1
|
Taşkın T, Yılmaz BN, Hasan Niari Niar S, Ermanoğlu M, Taşkın D, Şenkardeş İ, Şahin T, Çalışkan Salihi E, Sezer AD, Kerimoğlu O, Elçioğlu HK. Biological activities and phytochemical characterization of Sideritis germanicopolitana subsp. viridis and S. libanotica subsp. linearis extracts and extract-loaded nanoparticles. Front Pharmacol 2025; 16:1508762. [PMID: 40170726 PMCID: PMC11959306 DOI: 10.3389/fphar.2025.1508762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction The current study focuses on evaluating the biological activity and analysis of phytochemical content of extracts and extract-loaded nanoparticles from Sideritis germanicopolitana subsp. viridis (endemic, SGV) and S. libanotica subsp. linearis (SLL). Methods Antioxidant activities of extracts and nanoparticles were investigated by DPPH, FRAP and CUPRAC methods. Enzyme inhibition potentials of extracts and nanoparticles were evaluated by Ellman and indophenol methods. Phytochemical contents were analyzed by HPLC-DAD. Plant extracts were encapsulated by the ionic gelation method which was modified in our laboratory using the green chemistry approach. Results and Discussion It was found that the 70% ethanol extracts of SGV and SLL exhibited the highest antioxidant activity in terms of DPPH, FRAP and CUPRAC compared to other extracts. The findings showed that both 70% ethanol extract-loaded nanoparticles obtained from SGV and SLL showed lower DPPH radical scavenging, iron (III) reducing and copper (II) reducing activities compared to crude extracts. It was determined that the 70% extracts of SGV and SLL exhibited a higher potential to inhibit the enzyme urease than other extracts. The anti-urease activity of the nanoparticle loaded with SLL 70% ethanol extract was found to be greater than that of the nanoparticle made with SGV 70% ethanol extract. Furthermore, an analysis of the acetylcholinesterase enzyme inhibition capacity of various extracts from both plants revealed that the 70% ethanol extracts of each plant species had a greater potential for enzyme inhibition than the other extracts. The anticholinesterase activity of the nanoparticle loaded with SLL 70% extract was found to be higher than that of the nanoparticle loaded with SGV 70% ethanol extract. In this study the phenolic metabolites were examined, luteolin (27.44 μg/mg extract) and p-coumaric acid (20.03 μg/mg extract) were found at the highest concentration in the SGV plant while rosmarinic acid (8.70 μg/mg extract), caffeic acid (6.46 μg/mg extract) and p-coumaric acid (4.42 μg/mg extract) were found at the highest concentration in the SLL plant. However, the data demonstrated that the nanoparticles had lesser biological activity potential than crude extracts. Conclusion The substantial biological activities of the nanoparticles developed as a result of this work showed that these formulations are suitable for use as antioxidant, anti-urease and anticholinesterase medicines in the future due to the benefits of using nanoparticles in the therapeutics such as the controlled release of the active agents and the diminished side effects.
Collapse
Affiliation(s)
- Turgut Taşkın
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Beyza Nur Yılmaz
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharnacognosy, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
| | - Shalaleh Hasan Niari Niar
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Mizgin Ermanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharnacognosy, Institute of Health Sciences, Marmara University Istanbul, Istanbul, Türkiye
| | - Duygu Taşkın
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Health Sciences, Istanbul, Türkiye
| | - İsmail Şenkardeş
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Talip Şahin
- Department of Biology, Institute of Science, Adıyaman University, Adıyaman, Türkiye
| | - Elif Çalışkan Salihi
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Ali Demir Sezer
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Oya Kerimoğlu
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Hatice Kübra Elçioğlu
- Marmara Pharmacy Drug and Innovative Product Development Unit, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| |
Collapse
|
2
|
da Silva TEB, de Oliveira YP, de Carvalho LBA, Dos Santos JAB, Dos Santos Lima M, Fernandes R, de Assis CF, Passos TS. Nanoparticles based on whey and soy proteins enhance the antioxidant activity of phenolic compound extract from Cantaloupe melon pulp flour (Cucumis melo L.). Food Chem 2025; 464:141738. [PMID: 39476578 DOI: 10.1016/j.foodchem.2024.141738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024]
Abstract
The phenolic compounds (PC) present in the pulp flour of Cantaloupe melon (Cucumis melo L.) were encapsulated in whey protein isolate (EPWI), whey protein concentrate (EPWC), and soy protein isolate (EPSP) by nanoprecipitation to evaluate the effect on the antioxidant potential in vitro. The crude extract was evaluated for the content and profile of PC, presenting 750 ± 60.73 mg EAG/100 g and ten different types with emphasis on procyanidin B1 (213.9 ± 33.23 mg/kg) and fumaric acid (181.6 ± 30.55 mg/kg). The characterization indicated the incorporation efficiency of PC in the range of 74.10 ± 0.28-90.60 ± 6.52 %, formation of spherical particles with smooth surfaces, average diameters between 74.90 ± 10.78-96.57 ± 10.17 nm, amorphous structure, and chemical interactions between the materials, justifying the potentiation of the antioxidant activity of the crude extract by up to six times (p < 0.05). Therefore, nanoencapsulation using protein materials and the nanoprecipitation technique is a promising strategy to promote the encapsulation of PC from Cantaloupe melon.
Collapse
Affiliation(s)
- Thais Emili Bezerra da Silva
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Yasmim Pessoa de Oliveira
- Undergraduate Course in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | | | - Jéssica Anarellis Barbosa Dos Santos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, PE 56316-686, Brazil
| | - Rafael Fernandes
- Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Pharmacy, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59084-100, Brazil
| | - Thaís Souza Passos
- Postgraduate Program in Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; Department of Nutrition, Center of Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| |
Collapse
|
3
|
Rao Y, Tariq M, Wang M, Yu X, Liang H, Yuan Q. Preparation and characterization of bionics Oleosomes with high loading efficiency: The enhancement of hydrophobic space and the effect of cholesterol. Food Chem 2024; 457:140181. [PMID: 38943919 DOI: 10.1016/j.foodchem.2024.140181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Liposomes (LIP) loaded with natural active ingredients have significant potential in the food industry. However, their low loading efficiency (LE) hampers the advancement of liposomal products. To improve the loading capacity of functional compounds, bionic oleosomes (BOLE) with a monolayer of phospholipid membranes and a glyceryl tricaprylate/caprate (GTCC) oil core have first been engineered by high-pressure homogenization. TEM revealed that the core of BOLE consists of GTCC instead of water, thereby extending the hydrophobic space. Steady-state fluorescence and active loading experiments confirmed that cholesterol (CH) detached from the phospholipid membrane and entered the oil core, where it repelled cannabidiol (CBD). Based on the extending hydrophobic space, CBD-BOLE was prepared and its LE was 3.13 times higher than CBD-LIP. The CBD-phospholipid ratio (CPR) of CBD-BOLE significantly improved at least 7.8 times. Meanwhile, the free radical scavenging activity of CBD was increased and cytotoxicity was reduced.
Collapse
Affiliation(s)
- Yuan Rao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Muhammad Tariq
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingxia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Vidal C, Lopez-Polo J, Osorio FA. Physical Properties of Cellulose Derivative-Based Edible Films Elaborated with Liposomes Encapsulating Grape Seed Tannins. Antioxidants (Basel) 2024; 13:989. [PMID: 39199233 PMCID: PMC11351243 DOI: 10.3390/antiox13080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.
Collapse
Affiliation(s)
- Constanza Vidal
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| | - Johana Lopez-Polo
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
5
|
Sapna, Sharma C, Pathak P, Yadav SP, Gautam S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. PROGRESS IN ORGANIC COATINGS 2024; 193:108537. [DOI: 10.1016/j.porgcoat.2024.108537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhu L, Zhong W, Meng X, Yang X, Zhang W, Tian Y, Li Y. Polymeric nanocarriers delivery systems in ischemic stroke for targeted therapeutic strategies. J Nanobiotechnology 2024; 22:424. [PMID: 39026255 PMCID: PMC11256638 DOI: 10.1186/s12951-024-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Ischemic stroke is a complex, high-mortality disease with multifactorial etiology and pathogenesis. Currently, drug therapy is mainly used treat ischemic stroke in clinic, but there are still some limitations, such as limited blood-brain barrier (BBB) penetration efficiency, a narrow treatment time window and drug side effects. Recent studies have pointed out that drug delivery systems based on polymeric nanocarriers can effectively improve the insufficient treatment for ischemic stroke. They can provide neuronal protection by extending the plasma half-life of drugs, enhancing the drug's permeability to penetrate the BBB, and targeting specific structures and cells. In this review, we classified polymeric nanocarriers used for delivering ischemic stroke drugs and introduced their preparation methods. We also evaluated the feasibility and effectiveness and discussed the existing limitations and prospects of polymeric nanocarriers for ischemic stroke treatment. We hoped that this review could provide a theoretical basis for the future development of nanomedicine delivery systems for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xuchen Meng
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenchuan Zhang
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yayuan Tian
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
7
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
8
|
Garcia-Carrasco M, Picos-Corrales LA, Gutiérrez-Grijalva EP, Angulo-Escalante MA, Licea-Claverie A, Heredia JB. Loading and Release of Phenolic Compounds Present in Mexican Oregano (Lippia graveolens) in Different Chitosan Bio-Polymeric Cationic Matrixes. Polymers (Basel) 2022; 14:polym14173609. [PMID: 36080684 PMCID: PMC9459739 DOI: 10.3390/polym14173609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90–99% and 50–60%, correspondingly. The release profiles in simulated fluids revealed a better control of host–guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.
Collapse
Affiliation(s)
- Melissa Garcia-Carrasco
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Miguel A. Angulo-Escalante
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de Mexico/Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22000, Baja California, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| | - J. Basilio Heredia
- Nutraceuticals and Functional Foods Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, Culiacán 80110, Sinaloa, Mexico
- Correspondence: (A.L.-C.); (J.B.H.)
| |
Collapse
|
9
|
Antioxidant Activities of Co-Encapsulated Natal Plum ( Carissa macrocarpa) Juice Inoculated with Ltp. plantarum 75 in Different Biopolymeric Matrices after In Vitro Digestion. Foods 2022; 11:foods11142116. [PMID: 35885359 PMCID: PMC9319165 DOI: 10.3390/foods11142116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Biopolymeric systems that co-encapsulate probiotics and bioactive compounds ensure timely delivery in the gastrointestinal tract. Cyanidin 3-sambubioside is the dominant anthocyanin in Natal plum (Carissa macrocarpa). This study aims at the co-encapsulation of Natal plum (Carissa macrocarpa) juice inoculated with Lactiplantibacillus plantarum 75 (Ltp. plantarum 75) by freeze-drying using pea protein isolate, maltodextrin, and psyllium mucilage and evaluating their release in vitro. An encapsulation efficiency of >85% was noted in lactic acid bacteria (LAB) survival and anthocyanin content. Freeze-drying produced pinkish-red powder, rich in polyphenols and LAB (>6 Log CFU mL−1) after 14 days of storage. Natal plum juice + maltodextrin + pea protein isolate + psyllium mucilage + Ltp. plantarum 75 (NMPeaPsyB) showed the highest LAB population (6.74 Log CFU mL−1) with a survival rate of 81.9%. After digestion, NMPeaPsyB and NMPeaPsy had the highest LAB survival (>50%) at 67.5% and 67.5 ± 0.75%, respectively, and the highest bioaccessibility of cyanidin 3-sambubioside in Natal plum juice than the other co-encapsulation with other biopolymers. NMPeaPsy and NMPeaPsyB showed phenolic stability in the gastric phase and controlled release in the intestinal simulated phase. The antioxidant activities had strong correlations with cyanidin 3-sambubioside. The results confirmed that microencapsulation is important for improving stability and allowing for the development of functional foods.
Collapse
|
10
|
Liu H, Jiapaer Z, Meng F, Wu W, Hou C, Duan M, Qin Y, Shao S, Zhang M. Construction Of High Loading Natural Active Substances Nanoplatform and Application in Synergistic Tumor Therapy. Int J Nanomedicine 2022; 17:2647-2659. [PMID: 35730051 PMCID: PMC9206851 DOI: 10.2147/ijn.s364108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Natural bioactive substances have been widely studied for their superior anti-tumor activity and low toxicity. However, natural bioactive substances suffer from poor water-solubility and poor stability in the physiological environment. Therefore, to overcome the drawbacks of natural bioactive substances in tumor therapy, there is an urgent need for an ideal nanocarrier to achieve high bioactive substance loading with low toxicity. Materials and Methods Face-centered cubic hollow mesoporous Prussian Blue (HMPB) NPs were prepared by stepwise hydrothermal method. Among them, PVP served as a protective agent and HCl served as an etching agent. Firstly, MPB NPs were obtained by 0.01 M HCl etching. Then, the highly uniform dispersed HMPB NPs were obtained by further etching with 1 M HCl. Results In this work, we report a pH-responsive therapeutic nanoplatform based on HMPB NPs. Surprisingly, as-prepared HMPB NPs with ultra-high bioactive substances loading capacity of 329 μg mg−1 owing to the large surface area (131.67 m2 g−1) and wide internal pore size distribution (1.8–96.2 nm). Moreover, with the outstanding photothermal conversion efficiency of HMPB NPs (30.13%), natural bioactive substances were released in the tumor microenvironment (TME). HMPB@PC B2 achieved excellent synergistic therapeutic effects of photothermal therapy (PTT) and chemotherapy (CT) in vivo and in vitro without causing any extraneous side effects. Conclusion A biocompatible HMPB@PC B2 nanoplatform was constructed by simple physical adsorption. The in vitro and in vivo experiment results demonstrated that the synergy of PTT/CT provided excellent therapeutic efficiency for cervical cancer without toxicity. Altogether, as-designed nanomedicines based on natural bioactive substances may be provide a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Wanfeng Wu
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mengjiao Duan
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Shuxuan Shao
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| |
Collapse
|
11
|
Chen B, Misrani A, Long C, He Z, Chen K, Yang L. Pigment of Ceiba speciosa (A. St.-Hil.) Flowers: Separation, Extraction, Purification and Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113555. [PMID: 35684492 PMCID: PMC9182074 DOI: 10.3390/molecules27113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
In this work, the extraction procedure of a natural pigment from the flower of Ceiba speciosa (A. St.-Hil.) was optimized by response surface methodology. It is the first time that the extraction of the flower pigment of C. speciosa (FPCS) has been reported, along with an evaluation of its stability and biological activity under various conditions, and an exploration of its potential use as a food additive and in medicine. Specifically, the effects of ethanol concentration, solid-liquid ratio, temperature and time on the extraction rate of FPCS were determined using a Box-Behnken design. The optimum extraction conditions for FPCS were 75% ethanol with a solid-liquid ratio of 1:75 mg/mL) at 66 °C for 39 min. The purification of FPCS using different macroporous resins showed that D101 performed best when the initial mass concentration of the injection solution was 1.50 mg/mL, resulting in a three-fold increase in color value. The yield of dry flowers was 9.75% of fresh petals and the FPCS extraction efficiency was 43.2%. The effects of light, solubility, pH, temperature, sweeteners, edible acids, redox agents, preservatives and metal ions on FPCS were also investigated. Furthermore, the characteristics of FPCS were determined by spectrophotometry at a specific wavelength using the Lambert-Beer law to correlate the mass of FPCS with its absorbance value. An acute toxicological test performed according to Horne's method showed that FPCS is a non-toxic extract and thus may be used as a food additive or in other ingestible forms. Finally, western blotting showed that FPCS prevents lipopolysaccharide-induced hippocampal oxidative stress in mice. The study suggests that FPCS may function as an antioxidant with applications in the food, cosmetics and polymer industries.
Collapse
Affiliation(s)
- Boyu Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China; (A.M.); (C.L.)
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China; (A.M.); (C.L.)
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhizhou He
- Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Correspondence: (Z.H.); (K.C.); (L.Y.); Tel.: +86-(020)-3936-6913 (L.Y.)
| | - Kun Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Correspondence: (Z.H.); (K.C.); (L.Y.); Tel.: +86-(020)-3936-6913 (L.Y.)
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
- Correspondence: (Z.H.); (K.C.); (L.Y.); Tel.: +86-(020)-3936-6913 (L.Y.)
| |
Collapse
|