1
|
Ashe P, Tu K, Stobbs JA, Dynes JJ, Vu M, Shaterian H, Kagale S, Tanino KK, Wanasundara JPD, Vail S, Karunakaran C, Quilichini TD. Applications of synchrotron light in seed research: an array of x-ray and infrared imaging methodologies. FRONTIERS IN PLANT SCIENCE 2025; 15:1395952. [PMID: 40034948 PMCID: PMC11873090 DOI: 10.3389/fpls.2024.1395952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Synchrotron radiation (SR) provides a wide spectrum of bright light that can be tailored to test myriad research questions. SR provides avenues to illuminate structure and composition across scales, making it ideally suited to the study of plants and seeds. Here, we present an array of methodologies and the data outputs available at a light source facility. Datasets feature seed and grain from a range of crop species including Citrullus sp. (watermelon), Brassica sp. (canola), Pisum sativum (pea), and Triticum durum (wheat), to demonstrate the power of SR for advancing plant science. The application of SR micro-computed tomography (SR-µCT) imaging revealed internal seed microstructures and their three-dimensional morphologies in exquisite detail, without the need for destructive sectioning. Spectroscopy in the infrared spectrum probed sample biochemistry, detailing the spatial distribution of seed macronutrients such as lipid, protein and carbohydrate in the embryo, endosperm and seed coat. Methods using synchrotron X-rays, including X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) imaging revealed elemental distributions, to spatially map micronutrients in seed subcompartments and to determine their speciation. Synchrotron spectromicroscopy (SM) allowed chemical composition to be resolved at the nano-scale level. Diverse crop seed datasets showcase the range of structural and chemical insights provided by five beamlines at the Canadian Light Source, and the potential for synchrotron imaging for informing plant and agricultural research.
Collapse
Affiliation(s)
- Paula Ashe
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Kaiyang Tu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | | | | | - Miranda Vu
- Canadian Light Source Inc., Saskatoon, SK, Canada
| | - Hamid Shaterian
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Karen K. Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Sally Vail
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | | | - Teagen D. Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Teng X, Li M, He H, Jia D, Yin J, Bolarinho R, Cheng JX. Mid-infrared Photothermal Imaging: Instrument and Life Science Applications. Anal Chem 2024; 96:7895-7906. [PMID: 38702858 PMCID: PMC11785416 DOI: 10.1021/acs.analchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently developed mid-infrared photothermal (MIP) microscopy has attracted great attention from the research community in terms of video-rate imaging speed, sub-micron resolution, sensitivity in the range of several micro-molars, and suitability for live-cell analysis. In this review, we recount the developmental history of MIP microscopy. Subsequently, we describe the operational principles. Next, we delve into the wide-ranging applications of MIP microscopy to life sciences, spanning various samples from viruses to tissues. We explore the potential of MIP imaging in comprehension of cellular metabolism, cellular responses to chemical stimuli, and the mechanism of diseases. Finally, we discuss the future perspectives of MIP microscopy.
Collapse
Affiliation(s)
- Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongjian He
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Danchen Jia
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Zhu X, Li X, Liu X, Li J, Zeng XA, Li Y, Yuan Y, Teng YX. Pulse Protein Isolates as Competitive Food Ingredients: Origin, Composition, Functionalities, and the State-of-the-Art Manufacturing. Foods 2023; 13:6. [PMID: 38201034 PMCID: PMC10778321 DOI: 10.3390/foods13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The ever-increasing world population and environmental stress are leading to surging demand for nutrient-rich food products with cleaner labeling and improved sustainability. Plant proteins, accordingly, are gaining enormous popularity compared with counterpart animal proteins in the food industry. While conventional plant protein sources, such as wheat and soy, cause concerns about their allergenicity, peas, beans, chickpeas, lentils, and other pulses are becoming important staples owing to their agronomic and nutritional benefits. However, the utilization of pulse proteins is still limited due to unclear pulse protein characteristics and the challenges of characterizing them from extensively diverse varieties within pulse crops. To address these challenges, the origins and compositions of pulse crops were first introduced, while an overarching description of pulse protein physiochemical properties, e.g., interfacial properties, aggregation behavior, solubility, etc., are presented. For further enhanced functionalities, appropriate modifications (including chemical, physical, and enzymatic treatment) are necessary. Among them, non-covalent complexation and enzymatic strategies are especially preferable during the value-added processing of clean-label pulse proteins for specific focus. This comprehensive review aims to provide an in-depth understanding of the interrelationships between the composition, structure, functional characteristics, and advanced modification strategies of pulse proteins, which is a pillar of high-performance pulse protein in future food manufacturing.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xueyin Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
| | - Xiangyu Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
| | - Jingfang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Yue Yuan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
| | - Yong-Xin Teng
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (X.Z.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
| |
Collapse
|
4
|
Zhu J, Li F, Wang Z, Shi H, Wang X, Huang Y, Li S. Effect of Anaerobic Calcium Oxide Alkalization on the Carbohydrate Molecular Structures, Chemical Profiles, and Ruminal Degradability of Rape Straw. Animals (Basel) 2023; 13:2421. [PMID: 37570230 PMCID: PMC10417835 DOI: 10.3390/ani13152421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
To improve the utilization efficiency of rape straw, anaerobic calcium oxide (CaO) alkalization was conducted, and advanced molecular spectroscopy was applied, to detect the internal molecular structural changes. Rape straw was treated with different combinations of CaO (3%, 5%, and 7%) and moisture levels (50% and 60%) and stored under anaerobic conditions. We investigated the carbohydrate chemical constituents, the ruminal neutral detergent fiber (aNDF) and acid detergent fiber (ADF) degradation kinetics, and the carbohydrate molecular structural features. CaO-treated groups were higher (p < 0.05) for ash, Ca, non-fiber carbohydrate, soluble fiber, and the ruminal degradability of aNDF and ADF. In contrast, they were lower (p < 0.05) for the contents of aNDF, ADF, and indigestible fiber. With CaO levels rising from 3% to 7%, the content of aNDF and ADF linearly decreased (p < 0.05). CaO treatment and anaerobic storage changed the molecular characteristics, including structural parameters related to total carbohydrates (TC), cellulosic compounds (CEC), and structural carbohydrates (STC). Alterations in cellulosic compounds' spectral regions were highly correlated with the differences in carbohydrate chemical constituents and the ruminal digestibility of rape straw. In summary, CaO treatment and anaerobic storage altered the molecular structural parameters of carbohydrates, leading to an enhancement in the effective degradability (ED) of aNDF and ADF in rape straw. From the perspective of processing cost and effectiveness, 5% CaO + 60% moisture could be suggested as a recommended treatment combination.
Collapse
Affiliation(s)
- Jiayi Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Fucan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zeling Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Haitao Shi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yanling Huang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Guevara Oquendo VH, Rodriguez Espinosa ME, Yu P. Research progress on faba bean and faba forage in food and feed types, physiochemical, nutritional, and molecular structural characteristics with molecular spectroscopy. Crit Rev Food Sci Nutr 2021; 62:8675-8685. [PMID: 34184947 DOI: 10.1080/10408398.2021.1931805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article aims to review recent research progress and update on faba bean seeds and plant in food and feed type, physiochemical, nutritional, and molecular structural characteristics with molecular spectroscopy with chemometrics (both univariate and multivariate techniques). The review focused on chemical and nutritional characterization of faba bean and faba forage and feeding strategies to improve its utilization. The molecular spectroscopic techniques for faba research and the association between molecular structure and nutrient availability and utilization in ruminant system were reviewed. The future research direction in faba research was also provided. The study provides an insight and a potential approach using molecular spectroscopy to study molecular chemistry and molecular structure and molecular nutrition interaction in faba bean seeds and plant.
Collapse
Affiliation(s)
- Victor H Guevara Oquendo
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maria E Rodriguez Espinosa
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|