1
|
Oh J, Park N, Kim BG. Determination of Digestible Indispensable Amino Acid Scores for Plant Proteins and Skim Milk Powder Measured in Pigs. Animals (Basel) 2025; 15:650. [PMID: 40075933 PMCID: PMC11898198 DOI: 10.3390/ani15050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The objective was to determine the digestible indispensable amino acid score (DIAAS) of food sources using the pig model and in vitro procedures. The standardized ileal digestibility (SID) of amino acids (AA) in white rice, wheat, pea protein concentrate (PPC), soy protein isolate (SPI), and skim milk powder (SMP) were determined in pigs. Twelve barrows with an initial body weight of 28.4 kg (standard deviation = 4.0) equipped with a T-cannula at the distal ileum were allotted to a replicated 6 × 5 incomplete Latin square design with six diets and five periods. Five experimental diets contained each ingredient as the only source of AA. Additionally, a nitrogen-free diet was prepared to measure the basal endogenous losses of AA for the calculation of the SID of AA. The in vitro ileal disappearance (IVID) of crude protein (CP) in the five food sources was also determined using the conventional flask procedure and the multi-sample simultaneous in vitro procedure employing the DaisyII incubator. The DIAAS values for white rice were 42, 50, and 60 for infants, children, and adults, respectively. For wheat, the DIAAS values were 46, 56, and 66, respectively. The DIAAS values for PPC were 47, 58, and 69 for infants, children, and adults, respectively. For SPI, the values were 61, 74, and 87, respectively. The DIAAS for SMP were 82, 112, and 131 for infants, children, and adults respectively. The IVID of CP in SMP was greater (p < 0.05) than that in other sources. The DIAAS calculated based on IVID of CP were similar to those determined based on the SID of AA in pigs. In conclusion, white rice, wheat, pea protein concentrate, and soy protein isolate were observed to have DIAAS values less than 100, indicating that these ingredients need to be combined with other protein sources to meet the indispensable AA requirements. Skim milk powder had a DIAAS greater than 100 for children and adults.
Collapse
Affiliation(s)
| | | | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (J.O.); (N.P.)
| |
Collapse
|
2
|
Patel H, Aru V, Sørensen KM, Engelsen SB. Towards on-line cheese monitoring: Exploration of semi-hard cheeses using NIR and 1H NMR spectroscopy. Food Chem 2024; 454:139786. [PMID: 38820640 DOI: 10.1016/j.foodchem.2024.139786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
This study aims to investigate the potential of using advanced spectroscopies for cheese quality monitoring. For this purpose, six semi-hard cheeses manufactured using lactic acid bacteria (LAB) and/or propionic acid bacteria (PAB) were explored using near-infrared spectroscopy (NIRS) and Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. The spectral data were analyzed using principal component analysis for extraction of possible discriminative patterns in quality parameters. The results show that the green analytical, but primarily bulk-sensitive, NIRS method was able to discriminate the cheese varieties primarily due to differences in the first overtone CH stretching region between 1650 and 1720 nm, in particular by the lactate methylene absorption at 1674 nm. A total of 25 metabolites were identified in the 1H NMR spectra of the cheese extracts, several of which were associated with the LAB and PAB metabolic pathways. PAB-associated metabolites include propionate, acetate, and glutamate, while LAB-associated metabolites include lactate and acetoin among others.
Collapse
Affiliation(s)
- Harshkumar Patel
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Violetta Aru
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Klavs Martin Sørensen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; FOSS Analytical A/S, Nils Foss Allé 1, 3400 Hillerød, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Abi-Rizk H, Jouan-Rimbaud Bouveresse D, Chamberland J, Cordella CBY. Chemometrics-driven monitoring of cheese ripening: a multimodal spectroscopic and scanning electron microscopy investigation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3732-3744. [PMID: 38808623 DOI: 10.1039/d4ay00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The integration of spectroscopic techniques with chemometrics offers a means to monitor quality changes in dairy products throughout processing and storage. This study employed Attenuated Total Reflectance-Mid-Infrared Spectroscopy (ATR-MIR) coupled with Independent Components Analysis (ICA), and 3D Front-Face Fluorescence Spectroscopy (FFFS) paired with Common Components and Specific Weight Analysis (CCSWA). The research focused on Cheddar cheeses aged for 1, 2, 3, and 5 years, alongside Comté cheeses aged for 6, 9, and 12 months. The adopted approach offered valuable insights into the intricate cheese aging process within the food matrix. The ICA proportions and CCSWA scores highlighted the significant impact of biochemical transformations during maturation on the aging process. The extracted independent components (ICs) revealed variations in the vibration modes of amides, lipids, amino acids, and organic acids, facilitating the distinction between different cheese age categories. Additionally, CCSWA outcomes identified age-related differences through shifts in tryptophan fluorescence characteristics as the cheeses aged. These results were consistent with the observed alterations in the microstructure of cheese samples over time, corroborated by Scanning Electron Microscopy (SEM) imagery. The introduced multimodal methodology serves as a significant asset for determining the ripening stage of various types of cheese, offering a detailed perspective of cheese maturation beneficial to the dairy industry and researchers.
Collapse
Affiliation(s)
- Hala Abi-Rizk
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, 2425 Rue de l'agriculture, Québec, QC G1V 0A6, Canada.
- Institute of Nutrition and Functional Foods (INAF), Québec, QC G1V 0A6, Canada
| | | | - Julien Chamberland
- Institute of Nutrition and Functional Foods (INAF), Québec, QC G1V 0A6, Canada
- Department of Food Sciences, STELA Dairy Research Center, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christophe B Y Cordella
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, 2425 Rue de l'agriculture, Québec, QC G1V 0A6, Canada.
- Institute of Nutrition and Functional Foods (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Wang D, Zhang M, Jiang Q, Mujumdar AS. Intelligent System/Equipment for Quality Deterioration Detection of Fresh Food: Recent Advances and Application. Foods 2024; 13:1662. [PMID: 38890891 PMCID: PMC11171494 DOI: 10.3390/foods13111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
The quality of fresh foods tends to deteriorate rapidly during harvesting, storage, and transportation. Intelligent detection equipment is designed to monitor and ensure product quality in the supply chain, measure appropriate food quality parameters in real time, and thus minimize quality degradation and potential financial losses. Through various available tracking devices, consumers can obtain actionable information about fresh food products. This paper reviews the recent progress in intelligent detection equipment for sensing the quality deterioration of fresh foods, including computer vision equipment, electronic nose, smart colorimetric films, hyperspectral imaging (HSI), near-infrared spectroscopy (NIR), nuclear magnetic resonance (NMR), ultrasonic non-destructive testing, and intelligent tracing equipment. These devices offer the advantages of high speed, non-destructive operation, precision, and high sensitivity.
Collapse
Affiliation(s)
- Dianyuan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (D.W.); (Q.J.)
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (D.W.); (Q.J.)
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi 214122, China
| | - Qiyong Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (D.W.); (Q.J.)
| | - Arun S. Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, QC H9X 3V9, Canada;
| |
Collapse
|
5
|
Moatsou G. Emerging Technologies for Improving Properties, Shelf Life, and Analysis of Dairy Products. Foods 2024; 13:1078. [PMID: 38611382 PMCID: PMC11012164 DOI: 10.3390/foods13071078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Processing results in several kinds of dairy products with variable properties and shelf lives that preserve and often enhance the unique nutritional and biological value of milk [...].
Collapse
Affiliation(s)
- Golfo Moatsou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
6
|
Roshdy A, Salam RA, Hadad G, Belal F, Elmansi H. Fast concurrent determination of guaifenesin and pholcodine in formulations and spiked plasma using first derivative synchronous spectrofluorimetric approach. LUMINESCENCE 2024; 39:e4660. [PMID: 38286595 DOI: 10.1002/bio.4660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024]
Abstract
Guaifenesin and pholcodine are frequently co-formulated in certain dosage forms. A new fast first derivative synchronous spectrofluorometric method has been used for their simultaneous analysis in mixtures. Here, first derivative synchronous spectrofluorometry enabled the successful simultaneous estimation of guaifenesin at 283 nm and pholcodine at 275 nm using a wavelength difference (Δλ) of 40 nm. The method was fully validated following International Council of Harmonization guidelines. For guaifenesin and pholcodine, linearity was determined within the corresponding ranges of 0.05-0.30 and 0.10-6.0 μg/ml. The two drugs were effectively analyzed using the developed approach in their respective formulations, and the results showed good agreement with those attained using reference methods. The method demonstrated excellent sensitivity, with detection limits down to 0.007 and 0.030 μg/ml and quantitation limits of 0.020 and 0.010 μg/ml for guaifenesin and pholcodine, respectively. Therefore, the procedure was successful in determining these drugs simultaneously in vitro in spiked plasma samples and syrup dosage form. The developed methodology also offered an environmentally friendly advantage by utilizing water as the optimal diluting solvent throughout the whole work. Different greenness approaches were investigated to ensure the method's ecofriendly properties.
Collapse
Affiliation(s)
- Aya Roshdy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Randa Abdel Salam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ghada Hadad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heba Elmansi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Damdam AN, Ozay LO, Ozcan CK, Alzahrani A, Helabi R, Salama KN. IoT-Enabled Electronic Nose System for Beef Quality Monitoring and Spoilage Detection. Foods 2023; 12:foods12112227. [PMID: 37297471 DOI: 10.3390/foods12112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Food spoilage is a major concern in the food industry, especially for highly perishable foods such as beef. In this paper, we present a versatile Internet of Things (IoT)-enabled electronic nose system to monitor food quality by evaluating the concentrations of volatile organic compounds (VOCs). The IoT system consists mainly of an electronic nose, temperature/humidity sensors, and an ESP32-S3 microcontroller to send the sensors' data to the server. The electronic nose consists of a carbon dioxide gas sensor, an ammonia gas sensor, and an ethylene gas sensor. This paper's primary focus is to use the system for identifying beef spoilage. Hence, the system performance was examined on four beef samples stored at different temperatures: two at 4 °C and two at 21 °C. Microbial population quantifications of aerobic bacteria, Lactic Acid Bacteria (LAB), and Pseudomonas spp., in addition to pH measurements, were conducted to evaluate the beef quality during a period of 7 days to identify the VOCs concentrations that are associated with raw beef spoilage. The spoilage concentrations that were identified using the carbon dioxide, ammonia, and ethylene sensors were 552 ppm-4751 ppm, 6 ppm-8 ppm, and 18.4 ppm-21.1 ppm, respectively, as determined using a 500 mL gas sensing chamber. Statistical analysis was conducted to correlate the bacterial growth with the VOCs production, where it was found that aerobic bacteria and Pseudomonas spp. are responsible for most of the VOCs production in raw beef.
Collapse
Affiliation(s)
- Asrar Nabil Damdam
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Uvera Lab, Research and Development Department, Uvera Inc., Thuwal 23955-6900, Saudi Arabia
| | - Levent Osman Ozay
- Uvera Lab, Research and Development Department, Uvera Inc., Thuwal 23955-6900, Saudi Arabia
| | - Cagri Kaan Ozcan
- Uvera Lab, Research and Development Department, Uvera Inc., Thuwal 23955-6900, Saudi Arabia
| | - Ashwaq Alzahrani
- Uvera Lab, Research and Development Department, Uvera Inc., Thuwal 23955-6900, Saudi Arabia
| | - Raghad Helabi
- Uvera Lab, Research and Development Department, Uvera Inc., Thuwal 23955-6900, Saudi Arabia
| | - Kahled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Zhang X, Zheng Y, Liu Z, Su M, Cao W, Zhang H. Review of the applications of metabolomics approaches in dairy science: From factory to human. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
10
|
Gao R, Hu H, Shi T, Bao Y, Sun Q, Wang L, Ren Y, Jin W, Yuan L. Incorporation of gelatin and Fe 2+ increases the pH-sensitivity of zein-anthocyanin complex films used for milk spoilage detection. Curr Res Food Sci 2022; 5:677-686. [PMID: 35434649 PMCID: PMC9011025 DOI: 10.1016/j.crfs.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 10/26/2022] Open
Abstract
In this study, blueberry anthocyanins, gelatin and Fe2+ were incorporated into zein matrix via electrospinning method to prepare colorimetric indicator films for monitoring milk freshness. Gelatin and Fe2+ were incorporated into the film to improve visual discrimination of indicator films' color changes in milk with different freshness degrees and in solution with pH 3-7. Results of SEM, FT-IR and XRD showed that there were intermolecular hydrogen bonds among components, which associated with the larger color difference of indicator films. UV-vis spectral analysis showed that blueberry anthocyanin solutions containing both gelatin and Fe2+ displayed the highest intensity absorption peaks. The optimal ability to distinguish the pH (3-7) of solutions was presented by the indicator film incorporating gelatin (1% (w/v)) and Fe2+ (0.07 mg/mL). Gelatin and Fe2+ increased the color-responsive sensitivity of the indicator film to pH. The film could be successfully used to detect the freshness of milk, whose color changes were visually perceivable: from purple black (fresh milk) to royal purple (spoiling milk) and then to violet red (spoiled milk). The color parameters (L*, a*, R, G and B) of the film revealed a high correlation with the pH/acidity of the milk during storage. The successful application of the indicator film embedding gelatin and Fe2+ for monitoring milk quality changes indicated that the addition of special substances could provide great potential for monitoring freshness and preparing intelligent packaging of food.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.,Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Huiling Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Lin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuhan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wengang Jin
- Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Sha'anxi University of Technology, Hanzhong, Sha'anxi Province, 723001, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| |
Collapse
|
11
|
Feng X, Larson RA, Digman MF. Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction. SENSORS 2022; 22:s22072438. [PMID: 35408053 PMCID: PMC9002543 DOI: 10.3390/s22072438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
Livestock manure is typically applied to fertilize crops, however the accurate determination of manure nutrient composition through a reliable method is important to optimize manure application rates that maximize crop yields and prevent environmental contamination. Existing laboratory methods can be time consuming, expensive, and generally the results are not provided prior to manure application. In this study, the evaluation of a low-field nuclear magnetic resonance (NMR) sensor designated for manure nutrient prediction was assessed. Twenty dairy manure samples were analyzed for total solid (TS), total nitrogen (TN), ammoniacal nitrogen (NH4-N), and total phosphorus (TP) in a certified laboratory and in parallel using the NMR analyzer. The linear regression of NMR prediction versus lab measurements for TS had an R2 value of 0.86 for samples with TS < 8%, and values of 0.94 and 0.98 for TN and NH4-N, respectively, indicating good correlations between NMR prediction and lab measurements. The TP prediction of NMR for all samples agreed with the lab analysis with R2 greater than 0.87. The intra- and inter-sample variations of TP measured by NMR were significantly larger than other parameters suggesting less robustness in TP prediction. The results of this study indicate low-field NMR is a rapid method that has a potential to be utilized as an alternative to laboratory analysis of manure nutrients, however, further investigation is needed before wide application for on farm analysis.
Collapse
|
12
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
13
|
Belyakov MV, Kulikova MG, Gerts AA. Control of powdery contents and mass rates of the extract in the dry substance of barley malt by photoluminescent method. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mikhail V. Belyakov
- Federal State Budgetary Scientific Institution Institution Federal Scientific Agroengineering Center VIM 1st Institutskiy proezd, 5 Moscow 109428 Russia
| | - Marina. G. Kulikova
- Branch of the Federal State Budgetary Educational Institution of Higher Education "National Research University" MPEI " in Smolensk 1, Energetichesky proezd Smolensk 214013 Russia
| | - Andrej. A. Gerts
- Branch of the Federal State Budgetary Educational Institution of Higher Education "National Research University" MPEI " in Smolensk 1, Energetichesky proezd Smolensk 214013 Russia
| |
Collapse
|
14
|
The generation of volatiles in model systems containing varying casein to whey protein ratios as affected by low frequency ultrasound. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Application of Spectroscopic Techniques to Evaluate Heat Treatments in Milk and Dairy Products: an Overview of the Last Decade. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02607-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|