1
|
Zhai X, Geng X, Li W, Cui H, Wang Y, Qin S. Comprehensive Review on Application Progress of Marine Collagen Cross-Linking Modification in Bone Repairs. Mar Drugs 2025; 23:151. [PMID: 40278272 DOI: 10.3390/md23040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
Bone tissue injuries are a significant health risk, and their repair is challenging. While various materials have potential for bone repair, issues like sourcing and immune rejection limit their use. Marine-derived collagen, abundant and free from religious and disease transmission concerns, is a promising biomaterial in bone tissue engineering. Cross-linking modification can enhance its mechanical properties and degradation rate, making it more suitable for bone repair. However, detailed analysis of cross-linking methods, property changes post-cross-linking, and their impact on bone repair is needed. This review examines marine collagen's modification methods, improved characteristics, and potential in bone tissue repair, providing a foundation for its effective use in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaofei Zhai
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
2
|
de Moura Campos S, Dos Santos Costa G, Karp SG, Thomaz-Soccol V, Soccol CR. Innovations and challenges in collagen and gelatin production through precision fermentation. World J Microbiol Biotechnol 2025; 41:63. [PMID: 39910024 DOI: 10.1007/s11274-025-04276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Collagen and gelatin are essential biomaterials widely used in industries such as food, cosmetics, healthcare, and pharmaceuticals. Traditionally derived from animal tissues, these proteins are facing growing demand for more sustainable and ethical production methods. Precision fermentation (PF) offers a promising alternative by using genetically engineered microorganisms to produce recombinant collagen and gelatin. This technology not only reduces environmental impact but also ensures consistent quality and higher yields. In this review, we provide a comprehensive overview of collagen and gelatin production through PF destined for the food sector, exploring key advances in recombinant technologies, synthetic biology, and bioprocess optimization. Challenges such as scaling production, cost-efficiency, and market integration are addressed, alongside emerging solutions for enhancing industrial competitiveness. We also highlight leading companies leveraging PF to drive innovation in the food industry. As PF continues to evolve, future developments are expected to improve efficiency, reduce costs, and expand the applications of recombinant collagen and gelatin, particularly in the food and supplement sectors.
Collapse
Affiliation(s)
- Sofia de Moura Campos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela Dos Santos Costa
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
3
|
Yan J, Yin S, Chen Y, Xu R, Li W, Cai Y, Wang P, Ma X, Fan D. Expression, optimization and biological activity analysis of recombinant type III collagen in Komagataella phaffii. Int J Biol Macromol 2025; 288:138243. [PMID: 39653211 DOI: 10.1016/j.ijbiomac.2024.138243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Type III collagen, a fundamental constituent of the extracellular matrix (ECM), is extensively utilized across the biomedicine, tissue engineering, and cosmetic industries because of its exceptional biocompatibility and biodegradability. Despite its widespread application, traditional methods of collagen production are often hindered by the limit yield, potential immunogenicity, and batch-to-batch variability. In the present study, we describe a synthetic biological approach for expressing full-length recombinant type III collagen (RCIII) in the Komagataella phaffii system. Furthermore, the protein expression level was effectively increased by co-expression of the MPR1 gene, which improved the intrinsic antioxidant defenses of yeast cells, thereby reducing oxidative stress damage. The resulting RCIII maintains its native secondary structure and exhibits robust biological activities, including the promotion of platelet coagulation, enhancement of cell migration, and anti-inflammatory efficacy. Our findings suggest a viable pathway for large-scale, industrial production of type III collagen, offering a promising biomaterial for advanced biomedical applications, and contributing to the circular economy of the biomedical sector.
Collapse
Affiliation(s)
- Junmiao Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Shiyu Yin
- Xi'an Giant Biogene Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Yanru Chen
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Ru Xu
- Xi'an Giant Biogene Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Weina Li
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Yiwen Cai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Yi J, Li M, Zhu J, Wang Z, Li X. Recent development and applications of electrodeposition biocoatings on medical titanium for bone repair. J Mater Chem B 2024; 12:9863-9893. [PMID: 39268681 DOI: 10.1039/d4tb01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bioactive coatings play a crucial role in enhancing the osseointegration of titanium implants for bone repair. Electrodeposition offers a versatile and efficient technique to deposit uniform coatings onto titanium surfaces, endowing implants with antibacterial properties, controlled drug release, enhanced osteoblast adhesion, and even smart responsiveness. This review summarizes the recent advancements in bioactive coatings for titanium implants used in bone repair, focusing on various electrodeposition strategies based on material-structure synergy. Firstly, it outlines different titanium implant materials and bioactive coating materials suitable for bone repair. Then, it introduces various electrodeposition methods, including electrophoretic deposition, anodization, micro-arc oxidation, electrochemical etching, electrochemical polymerization, and electrochemical deposition, discussing their applications in antibacterial, osteogenic, drug delivery, and smart responsiveness. Finally, it discusses the challenges encountered in the electrodeposition of coatings for titanium implants in bone repair and potential solutions.
Collapse
Affiliation(s)
- Jialong Yi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ming Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jixiang Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - ZuHang Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Zhao Z, Yuwen W, Duan Z, Zhu C, Fan D. Novel Collagen Analogs with Multicopy Mucin-Type Sequences for Multifunctional Enhancement Properties Using SUMO Fusion Tags. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22173-22185. [PMID: 39318025 DOI: 10.1021/acs.jafc.4c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Multifunctional enhanced collagen materials in green biomanufacturing are highly desired yet challenging due to the poor comprehensive performance caused by the adoption of targeting monofunctional peptides. Herein, novel collagen analog design strategy using multicopy tandem of mucin-type sequence (GAPGAPGSQGAPGLQ) derived from human COL1α1 to construct basic building blocks is reported, in which SUMO tag is added to the N-terminal of the protein as a stabilizing core. In particular, novel collagen analogs (named S1506, S1511, S1523, and S1552) with multicopy mucin-type sequences (repeated 6, 11, 23, and 52 times), which were constructed in Escherichia coli, have distinct orientation preferences of functional enhancement (including cell proliferation, differentiation, migration, antioxidant activity, and anti-inflammatory property) compared to COL1α1 in HaCaT and THP-1 cell experiments due to variant three-dimensional structures (the different-length mucin-type polypeptide chains wind around central SUMO tag). Our findings suggest that the innovative protein design and synthesis approaches employed in the construction of these novel S15 proteins have the potential to advance the development of new types of recombinant collagen analogs.
Collapse
Affiliation(s)
- Zilong Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Weigang Yuwen
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
6
|
Song X, Chu T, Shi W, He J. Expression, characterization, and application of human-like recombinant gelatin. BIORESOUR BIOPROCESS 2024; 11:69. [PMID: 39014092 PMCID: PMC11252100 DOI: 10.1186/s40643-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Gelatin is a product obtained through partial hydrolysis and thermal denaturation of collagen, belonging to natural biopeptides. With irreplaceable biological functions in the field of biomedical science and tissue engineering, it has been widely applied. The amino acid sequence of recombinant human-like gelatin was constructed through a newly designed hexamer composed of six protein monomer sequences in series, with the minimum repeating unit being the characteristic Gly-X-Y sequence found in type III human collagen α1 chain. The nucleotide sequence was subsequently inserted into the genome of Pichia pastoris to enable soluble secretion expression of recombinant gelatin. At the shake flask fermentation level, the yield of recombinant gelatin is up to 0.057 g/L, and its purity can rise up to 95% through affinity purification. It was confirmed in the molecular weight determination and amino acid analysis that the amino acid composition of the obtained recombinant gelatin is identical to that of the theoretically designed. Furthermore, scanning electron microscopy revealed that the freeze-dried recombinant gelatin hydrogel exhibited a porous structure. After culturing cells continuously within these gelatin microspheres for two days followed by fluorescence staining and observation through confocal laser scanning microscopy, it was observed that cells clustered together within the gelatin matrix, exhibiting three-dimensional growth characteristics while maintaining good viability. This research presents promising prospects for developing recombinant gelatin as a biomedical material.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China.
| | - Tao Chu
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China
| | - Wanru Shi
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China
| | - Jingyan He
- Department of Pharmacy, Anhui Medical College, Hefei, Anhui, 230061, China
- Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, Anhui, 230022, China
| |
Collapse
|
7
|
Wu Q, Guo Y, Li H, Zhang D, Wang S, Hou J, Cheng N, Huang M, Luo L, Li Y, Zhao Y, Tan H, Jin C. Recombinant human collagen I/carboxymethyl chitosan hydrogel loaded with long-term released hUCMSCs derived exosomes promotes skin wound repair. Int J Biol Macromol 2024; 265:130843. [PMID: 38484819 DOI: 10.1016/j.ijbiomac.2024.130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS Successful extraction of hUCMSCs-derived exosomes was confirmed by TEM,Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.
Collapse
Affiliation(s)
- Qiong Wu
- The First Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Yayuan Guo
- School of Stomatology, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, PR China
| | - Dan Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Shixu Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Jianing Hou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Nanqiong Cheng
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Mengfei Huang
- Shanghai Shengran Biotechnology Co., Ltd, Shanghai, PR China
| | - Linna Luo
- Shaanxi HuiKang Bio-Tech Co., LTD, Xi'an, PR China
| | - Yuan Li
- Shaanxi HuiKang Bio-Tech Co., LTD, Xi'an, PR China
| | - Yurong Zhao
- Shaanxi Center for Drug and Vaccine Inspection, Xi'an, PR China
| | - Hong Tan
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, Faculty of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| | - Changxin Jin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
8
|
Bai M, Kang N, Xu Y, Wang J, Shuai X, Liu C, Jiang Y, Du Y, Gong P, Lin H, Zhang X. The influence of tag sequence on recombinant humanized collagen (rhCol) and the evaluation of rhCol on Schwann cell behaviors. Regen Biomater 2023; 10:rbad089. [PMID: 38020236 PMCID: PMC10676520 DOI: 10.1093/rb/rbad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Recombinant humanized collagen (rhCol) was an extracellular matrix (ECM)-inspired biomimetic biomaterial prepared by biosynthesis technology, which was considered non-allergenic and could possibly activate tissue regeneration. The influence of tag sequence on both structures and performances of rhCol type III (rhCol III) was investigated, and the effect of rhCol III on cell behaviors was evaluated and discussed using Schwann cells (SCs) as in vitro model that was critical in the repair process after peripheral nerve injury. The results demonstrated that the introduction of tag sequence would influence both advanced structures and properties of rhCol III, while rhCol III regulated SCs adhesion, spreading, migration and proliferation. Also, both nerve growth factor and brain-derived neurotrophic factor increased when exposed to rhCol III. As the downstream proteins of integrin-mediated cell adhesions, phosphorylation of focal adhesion kinase and expression of vinculin was up-regulated along with the promotion of SCs adhesion and migration. The current findings contributed to a better knowledge of the interactions between rhCol III and SCs, and further offered a theoretical and experimental foundation for the development of rhCol III-based medical devices and clinical management of peripheral nerve injury.
Collapse
Affiliation(s)
- Mingxuan Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ning Kang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Xinxing Shuai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Caojie Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Du
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China
| |
Collapse
|
9
|
Liang M, Dong L, Guo Z, Liu L, Fan Z, Wei C, Mi S, Sun W. Collagen-Hyaluronic Acid Composite Hydrogels with Applications for Chronic Diabetic Wound Repair. ACS Biomater Sci Eng 2023; 9:5376-5388. [PMID: 37596956 DOI: 10.1021/acsbiomaterials.3c00695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Chronic diabetic wounds have become a major healthcare challenge worldwide. Improper treatment may lead to serious complications. Current treatment methods including biological and physical methods and skin grafting have limitations and disadvantages, such as poor efficacy, inconvenience of use, and high cost. Therefore, developing a more effective and feasible treatment is of great significance for the repair of chronic diabetic wounds. Hydrogels can be designed to serve multiple functions to promote the repair of chronic diabetic wounds. Furthermore, 3D bioprinting enables hydrogel customization to fit chronic diabetic wounds, thus facilitating the healing process. This paper reports a study of 3D printing of a collagen-hyaluronic acid composite hydrogels with application for chronic diabetic wound repair. In situ printed hydrogels were developed by a macromolecular crosslinking network using methacrylated recombinant human collagen (RHCMA) and methacrylated hyaluronic acid (HAMA), both of which can respond to ultraviolet (UV) irradiation. The hydrogels were also loaded with silver nanoclusters (AgNCs) with ultra-small-size nanoparticles, which have the advantages of deep penetration ability and broad-spectrum high-efficiency antibacterial properties. The results of this study show that the developed RHCMA, HAMA, and AgNCs (RHAg) composite hydrogels present good UV responsiveness, porosity, mechanical properties, printability, and biocompatibility, all of which are beneficial to wound healing. The results of this study further show that the developed RHAg hydrogels not only effectively inhibited Staphylococcus aureus and Pseudomonas aeruginosa but also promoted the proliferation and migration of fibroblasts in vitro and tissue regeneration and collagen deposition in vivo, thus producing a desirable wound repair effect and can be used as an effective functional biomaterial to promote chronic diabetic wound repair.
Collapse
Affiliation(s)
- Mujiao Liang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lina Dong
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhongwei Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Liming Liu
- Pathology Department, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Zixin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Jinan University, Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen 518040, China
| | - Cunyue Wei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shengli Mi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Sun
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Xiang ZX, Gong JS, Shi JH, Liu CF, Li H, Su C, Jiang M, Xu ZH, Shi JS. High-efficiency secretory expression and characterization of the recombinant type III human-like collagen in Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:117. [PMID: 38647563 PMCID: PMC10992891 DOI: 10.1186/s40643-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Collagen, the highest content protein in the body, has irreplaceable biological functions, and it is widespread concerned in food, beauty, and medicine with great market demand. The gene encoding the recombinant type III human-like collagen α1 chain fragment was integrated into P. pastoris genome after partial amino acids were substituted. Combined with promoter engineering and high-density fermentation technology, soluble secretory expression with the highest yield of 1.05 g L-1 was achieved using two-stage feeding method, and the purity could reach 96% after affinity purification. The determination of N/C-terminal protein sequence were consistent with the theoretical expectation and showed the characteristics of Gly-X-Y repeated short peptide sequence. In amino acid analysis, glycine shared 27.02% and proline 23.92%, which were in accordance with the characteristics of collagen. Ultraviolet spectrum combined with Fourier transform infrared spectroscopy as well as mass spectrometry demonstrated that the target product conformed to the characteristics of collagen spectrums and existed as homologous dimer and trimer in the broth. This work provided a sustainable and economically viable source of the recombinant type III human-like collagen.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| | - Jin-Hao Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chun-Fang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| |
Collapse
|
11
|
Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:5893-5912. [PMID: 36040488 DOI: 10.1007/s00253-022-12139-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Pichia pastoris has been recognized as an important platform for the production of various heterologous proteins in recent years. The strong promoter AOX1, induced by methanol, with the help of the α-pre-pro signal sequence, can lead to a high expression level of extracellular protein. However, this combination was not always efficient, as protein secretion in P. pastoris involves numerous procedures mediated by several cellular proteins, including folding assisted by endoplasmic reticulum (ER) molecular chaperones, degradation through ubiquitination, and an efficient vesicular transport system. Efficient protein expression requires the cooperation of various intracellular pathways. This article summarizes the process of protein secretion, modification, and transportation in P. pastoris. In addition, the roles played by the key proteins in these processes and the corresponding co-expression effects are also listed. It is expected to lay the foundation for the industrial protein production of P. pastoris. KEY POINTS: • Mechanisms of chaperones in protein folding and their co-expression effects are summarized. • Protein glycosylation modifications are comprehensively reviewed. • Current dilemmas in the overall protein secretion pathway of Pichia pastoris and corresponding solutions are demonstrated.
Collapse
|