MC, Dadmohammadi Y, Tan C, Abbaspourrad A. Mitigating the Astringency of Acidified Whey Protein in Proteinaceous High Internal Phase Emulsions. ACS APPLIED BIO MATERIALS 2020; 3:8438-8445. [DOI: 10.1021/acsabm.0c00767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle C. Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
41
|
Koupa K, Keligianni V, Kalogianni EP, Ritzoulis C. Foam Stability of Mucin – Caseinate Mixtures: Relevance to Oral Processing. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Broersen K. Milk Processing Affects Structure, Bioavailability and Immunogenicity of β-lactoglobulin. Foods 2020; 9:foods9070874. [PMID: 32635246 PMCID: PMC7404694 DOI: 10.3390/foods9070874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Bovine milk is subjected to various processing steps to warrant constant quality and consumer safety. One of these steps is pasteurization, which involves the exposure of liquid milk to a high temperature for a limited amount of time. While such heating effectively ameliorates consumer safety concerns mediated by pathogenic bacteria, these conditions also have an impact on one of the main nutritional whey constituents of milk, the protein β-lactoglobulin. As a function of heating, β-lactoglobulin was shown to become increasingly prone to denaturation, aggregation, and lactose conjugation. This review discusses the implications of such heat-induced modifications on digestion and adsorption in the gastro-intestinal tract, and the responses these conformations elicit from the gastro-intestinal immune system.
Collapse
Affiliation(s)
- Kerensa Broersen
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
43
|
Biological Activity of Porcine Gastric Mucin on Stress Resistance and Immunomodulation. Molecules 2020; 25:molecules25132981. [PMID: 32610600 PMCID: PMC7411864 DOI: 10.3390/molecules25132981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Purified porcine gastric mucin (PGM) is an alternative biomaterial to native mucin which displays multifunctional properties for exploring a wide range of biomedical applications. The present study evaluated the in vitro (RAW 264.7 macrophage cells) and in vivo (zebrafish embryos and larvae) bioactivities of PGM. The median lethal concentration (LC50) of PGM was 197.9 µg/mL for embryos, while it was non-toxic to RAW 264.7 cells, even at 500 µg/mL. Following PGM exposure (100 µg/mL), a higher embryo hatching rate (59.9%) was observed at 48 h post fertilization, compared to the control (30.6%). Protective effects of PGM from pathogenic Aeromonas hydrophila were demonstrated by high larvae survival rates of 85.0% and 94.0% at 50 and 100 μg/mL of PGM exposure, respectively. Heat tolerance effect of PGM (50 and 100 µg/mL) on larvae (40 °C for 48 h) was confirmed by 75% and 100% of survival rates, respectively. Additionally, PGM reduced the A. hydrophila–induced reactive oxygen species (ROS) generation in larvae. The qRT-PCR results in PGM exposed larvae exhibited induction of immune-related genes (tlr5a and tlr5b, myd88, c-rel, il1β, tnf-α, il6, il10, cxcl18b, ccl34a.4, defbl1, hamp, ctsd, muc2.1, muc5.1, muc5.2, and muc5.3), stress response (hsp70, hsp90aa1.1, and hsp90ab1), and antioxidant genes (cat and sod1). Moreover, our results revealed that PGM involved in the regulation of transcriptional gene induction increases Hsp90 protein in the zebrafish larvae. Furthermore, upregulation of Il6, Il10, Tnfα, Ccl3, Defa-rs2, Defa21 and Camp and antioxidant genes (Sod2 and Cat) were observed in PGM-exposed RAW 264.7 cells. Overall findings confirmed the activation of immune responses, disease resistance against pathogenic bacteria, heat tolerance, and ROS-scavenging properties by PGM, which may provide insights into new applications for PGM as a multifunctional immunomodulator.
Collapse
|
44
|
Carter BG, Foegeding EA, Drake MA. Invited review: Astringency in whey protein beverages. J Dairy Sci 2020; 103:5793-5804. [PMID: 32448585 DOI: 10.3168/jds.2020-18303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
Astringency is the sensation of mouth drying and puckering, and it has also been described as a loss of lubrication in the mouth. Astringency is perceived as an increase in oral friction or roughness. Astringency caused by tannins and other polyphenols has been well documented and studied. Whey proteins are popular for their functional and nutritional quality, but they exhibit astringency, particularly under acidic conditions popular in high acid (pH 3.4) whey protein beverages. Acids cause astringency, but acidic protein beverages have higher astringency than acid alone. Whey proteins are able to interact with salivary proteins, which removes the lubricating saliva layer of the mouth. Whey proteins can also interact directly with epithelial tissue. These various mechanisms of astringency limit whey protein ingredient applications because astringency is undesirable to consumers. A better understanding of the causes of whey protein astringency will improve our ability to produce products that have high consumer liking and deliver excellent nutrition.
Collapse
Affiliation(s)
- B G Carter
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - E A Foegeding
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - M A Drake
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695.
| |
Collapse
|
45
|
In Vitro Evaluation of Iron-Induced Salivary Lipid Oxidation Associated with Exposure to Iron Nanoparticles: Application Possibilities and Limitations for Food and Exposure Sciences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103622. [PMID: 32455755 PMCID: PMC7277702 DOI: 10.3390/ijerph17103622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/01/2023]
Abstract
Zerovalent iron nanotechnologies are widely used for groundwater remediation and increasingly considered for advance oxidation treatment in drinking water applications. Iron nanoparticles have been detected in drinking water systems and considered for food fortification; therefore, the potential for human exposure through ingestion can be a concern. This study aimed to assess whether ingestion of iron nanoparticles from drinking water could be detected through flavor perception using In Vitro salivary lipid oxidation as an indicator for metallic flavor perception. Ten female subjects, aged 29–59 years, donated saliva samples for use in the In Vitro experiments. Test samples consisted of 1:1 mixture of saliva and bottled drinking water (control) and three treatment solutions, spiked with ferrous sulfate, stabilized zerovalent iron nanoparticles (nZVI), and an aggregated/microsized suspension of mixed zerovalent iron and microsized suspension of iron and iron oxide metal powder, (mZVI). Upon mixing, samples were subjected to 15 min incubation at 37 °C to resemble oral conditions. Salivary lipid oxidation (SLO) was measured in all samples as micromoles of thiobarbituric acid reactive substances (TBARS)/mg Fe. Exposure to iron in all three forms induced significant amount of SLO in all treatment samples as compared to the control (p < 0.0001). The mean SLO levels were the highest in the ferrous treatment, followed by nZVI and mZVI treatments; the differences in the mean SLO levels were significant (p < 0.05). The findings indicate that oral exposure to stabilized ZVI nanoparticles may induce sensory properties different from that of ferrous salt, likely predictive of diminished detection of metallic flavor by humans.
Collapse
|
46
|
Kensche A, Dürasch A, König B, Henle T, Hannig C, Hannig M. Characterization of the in situ pellicle ultrastructure formed under the influence of bovine milk and milk protein isolates. Arch Oral Biol 2019; 104:133-140. [PMID: 31202148 DOI: 10.1016/j.archoralbio.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The present study aimed to investigate if bovine milk or milk protein isolates, respectively, alter the ultrastructure of thein situ pellicle and might therefore have an influence on oral health. METHODS In situ pellicle samples were formed on bovine enamel slabs exposed in the oral cavity of three subjects for 6, 30, 60 or 120 min. After 3 min of pellicle formation, mouthrinses were performed for 3 min with (non-)homogenized UHT- or fresh milk (0.3% or 3.8% fat), 30% UHT-treated cream or different types of casein- or milk protein isolates containing preparations. The specimens were removed after the exposure times and transmission electron microscopy (TEM) was performed. Native pellicle samples served as controls. RESULTS Topical ultrastructural pellicle modifications were detected after mouthrinses with all types of homogenized UHT- or fresh milk and after the application of a 3% native casein micelles containing experimental solution. Atypical globular protein structures, identified as casein micelles, were temporarily adsorbed onto the pellicle. They were closely associated with lipid droplets. Furthermore, the mouthrinses occasionally affected the morphology of salivary bacteria. However, no notable ultrastructural alterations remained after 120 min of pellicle formation. CONCLUSION For the first time, bovine milk- and micellar casein-induced pellicle modifications were revealed by TEM. The adsorption of micellar casein is possibly due to its molecular interactions. CLINICAL SIGNIFICANCE Bovine milk or micellar caseins provide some potential for the development of preventive strategies against bacterial biofilm formation or erosive processes at the tooth surface.
Collapse
Affiliation(s)
- A Kensche
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany.
| | - A Dürasch
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | - B König
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D- 66421 Homburg/Saar, Germany
| | - T Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | - C Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - M Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D- 66421 Homburg/Saar, Germany
| |
Collapse
|