1
|
de Oliveira ACD, Ali S, Corassin CH, Ullah S, Pereira KN, Walsh JL, Hojnik N, de Oliveira CAF. Application of cold atmospheric plasma for decontamination of toxigenic fungi and mycotoxins: a systematic review. Front Microbiol 2025; 15:1502915. [PMID: 39831113 PMCID: PMC11739521 DOI: 10.3389/fmicb.2024.1502915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as Aspergillus, Fusarium, Alternaria, and Penicillium. These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects. Notably, up to 50% of global cereal production is affected by mycotoxin contamination, leading to significant economic losses. Current research focuses on innovative technologies to mitigate mycotoxins, with cold atmospheric pressure plasma emerging as a promising decontamination method. Method This systematic review aimed at describing recent advances in the application of cold atmospheric plasma for the decontamination of toxigenic fungi and mycotoxins. Results and discussion Cold atmospheric plasma offers a sustainable and cost effective solution to preserve food quality while inactivating toxigenic fungi and degrading mycotoxins. Through the generation of reactive oxygen and nitrogen species, cold plasma disrupts fungal cell integrity, hinders spore germination, and inhibits toxin biosynthesis. Additionally, cold atmospheric plasma-driven degradation of mycotoxins involves structural modifications, breaking key molecular bonds that reduce toxicity. The effectiveness of cold plasma depends on operational parameters and the specific characteristics of the treated food, with notable efficacy in degrading aflatoxin B1 and deoxynivalenol by converting them into less toxic substances and inhibiting their spores and DNA responsible for their biosynthesis. While the data demonstrates that cold atmospheric plasma has minimal impact on food composition, further research is needed to fully assess the nature of the degradation products of mycotoxins, its influence on food quality attributes and to optimize application strategies for different products.
Collapse
Affiliation(s)
- Amanda Cristina Dias de Oliveira
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Sher Ali
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Carlos Humberto Corassin
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Sana Ullah
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Karina Nascimento Pereira
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - James Leon Walsh
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Nataša Hojnik
- Department for Gaseous Electronics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Carlos Augusto Fernandes de Oliveira
- Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
2
|
Teresa Fernández-Felipe M, Inés Valdez-Narváez M, Martinez A, Rodrigo D. Oxygen and air cold plasma for the inactivation of Bacillus cereus in low-water activity soy powder. Food Res Int 2024; 193:114861. [PMID: 39160048 DOI: 10.1016/j.foodres.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Cold plasma (CP) technology is a promising alternative to thermal treatments for the microbial decontamination of foods with low-water activity. The aim of this work is study the application of low-pressure CP (0.35 mbar) for the inactivation of Bacillus cereus in a soybean powder matrix using O₂ and synthetic air as ionizing gases. The parameters tested were an input power of 100, 200 and 300 W and an exposure time of 10 to 30 min. The excited reactive species formed were monitored by optical emission spectroscopy, and survival data were analyzed using the Weibull mathematical model. Treatments with both gases were effective in inactivating B. cereus. Air plasma resulted in a maximum 3.71-log reduction in bacterial counts at 300 W and 30 min, while O2 plasma showed the strongest inactivation ability, achieving levels higher than 5 log cycles at 300 W and > 25 min. This is likely due to the strong antimicrobial activity of oxygen-derived radicals together with carbon monoxide as an oxidation by-product. In addition, the Weibull distribution function accurately modeled the inactivation of B. cereus. Cold plasma technology is a promising approach for the decontamination of bacteria in low-water activity foods.
Collapse
Affiliation(s)
- M Teresa Fernández-Felipe
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - María Inés Valdez-Narváez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martinez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Dolores Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
3
|
Kyriakoudi A, Loukri A, Christaki S, Oliinychenko Y, Stratakos AC, Mourtzinos I. Impact of Cold Atmospheric Plasma Pretreatment on the Recovery of Phenolic Antioxidants from Spent Coffee Grounds. FOOD ANAL METHOD 2024; 17:1484-1496. [PMID: 39345863 PMCID: PMC11436392 DOI: 10.1007/s12161-024-02661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
In the present study, cold atmospheric plasma (CAP) was employed as a pretreatment method for the extraction of phenolic compounds from spent coffee grounds (SCGs). The impact of CAP treatment conditions, i.e., thickness of the SCGs layer (mm), distance between the plasma source and the SCGs layer (mm) and duration of CAP treatment (min), on the total phenol content, in vitro antioxidant activity, as well as caffeine and chlorogenic acid content of SCGs, was investigated. The process parameters were optimized with the aid of response surface methodology (RSM). After optimizing the CAP pretreatment conditions, the CAP-treated SCGs were subjected to ultrasound-assisted extraction using ethanol as the extraction solvent. The optimum conditions for CAP treatment identified, i.e., thickness, 1 mm; distance, 16 mm; and duration, 15 min, led to a significant enhancement in the recovery of bioactive compounds from SCGs compared to those obtained from untreated SCGs. Total phenolic content and antioxidant activity significantly increased (i.e., TPC from 19.0 ± 0.7 to 24.9 ± 1.4 mg GAE/100 g dry SCGs, ADPPH from 106.7 ± 5.01 to 112.3 ± 4.3 μmol Trolox/100 g dry SCGs, AABTS from 106.7 ± 5.01 to 197.6 ± 5.8 μmol Trolox/100 g dry SCGs, ACUPRAC from 17938 ± 157 to 18299 ± 615 μmol Trolox/100 g dry SCGs). A significant increase in caffeine content from 799.1 ± 65.1 mg to 1064 ± 25 mg/100 g dry SCGs and chlorogenic acid content from 79.7 ± 15.3 mg to 111.3 ± 3.3 mg/100 g dry SCGs, was also observed. Overall, CAP pre-treatment can be used to enhance the recovery of bioactive compounds from SCGs.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Anastasia Loukri
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Stamatia Christaki
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece
| | - Yelyzaveta Oliinychenko
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY UK
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY UK
| | - Ioannis Mourtzinos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY UK
| |
Collapse
|
4
|
Bekeschus S. Gas plasmas technology: from biomolecule redox research to medical therapy. Biochem Soc Trans 2023; 51:2071-2083. [PMID: 38088441 DOI: 10.1042/bst20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
5
|
Han S, Hyun SW, Son JW, Song MS, Lim DJ, Choi C, Park SH, Ha SD. Innovative nonthermal technologies for inactivation of emerging foodborne viruses. Compr Rev Food Sci Food Saf 2023; 22:3395-3421. [PMID: 37288815 DOI: 10.1111/1541-4337.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Various foodborne viruses have been associated with human health during the last decade, causing gastroenteritis and a huge economic burden worldwide. Furthermore, the emergence of new variants of infectious viruses is growing continuously. Inactivation of foodborne viruses in the food industry is a formidable task because although viruses cannot grow in foods, they can survive in the food matrix during food processing and storage environments. Conventional inactivation methods pose various drawbacks, necessitating more effective and environmentally friendly techniques for controlling foodborne viruses during food production and processing. Various inactivation approaches for controlling foodborne viruses have been attempted in the food industry. However, some traditionally used techniques, such as disinfectant-based or heat treatment, are not always efficient. Nonthermal techniques are considered a new platform for effective and safe treatment to inactivate foodborne viruses. This review focuses on foodborne viruses commonly associated with human gastroenteritis, including newly emerged viruses, such as sapovirus and Aichi virus. It also investigates the use of chemical and nonthermal physical treatments as effective technologies to inactivate foodborne viruses.
Collapse
Affiliation(s)
- Sangha Han
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Seok-Woo Hyun
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Jeong Won Son
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Min Su Song
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Dong Jae Lim
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
6
|
Li S, Wang X, Li L, Liu J, Ding Y, Zhao T, Zhang Y. Atomic-scale simulations of the deoxynivalenol degradation induced by reactive oxygen plasma species. Food Res Int 2022; 162:111939. [DOI: 10.1016/j.foodres.2022.111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022]
|
7
|
Manoharan D, Stephen J, Radhakrishnan M. Study on the effect of atmospheric and low‐pressure plasma and its combination on the microbial reduction and quality of milk. J Food Saf 2022. [DOI: 10.1111/jfs.13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dharini Manoharan
- Centre of excellence in nonthermal processing, National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, (Formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - Jaspin Stephen
- Centre of excellence in nonthermal processing, National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, (Formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of excellence in nonthermal processing, National Institute of Food Technology, Entrepreneurship and Management – Thanjavur, (Formerly Indian Institute of Food Processing Technology) Thanjavur India
| |
Collapse
|
8
|
Dharini M, Jaspin S, Mahendran R. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chem 2022; 405:134746. [DOI: 10.1016/j.foodchem.2022.134746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022]
|
9
|
Hozák P, Jirešová J, Khun J, Scholtz V, Julák J. Shelf life prolongation of fresh strawberries by nonthermal plasma treatment. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P. Hozák
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - J. Jirešová
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - J. Khun
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - V. Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - J. Julák
- Institute of Immunology and Microbiology First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czech Republic
| |
Collapse
|
10
|
Dharini M, Jaspin S, Jagan Mohan R, Mahendran R. Characterization of volatile aroma compounds in cold plasma‐treated milk. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manoharan Dharini
- Centre of excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship and Management Thanjavur India
| | - Stephen Jaspin
- Centre of excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship and Management Thanjavur India
| | - Rangarajan Jagan Mohan
- Department of Food Product Development National Institute of Food Technology, Entrepreneurship and Management Thanjavur India
| | - Radhakrishnan Mahendran
- Centre of excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship and Management Thanjavur India
| |
Collapse
|
11
|
Du Y, Yang F, Yu H, Xie Y, Yao W. Improving food drying performance by cold plasma pretreatment: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:4402-4421. [PMID: 36037152 DOI: 10.1111/1541-4337.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Drying is an important and influential process to prolong the shelf-life of food in the food industry. Recent studies have shown that cold plasma (CP) as an emerging drying pretreatment technology can improve drying performance, reduce drying energy consumption, and improve dried food quality. This paper comprehensively reviewed the mechanism of CP improving drying performance, related equipment, energy consumption, influencing factors, and impact on drying quality. This review also discusses the advantages and disadvantages and proposes possible challenges and suggestions for future research. Most studies indicated that CP pretreatment could improve the drying rate and quality and reduce the drying energy consumption. CP can promote moisture diffusion and improve drying efficiency by etching the surface and affecting the internal microstructure. In addition, CP can enhance the quality of dried products by reducing drying time and enzyme activity. Further research is needed to explore the drying mechanisms and equipment innovations to promote the application of CP in the food drying industry.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Lotfy K, Khalil S. Effect of plasma-activated water on microbial quality and physicochemical properties of fresh beef. OPEN PHYSICS 2022; 20:573-586. [DOI: 10.1515/phys-2022-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
This work studies the influence of plasma-activated water (PAW) on the decontamination of beef and its influence on the color, pH, the thiobarbituric acid reactive substance values (TBARS), and total volatile basic nitrogen (TVBN) values of meat. PAW was generated using non-thermal atmospheric pressure plasma jet (NTAPPJ). He + 0.2% N2 and He + 0.2% O2 were used as worker gas to generate PAW. The PAW produced by the He + O2 plasma system exhibited a higher potential for decontamination of beef than that produced by the He + N2 plasma system. The lightness value (L*) of treated beef does not exhibit a noticeable difference with the control one. TBARS values of all treated beef were lower than the rancidity threshold but significantly greater than that of control samples. The TVBN value of control beef samples reached the decay threshold after 18 days of stockpiling, but treated beef remained good. This work reveals that PAW can potentially inhibit the growth of microorganisms in beef.
Collapse
Affiliation(s)
- Khaled Lotfy
- Department of Biology, Faculty of Science, Branch of Tayma, University of Tabuk , P.O. Box 741 , 71491 Tabuk , Kingdom of Saudi Arabia
- King Marriott Higher, Institute of Engineering and Technology , 23713 Alexandria , Egypt
| | - Sayed Khalil
- Physics Department, Faculty of Science, Sohag University , Sohag , Egypt
- University College, Umm Al-Qura University , Alqunfadah , Saudi Arabia
| |
Collapse
|
13
|
Sharma K, Modupalli N, Venkatachalapathy N, Mahendran R, Vidyalakshmi R. Light emitting diode assisted non‐thermal pasteurization of
Punica granatum L
. juice. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kulbhushan Sharma
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - Nikitha Modupalli
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - N. Venkatachalapathy
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - R. Mahendran
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| | - R. Vidyalakshmi
- Department of Food Safety and Quality Testing National Institute of Food Technology Entrepreneurship and Management (formerly Indian Institute of Food Processing Technology) Thanjavur India
| |
Collapse
|
14
|
Sohbatzadeh F, Shakerinasab E, Hajizadeh Chenari I, Soltani H, Khajvand Salehan M, Pourbagher R, Shafei F, Ghasemi M. Influence of
PTFE
and glass dielectric barrier discharge on
Crocus sativus
L. filaments: physicochemical properties, bactericidal effects, and simulation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F. Sohbatzadeh
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
- Plasma Technology Research Core, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - E. Shakerinasab
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - I. Hajizadeh Chenari
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - H. Soltani
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - M. Khajvand Salehan
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - R. Pourbagher
- Department of Biosystems Engineering, Faculty of Agriculture Ferdowsi University of Mashhad Mashhad Iran
| | - F. Shafei
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| | - M. Ghasemi
- Department of Atomic and Molecular Physics, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
- Plasma Technology Research Core, Faculty of Science University of Mazandaran Babolsar Islamic Republic of Iran
| |
Collapse
|
15
|
Zhang K, Zhang Z, Zhao M, Milosavljević V, Cullen P, Scally L, Sun DW, Tiwari BK. Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Warne GR, Williams PM, Pho HQ, Tran NN, Hessel V, Fisk ID. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. J Food Sci 2021; 86:3762-3777. [PMID: 34337748 DOI: 10.1111/1750-3841.15856] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Cold plasma is formed by the nonthermal ionization of gas into free electrons, ions, reactive atomic and molecular species, and ultraviolet (UV) radiation. This cold plasma can be used to alter the surface of solid and liquid foods, and it offers multiple advantages over traditional thermal treatments, such as no thermal damage and increased output variation (due to the various input parameters gas, power, plasma type, etc.). Cold plasma appears to have limited impact on the sensory and color properties, at lower power and treatment times, but there has been a statistically significant reduction in pH for most of the cold plasma treatments reviewed (p < 0.05). Carbohydrates (cross linking and glycosylation), lipids (oxidation), and proteins (secondary structure) are more significantly impacted due to cold plasma at higher intensities and longer treatment times. Although cold plasma treatments and food matrices can vary considerably, this review has identified the literary evidence of some of the influences and impacts of the vast array of cold plasma treatment parameters on the biomolecular and organoleptic properties of these foods. Due to the rapidly evolving nature of the field, we have also identified that authors prioritize the presentation of different information when publishing from different research areas. Therefore, we have proposed a number of key physical and chemical cold plasma parameters that should be considered for inclusion in all future publications in the field.
Collapse
Affiliation(s)
- George R Warne
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.,The University of Adelaide, Adelaide, South Australia, Australia
| | - Philip M Williams
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Hue Quoc Pho
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia.,School of Chemical Engineering, University of Warwick, Coventry, UK
| | - Ian D Fisk
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK.,The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Feng H, Bai Y, Qiao L, Li Z, Wang E, Chao S, Qu X, Cao Y, Liu Z, Han X, Luo R, Shan Y, Li Z. An Ultra-Simple Charge Supplementary Strategy for High Performance Rotary Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101430. [PMID: 34145752 DOI: 10.1002/smll.202101430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Free-standing rotary triboelectric nanogenerators (rTENG) can accomplish special tasks which require both high voltage and high frequency. However, the reported high performance rTENG all have complex structures for output enhancement. In this work, an ultra-simple strategy to build high performance rTENG is developed. With only one small paper strip added to the conventional structure, the output of the TENG is promoted hugely. The voltage is triplicated to 2.3 kV, and the current and charge are quintupled to 133 µA and 197 nC, respectively. The small paper strip, with the merits of ultra-simplicity, wide availability, easy accessibility and low cost, functions as a super-effective charge supplement. This simple and delicate structure enables ultra-high durability with the 2.3 kV voltage output 100% maintained after 1 000 000 cycles. This charge supplementary strategy is universally effective for many other materials, and decouples the output enhancement from any friction or contact on the metal electrodes, emphasizing a critical working principle for the rTENG. Atmospheric cold plasma is generated using the paper strip rTENG (ps-rTENG), which demonstrates strong ability to do bacteria sterilization. This simple and persistent charge supplementary strategy can be easily adopted by other designs to promote the output even further.
Collapse
Affiliation(s)
- Hongqing Feng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Bai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Lei Qiao
- Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Zhe Li
- Institute of Engineering Medicine, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Engui Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shengyu Chao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuecheng Qu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Cao
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhuo Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xi Han
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ruizeng Luo
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yizhu Shan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
19
|
Iuliano A, Fabiszewska A, Kozik K, Rzepna M, Ostrowska J, Dębowski M, Plichta A. Effect of Electron-Beam Radiation and Other Sterilization Techniques on Structural, Mechanical and Microbiological Properties of Thermoplastic Starch Blend. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:1489-1504. [PMID: 33250673 PMCID: PMC7679798 DOI: 10.1007/s10924-020-01972-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
This work investigates the potential application of various sterilization methods for microorganism inactivation on the thermoplastic starch blend surface. The influence of the e-beam and UV radiation, ethanol, isopropanol and microwave autoclave on structural and packaging properties were studied. All the applied methods were successful in the inactivation of yeast and molds, however only the e-beam radiation was able to remove the bacterial microflora. The FTIR analysis revealed no significant changes in the polymer structure, nevertheless, a deterioration of the mechanical properties of the blend was observed. The least invasive method was the UV radiation which did not affect the mechanical parameters and additionally improved the barrier properties of the tested material. Moreover, it was proved that during the e-beam radiation the chain scission and cross-linking occurred. The non-irradiated and irradiated samples were subjected to the enzymatic degradation studies performed in the presence of amylase. The results indicated that irradiation accelerated the decomposition of material, which was confirmed by the measurements of weight loss, and mass of glucose and starch released to the solution in the course of biodegradation, as well as the FTIR and thermal analysis.
Collapse
Affiliation(s)
- Anna Iuliano
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agata Fabiszewska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Katarzyna Kozik
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Magdalena Rzepna
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Justyna Ostrowska
- Department of Organic Technologies, The Łukasiewicz Research Network – New Chemical Syntheses Institute, al. Tysiąclecia Państwa Polskiego 13A, 24-110 Puławy, Poland
| | - Maciej Dębowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
20
|
Los A, Ziuzina D, Van Cleynenbreugel R, Boehm D, Bourke P. Assessing the Biological Safety of Atmospheric Cold Plasma Treated Wheat Using Cell and Insect Models. Foods 2020; 9:foods9070898. [PMID: 32650404 PMCID: PMC7404979 DOI: 10.3390/foods9070898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Atmospheric cold plasma (ACP) is under investigation for an extensive range of biocontrol applications in food biosystems. However, the development of a novel intervention technology requires a thorough evaluation of the potential for negative effects and the implications for the human and animal food chains’ safety. The evaluations were performed using a contained, high-voltage, dielectric barrier discharge plasma system. The cytotoxicity of two types of food models—a liquid model (wheat model medium (WMM)) vs. a solid model (wheat grain extract (WGE)) was compared in vitro using the mammalian cell line CHO-K1. The residual toxicity of ACP treatment of grains for food purposes was assessed using the invertebrate model Tribolium castaneum, by feeding the beetles with flour produced from ACP-treated wheat grains. The cytotoxic effects and changes in the chemistry of the ACP-treated samples were more pronounced in samples treated in a liquid form as opposed to actual wheat grains. The feeding trial using T. castaneum demonstrated no negative impacts on the survivability or weight profiles of insects. Investigations into the interactions of plasma-generated species with secondary metabolites in the food matrices are necessary to ensure the safety of plasma for food applications.
Collapse
Affiliation(s)
- Agata Los
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland; (A.L.); (D.Z.); (R.V.C.); (D.B.)
| | - Dana Ziuzina
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland; (A.L.); (D.Z.); (R.V.C.); (D.B.)
| | - Robin Van Cleynenbreugel
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland; (A.L.); (D.Z.); (R.V.C.); (D.B.)
- Faculty of Engineering Technology, Katholieke University Leuven, 9000 Ghent, Belgium
| | - Daniela Boehm
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland; (A.L.); (D.Z.); (R.V.C.); (D.B.)
| | - Paula Bourke
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin 7, Ireland; (A.L.); (D.Z.); (R.V.C.); (D.B.)
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Dublin 4, Ireland
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK
- Correspondence:
| |
Collapse
|
21
|
Jiang YH, Cheng JH, Sun DW. Effects of plasma chemistry on the interfacial performance of protein and polysaccharide in emulsion. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|