1
|
Cao X, Cong P, Song Y, Liu Y, Xue C, Xu J. Promising mass spectrometry imaging: exploring microscale insights in food. Crit Rev Food Sci Nutr 2025:1-32. [PMID: 39817602 DOI: 10.1080/10408398.2025.2451189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms. These two aspects synergistically enhanced MSI's analytical capabilities: QMSI enabled accurate relative and absolute quantification, providing reliable data for composition analysis, while super-resolution algorithms improved molecular spatial imaging resolution, facilitating biomarker and trace substance detection. MSI outperformed conventional methods in comprehensively exploring food functional factors, biomarker discovery, and monitoring processing/storage effects by discerning molecular species and their spatial distributions. However, challenges such as immature techniques, complex data processing, non-standardized instruments, and high costs existed. Future trends in instrument enhancement, multispectral integration, and data analysis improvement were expected to deepen our understanding of food chemistry and safety, highlighting MSI's revolutionary potential in food analysis and research.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Wu L, Chen X, Lin J, Lin H, Liao N, Li C, Hu Y, Sun Y. Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100227. [PMID: 39497732 PMCID: PMC11533622 DOI: 10.1016/j.fochms.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024]
Abstract
To elucidate the formation of characteristic aroma over enzymatic-catalyzed processes (ECP), GC-MS-based volatile-metabolomic combined with desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) were employed to analyze the changes of volatile organic compounds (VOCs) in Tieguanyin tea. A total of 579 VOCs were obtained, from which 24 components involved in five pathways were identified as biomarkers. Among these, four VOCs including 2-furancarboxylic acid, 4-methylbenzaldehyde, N-benzylformamide, cuminaldehyde, were detected in both DESI-MSI and GC-MS analysis, exhibiting dynamic changes along processing steps. RNA-sequencing analysis indicated the genes referring to stress response were activated during tea processing, facilitating the accumulation of flora-fruity aroma in tea leaf. Metabolic pathways analysis revealed that the increase in floral-fruity related components such as volatile terpenoids, phenylpropanoids/benzenoids, indole, alongside a decrease in green leaf volatiles including (E)-2-Hexenal, (Z)-3-Hexenol, played a crucial role in development of characteristic aroma, which could be a feasible index for evaluating processing techniques or quality of oolong tea.
Collapse
Affiliation(s)
- Liangyu Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Xiaolan Chen
- Anxi Tiekuanyin Group, 1 Wulipo, Guanqiao Town, Anxi County 362441, PR China
| | - Jiaqi Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Hongzheng Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Ningkai Liao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Chenxue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| | - Yunfei Hu
- Anxi College of Tea Science (College of Digital Economy), Fujian Agriculture and Forestry University, 788 East Second Ring Road, Anxi 362300, PR China
| | - Yun Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Horticulture, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, PR China
| |
Collapse
|
3
|
Xing L, Lei J, Liu J, Yang Z, Chai Z, Cai W, Zhang M, Meng D, Wang Y, Yin H. Enhancing the quality of fermented plant leaves: the role of metabolite signatures and associated fungi. FRONTIERS IN PLANT SCIENCE 2024; 15:1335850. [PMID: 38571709 PMCID: PMC10987691 DOI: 10.3389/fpls.2024.1335850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
Fungi play a pivotal role in fermentation processes, influencing the breakdown and transformation of metabolites. However, studies focusing on the effects of fungal-metabolite correlations on leaf fermentation quality enhancement are limited. This study investigated specific metabolites and fungi associated with high- and low-quality fermented plant leaves. Their changes were monitored over fermentation periods of 0, 8, 16, and 24 days. The results indicated that organoheterocyclic compounds, lipids, lipid-like molecules, organic nitrogen compounds, phenylpropanoids, and polyketides were predominant in high-quality samples. The fungi Saccharomyces (14.8%) and Thermoascus (4.6%) were predominantly found in these samples. These markers exhibited significant changes during the 24-day fermentation period. The critical influence of fungal community equilibrium was demonstrated by interspecies interactions (e.g., between Saccharomyces and Eurotium). A co-occurrence network analysis identified Saccharomyces as the primary contributor to high-quality samples. These markers collectively enhance the quality and sensory characteristics of the final product.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinshan Lei
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhen Yang
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Wen Cai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, China
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Chengdu, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
4
|
Lu Y, Hou R, Shao S, Li J, Yu N, Nie X, Meng X. In-depth potential mechanism of combined demulsification pretreatments (isopropanol ultrasonic pretreatments and Ca 2+ flow additions) during aqueous enzymatic extractions of Camellia oils. Food Chem 2023; 414:135681. [PMID: 36827778 DOI: 10.1016/j.foodchem.2023.135681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Emulsification is the practical limitation of aqueous enzymatic extractions of Camellia oils. This study aimed to investigate the influence and demulsification mechanisms of isopropanol ultrasonic pretreatments and Ca2+ additions on aqueous enzymatic extractions of Camellia oils. Combining isopropanol ultrasonic pretreatments with Ca2+ flow additions obtained the highest free oil recovery (78.03 %) and lowest emulsion content (1.5 %). Results indicated that the superior demulsification performance originated from the decrease in emulsion stabilities and formations. First, demulsification pretreatments reduced the oil (14.69 %) and solid (13.21 %) fractions in emulsions to decrease the stability of as-formed emulsions. Meanwhile, isopropanol ultrasonic pretreatments extracted tea saponins (0.38 mg/mL) and polysaccharides (0.23 mg/mL), while Ca2+ combined with protein isolates (5.82 mg/mL), tea saponins (7.48 mg/mL) and polysaccharides (0.78 mg/mL) to form precipitates and reduce emulsion formation. This work could promote the practical application of aqueous enzymatic extractions of Camellia oils and enlighten the rise of advanced demulsification pretreatments.
Collapse
Affiliation(s)
- Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongrong Hou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shengxin Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jialing Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
5
|
Li J, Xiao Y, Zhou X, Liao Y, Wu S, Chen J, Qian J, Yan Y, Tang J, Zeng L. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res Int 2022; 161:111824. [DOI: 10.1016/j.foodres.2022.111824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
|
6
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
7
|
Li H, Liu C, Luo S, Zhu S, Tang S, Zeng H, Qin Y, Ma M, Zeng D, van Beek TA, Wang H, Chen B. Chromatographic Determination of the Mycotoxin Patulin in 219 Chinese Tea Samples and Implications for Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092852. [PMID: 35566203 PMCID: PMC9103431 DOI: 10.3390/molecules27092852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/04/2023]
Abstract
Patulin (PAT) is a mycotoxin, with several acute, chronic, and cellular level toxic effects, produced by various fungi. A limit for PAT in food of has been set by authorities to guarantee food safety. Research on PAT in tea has been very limited although tea is the second largest beverage in the world. In this paper, HPLC−DAD and GC−MS methods for analysis of PAT in different tea products, such as non-fermented (green tea), partially fermented (oolong tea, white tea, yellow tea), completely fermented (black tea), and post-fermented (dark tea and Pu-erh tea) teas were developed. The methods showed good selectivity with regard to tea pigments and 5-hydroxymethylfurfural (5-HMF) and a recovery of 90–102% for PAT at a 10–100 ppb spiking level. Limit of detection (LOD) and limit of quantification (LOQ) in tea were 1.5 ng/g and 5.0 ng/g for HPLC−UV, and 0.25 ng/g and 0.83 ng/g for GC−MS. HPLC was simpler and more robust, while GC−MS showed higher sensitivity and selectivity. GC−MS was used to validate the HPLC−UV method and prove its accuracy. The PAT content of 219 Chinese tea samples was investigated. Most tea samples contained less than 10 ng/g, ten more than 10 ng/g and two more than 50 ng/g. The results imply that tea products in China are safe with regard to their PAT content. Even an extreme daily consumption of 25 g of the tea with the highest PAT content (124 ng/g), translates to an intake of only 3 μg/person/day, which is still an order of magnitude below the maximum allowed daily intake of 30 µg for an adult.
Collapse
Affiliation(s)
- Hai Li
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Candi Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Shurong Luo
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Sijie Zhu
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Shan Tang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Huimei Zeng
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Yu Qin
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
| | - Dong Zeng
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
- Correspondence: (D.Z.); (T.A.v.B.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| | - Teris A. van Beek
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Correspondence: (D.Z.); (T.A.v.B.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| | - Hui Wang
- Changsha Institute for Food and Drug Control, National Quality Supervision and Inspection Center of Liquor Products (Hunan), Changsha 410013, China;
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, Changsha 410081, China; (H.L.); (C.L.); (S.L.); (S.Z.); (S.T.); (H.Z.); (Y.Q.); (M.M.)
- Correspondence: (D.Z.); (T.A.v.B.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| |
Collapse
|
8
|
Kong W, Jiang M, Wang Y, Chen S, Zhang S, Lei W, Chai K, Wang P, Liu R, Zhang X. Pan-transcriptome assembly combined with multiple association analysis provides new insights into the regulatory network of specialized metabolites in the tea plant Camellia sinensis. HORTICULTURE RESEARCH 2022; 9:uhac100. [PMID: 35795389 PMCID: PMC9251601 DOI: 10.1093/hr/uhac100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/15/2022] [Indexed: 05/07/2023]
Abstract
Specialized metabolites not only play important roles in biotic and abiotic stress adaptation of tea plants (Camellia sinensis (L.) O. Kuntze) but also contribute to the unique flavor of tea, the most important nonalcoholic beverage. However, the molecular networks and major genes that regulate specialized metabolites in tea plants are not well understood. Here, we constructed a population-level pan-transcriptome of the tea plant leaf using second-leaf transcriptome data from 134 accessions to investigate global expression differences in the population, expression presence or absence variations (ePAVs), and differentially expressed genes (DEGs) between pure Camellia sinensis var. assamica (CSA) and pure Camellia sinensis var. sinensis (CSS) accessions. Next, we used a genome-wide association study, a quantitative trait transcript study, and a transcriptome-wide association study to integrate genotypes, accumulation levels of specialized metabolites, and expression levels of pan-transcriptome genes to identify candidate regulatory genes for flavor-related metabolites and to construct a regulatory network for specialized metabolites in tea plants. The pan-transcriptome contains 30 482 expressed genes, 4940 and 5506 of which were newly annotated from a de novo transcriptome assembly without a reference and a genome reference-based assembly, respectively. DEGs and ePAVs indicated that CSA and CSS were clearly differentiated at the population transcriptome level, and they were closely related to abiotic tolerance and secondary metabolite synthesis phenotypes of CSA and CSS based on gene annotations. The regulatory network contained 212 specialized metabolites, 3843 candidate genes, and 3407 eQTLs, highlighting many pleiotropic candidate genes, candidate gene-rich eQTLs, and potential regulators of specialized metabolites. These included important transcription factors in the AP2/ERF-ERF, MYB, WD40, and bHLH families. CsTGY14G0001296, an ortholog of AtANS, appeared to be directly related to variation in proanthocyanins in the tea plant population, and the CsTGY11G0002074 gene encoding F3'5'H was found to contribute to the biased distribution of catechins between pure CSAs and pure CSSs. Together, these results provide a new understanding of the metabolite diversity in tea plants and offer new insights for more effective breeding of better-flavored tea varieties.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kun Chai
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengjie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | | | | |
Collapse
|
9
|
Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34898343 DOI: 10.1080/10408398.2021.2007353] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Gaozhong Yang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiushuang You
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shili Sun
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Yang J, Gu D, Wu S, Zhou X, Chen J, Liao Y, Zeng L, Yang Z. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:253. [PMID: 34848699 PMCID: PMC8632975 DOI: 10.1038/s41438-021-00679-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 05/26/2023]
Abstract
Tea plants are subjected to multiple stresses during growth, development, and postharvest processing, which affects levels of secondary metabolites in leaves and influences tea functional properties and quality. Most studies on secondary metabolism in tea have focused on gene, protein, and metabolite levels, whereas upstream regulatory mechanisms remain unclear. In this review, we exemplify DNA methylation and histone acetylation, summarize the important regulatory effects that epigenetic modifications have on plant secondary metabolism, and discuss feasible research strategies to elucidate the underlying specific epigenetic mechanisms of secondary metabolism regulation in tea. This information will help researchers investigate the epigenetic regulation of secondary metabolism in tea, providing key epigenetic data that can be used for future tea genetic breeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Shuhua Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiaming Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.
| |
Collapse
|
11
|
Yu Z, Wang L, Wu S, Xue W, Zhao W, Li J. Potential mechanisms of the anti-hypertensive effects of RVPSL on spontaneously hypertensive rats using non-targeted serum metabolomics. Food Funct 2021; 12:8561-8569. [PMID: 34337639 DOI: 10.1039/d1fo01546j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The study aimed to investigate potential mechanisms for the anti-hypertensive effects of RVPSL on spontaneously hypertensive rats (SHRs) using a non-targeted metabonomic approach. In this study, UPLC/MS-based non-targeted metabolomics was performed to discover metabolite variation of serum in SHRs with RVPSL treatment. As a result, the serum metabolites of SHRs that were administered RVPSL for four weeks exhibited distinct alterations. Nine potential biomarkers, i.e., choline, adenosine, adrenic acid, L-tryptophan, niacinamide, glycocholic acid, propiolic acid, D-glyceraldehyde 3-phosphate, and phosphoglycolic acid, were significantly altered, which were mainly involved in lipid metabolism, vitamin and amino acid metabolism, purine metabolism, the MAPK signaling pathway, and the renin-angiotensin system. This study suggested that RVPSL potentially exerted potent effects of alleviating hypertension in the SHRs mainly via integrated regulations of metabolism and production of choline, L-tryptophan, nicotinamide, and adenosine.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Li Wang
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Sijia Wu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, P. R. China
| | - Wenjun Xue
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P. R. China.
| |
Collapse
|
12
|
COVID-19 and male reproductive system: pathogenic features and possible mechanisms. J Mol Histol 2021; 52:869-878. [PMID: 34232425 PMCID: PMC8260577 DOI: 10.1007/s10735-021-10003-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Multiorgan dysfunction is the main characteristic of severe COVID-19 patients and the involvement of male reproductive system may occur among these patients. Although there is a limited evidence to confirm the orchitis and virus presence in the semen of patients, there are concerns about the transmission of virus through the semen. In addition, reduced fertility or infertility can be seen as consequences of severe COVID-19 in recovered subjects. In this study, we aimed to review articles related to COVID-19 and male reproductive system to find the possible underlying mechanisms of SARS-CoV-2 in affecting male fertility. The following keywords of SARS-CoV-2, COVID-19, testis, orchitis, semen, angiotensin-converting enzyme 2 (ACE2), hypothalamic-pituitary-testicular (HPT) axis, Hypothalamus, etc., were defined to find the related publications from standard search engines, e.g., PUBMED, SCOPUS, Google Scholar. According to studies, COVID-19 occurs in severe patients as respiratory disease, along with multi-organ failure. The most important mechanisms are classified as direct and indirect pathogenesis of SARS-CoV-2. The presence of ACE2 on the cell surface of various cells in testis increases the risk of direct infection by this virus. SARS-CoV-2 also affects the testis through the cytokine storm. In addition, the important role of HPT axis dysregulation through impaired Leydig cells and hypothalamus should be considered. Using antiviral and immunomodulatory therapy can be harmful for testis function. Further investigations are required to investigate potential mechanisms of male infertility in survivals of COVID-19. Since involvement of testis is essential for fertility, increasing the knowledge of health system may improve the outcomes.
Collapse
|
13
|
Liao Y, Zhou X, Zeng L. How does tea ( Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Crit Rev Food Sci Nutr 2021; 62:3751-3767. [PMID: 33401945 DOI: 10.1080/10408398.2020.1868970] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tea (Camellia sinensis) is both a plant and a foodstuff. Many bioactive compounds, which are present in the final tea product and related to its quality or functional properties, are produced during the tea manufacturing process. However, the characteristic secondary metabolites, which give tea its unique qualities and are beneficial to human health, are produced mainly in the leaves during the process of plant growth. Therefore, it is important to understand how tea leaves produce these specialized metabolites. In this review, we first compare the common metabolites and specialized metabolites in tea, coffee, cocoa, and grape and discuss the occurrence of characteristic secondary metabolites in tea. Progress in research into the formation of these characteristic secondary metabolites in tea is summarized, including establishing a biological database and genetic transformation system, and the biosynthesis of characteristic secondary metabolites. Finally, speculation on future research into the characteristic secondary metabolites of tea is provided from the viewpoints of the origin, resources, cultivation, and processing of tea. This review provides an important reference for future research on the specialized metabolites of tea in terms of its characteristics.
Collapse
Affiliation(s)
- Yinyin Liao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaochen Zhou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lanting Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Bhullar KS, Drews SJ, Wu J. Translating bioactive peptides for COVID-19 therapy. Eur J Pharmacol 2021; 890:173661. [PMID: 33098835 PMCID: PMC7577279 DOI: 10.1016/j.ejphar.2020.173661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 (Coronavirus disease 2019) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. This virus has emerged as a threat to global health, social stability, and the global economy. This pandemic continues to cause rampant mortality worldwide with the dire urgency to develop novel therapeutic agents. To meet this task, this article discusses advances in the research and potential application of bioactive peptides for possible mitigation of infection by SARS-CoV-2. Growing insight into the molecular biology of SARS-CoV-2 has revealed potential druggable targets for bioactive peptides. Bioactive peptides with unique amino acid sequences can mitigate such targets including, type II transmembrane serine proteases (TMPRSS2) inhibition, furin cleavage, and renin-angiotensin-aldosterone system (RAAS) members. Based on current evidence and structure-function analysis, multiple bioactive peptides present potency to neutralize the virus. To date, no SARS-CoV-2-explicit drug has been reported, but we here introduce bioactive peptides in the perspective of their potential activity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Steven J Drews
- Canadian Blood Services, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
15
|
Zeng L, Xiao Y, Zhou X, Yu J, Jian G, Li J, Chen J, Tang J, Yang Z. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chem 2020; 345:128752. [PMID: 33302111 DOI: 10.1016/j.foodchem.2020.128752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
It is generally proposed that tea cultivars with larger leaves contain more linalool, an important tea aroma contributor, than ones with smaller leaves. The objective of this study was to confirm the trait and explore the involved reason. Investigation on ten tea cultivars with different leaf areas demonstrated a significant positive correlation between linalool content and leaf area (R2 = 0.739, p = 0.010). Analysis of metabolite and gene expression level showed that the transform ability of linalool into linalool oxides was the key factor. Feeding experiments that supplied tea leaves of different leaf areas with [2H3]linalool under different light conditions revealed that the larger tea leaves receive more light and are less capable of transformation of linalool to linalool oxides, thus leading to linalool accumulation. This information will advance understanding of the variation of linalool content in tea varieties and will provide assistance in breeding and screening of high-linalool tea cultivars.
Collapse
Affiliation(s)
- Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Yangyang Xiao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jizhong Yu
- Hangzhou Academy of Agricultural Sciences, No. 261 Zhusi Road, Xihu District, Hangzhou 310024, China
| | - Guotai Jian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Jiaming Chen
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|