1
|
Prabhu L, Skuland AV, Varela P, Rosnes JT. Fish Protein Hydrolysate as Protein Enrichment in Texture-Modified Salmon Products. Foods 2025; 14:162. [PMID: 39856829 PMCID: PMC11764784 DOI: 10.3390/foods14020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to develop a chilled, texture-modified salmon product for dysphagia patients, enriched with dairy and fish hydrolysate proteins. The challenge was to create a product with appealing sensory qualities and texture that meets level 5 (minced & moist) of the IDDSI framework. Atlantic salmon (Salmo salar) was heat-treated (95 °C/15 min), blended, and reconstructed by adding texture modifiers, casein and whey protein, and enzymatically derived fish hydrolysate. The products were packaged in oxygen-free plastic trays, heat-treated to a core temperature of 95 °C for 15 min, chilled and stored at 4 °C for 29 days and analyzed for microbiology, instrumental texture, and sensory properties. The texture analyses showed that products with fish protein hydrolysate were softer than those only with casein and whey protein, a result also confirmed by the IDDSI fork pressure test. Quantitative descriptive analysis of salmon products revealed significant differences (p < 0.05) in sensory attributes within flavour (fish flavour), and texture (softness and adhesiveness) but there was no significant change in bitterness. The shelf-life study at 4 °C showed good microbiological quality of the product, and safety after 29 days with appealing sensory and textural properties, i.e., a product at IDDSI level 5 for age care facilities and commercial production was obtained.
Collapse
Affiliation(s)
- Leena Prabhu
- Nofima AS, Richard Johnsensgate 4, 4068 Stavanger, Norway; (A.V.S.); (P.V.); (J.T.R.)
| | | | | | | |
Collapse
|
2
|
Khalifa I, Li Z, Nawaz A, Walayat N, Sobhy R, Jia Y, Korin A, Zou X, Maqsood S. Recent innovations for improving the techno-functional properties of plant-based egg analogs and egg-mimicking products to promote their industrialization and commercialization. Compr Rev Food Sci Food Saf 2025; 24:e70086. [PMID: 39674849 DOI: 10.1111/1541-4337.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024]
Abstract
Recent advancements in plant-based egg analogs (PBEAs) and plant-based egg-mimicking products (PEMP) are driven by growing consumer demand and the need for alternatives to animal-derived products. This movement is being encouraged by several factors, including a drive toward specifically sustainability, increased allergenicity, and consumer preferences for flexitarian diets. We comprehensively overviewed the current research on the formulation and characterization of PBEAs and PEMP that are vital for diverse food applications. We also highlighted the techno-functional features of these ingredients and their impact in PBEA and PEMP-based formulas and evaluated up-to-date outcomes that display the availability of economically viable substitutes. However, to efficiently mimic the sensorial and textural features of eggs, further innovation and intensive work are still needed. For instance, challenges persist in achieving desired quality attributes, controlling costs, and scaling-up the production, which limit broader market adoption of PBEAs and PEMP. Addressing these obstacles through persistent research and development can improve the functionality and acceptance of PBEAs in the food industry, aligning with evolving consumer preferences for plant-based protein alternative options.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, UAE
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ali Korin
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
3
|
Wang Z, Yu X, Song L, Jiao J, Prakash S, Dong X. Encapsulation of β-carotene in gelatin-gum Arabic-sodium carboxymethylcellulose complex coacervates: Enhancing surimi gel properties and exploring 3D printing potential. Int J Biol Macromol 2024; 278:134129. [PMID: 39069046 DOI: 10.1016/j.ijbiomac.2024.134129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
This study investigates the utilization of functional additives (β-carotene microcapsules) and 3D printing technology for the production of innovative surimi products. The β-carotene microcapsules were prepared using different ratios of gelatin (Ge), gum Arabic (Ara), and carboxymethylcellulose sodium (CMC). Among these ratios, the ratio of 5:5:1 (Ge:Ara:CMC) resulted in more stable microcapsules spherical structures and better environmental stability. Subsequently, different concentrations (5-20 %) of the obtained β-carotene microcapsules were added to surimi samples. As the concentration increased, there was an improvement in the gel strength of the surimi. However, no significant changes were observed when the concentration was 15 % (p > 0.05). All samples exhibited shear thinning behavior. The addition of microcapsules improved the resilience and thixotropy of surimi, making it more suitable for 3D printing applications. The inclusion of β-carotene microcapsules in surimi products not only meets the nutritional needs of consumers, but also provides valuable insights for the development of functional surimi products.
Collapse
Affiliation(s)
- Zheming Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiliang Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Liang Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jian Jiao
- Beijing Tong Ren Tang Health (Dalian) Seafoods Co., Ltd., Dalian 116034, Liaoning, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Morena F, Cencini C, Calzoni E, Martino S, Emiliani C. A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of Solanum lycopersicum By-Products. Biomolecules 2024; 14:930. [PMID: 39199318 PMCID: PMC11352670 DOI: 10.3390/biom14080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Resource-intensive processes currently hamper the discovery of bioactive peptides (BAPs) from food by-products. To streamline this process, in silico approaches present a promising alternative. This study presents a novel computational workflow to predict peptide release, bioactivity, and bioavailability, significantly accelerating BAP discovery. The computational flowchart has been designed to identify and optimize critical enzymes involved in protein hydrolysis but also incorporates multi-enzyme screening. This feature is crucial for identifying the most effective enzyme combinations that yield the highest abundance of BAPs across different bioactive classes (anticancer, antidiabetic, antihypertensive, anti-inflammatory, and antimicrobial). Our process can be modulated to extract diverse BAP types efficiently from the same source. Here, we show the potentiality of our method for the identification of diverse types of BAPs from by-products generated from Solanum lycopersicum, the widely cultivated tomato plant, whose industrial processing generates a huge amount of waste, especially tomato peel. In particular, we optimized tomato by-products for bioactive peptide production by selecting cultivars like Line27859 and integrating large-scale gene expression. By integrating these advanced methods, we can maximize the value of by-products, contributing to a more circular and eco-friendly production process while advancing the development of valuable bioactive compounds.
Collapse
Affiliation(s)
- Francesco Morena
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Chiara Cencini
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Eleonora Calzoni
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
| | - Sabata Martino
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy; (C.C.); (E.C.); (S.M.)
- Centro di Eccellenza su Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
5
|
Yang NE, Lee DH, Hwang J, Son WY, Kim KS, Kim GY, Kim HW. Proteolytic Activity of Silkworm Thorn ( Cudrania tricuspidata) Fruit for Enzymatic Hydrolysis of Food Proteins. Molecules 2024; 29:693. [PMID: 38338437 PMCID: PMC10856028 DOI: 10.3390/molecules29030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.
Collapse
Affiliation(s)
- Na-Eun Yang
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Da-Hoon Lee
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Jun Hwang
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Woo-Young Son
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Gwang-Yeon Kim
- Sancheong Hanbang Kkujippong Farming Association Corporation, Sancheong 52255, Republic of Korea;
| | - Hyun-Wook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52828, Republic of Korea; (D.-H.L.); (J.H.); (W.-Y.S.)
| |
Collapse
|
6
|
Liang P, Chen S, Fang X, Wu J. Recent advance in modification strategies and applications of soy protein gel properties. Compr Rev Food Sci Food Saf 2024; 23:e13276. [PMID: 38284605 DOI: 10.1111/1541-4337.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Soy protein gel can be developed into a variety of products, ranging from traditional food (e.g., tofu) to newly developed food (e.g., soy yogurt and meat analog). So far, efforts are still needed to be made on modifying the gel properties of soy protein for improving its sensory properties as animal protein-based food substitutes. Furthermore, there is always a need to regulate its gel properties for designing novel and tailored products of soy protein gels due to the fast-growing plant protein-based product market. This review gave an emphasis on the latest modification strategies and applications of gel properties of soy protein. The modifying methods of soy protein gel properties were reviewed from an aspect of composition or processing. Compositional modification included changing protein composition and gelling conditions and using additives, whereas processing strategies can be achieved through physical, chemical, and enzymatic treatments. Several compositional modification and processing strategies have been both proven to alter the gel properties of soy protein effectively. So far, soy protein gel has been applied in the field of food and biomedicine. In the future, more mechanistic studies on the modification methods are still needed to facilitate the full application of soy protein gel.
Collapse
Affiliation(s)
- Peijun Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Simin Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Aewsiri T, Ganesan P, Thongzai H. Whey Protein-Tannic Acid Conjugate Stabilized Emulsion-Type Pork Sausages: A Focus on Lipid Oxidation and Physicochemical Features. Foods 2023; 12:2766. [PMID: 37509856 PMCID: PMC10379616 DOI: 10.3390/foods12142766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this study was to investigate the oxidative stability and physicochemical properties of pork emulsion sausages with whey protein-tannic acid conjugate and native whey protein. Over the course of 21 days, the thiobarbituric acid reactive substances (TBARS) of sausages containing a whey protein-tannic acid conjugate were lower than those of sausages with regular whey protein (p < 0.05). Kinetically, sausage containing the whey protein-tannic acid conjugate (k = 0.0242 day-1) appeared to last longer than sausage containing regular whey protein (k = 0.0667 day-1). The addition of the whey protein-tannic acid conjugate had no effect on product texture because there was no difference in hardness, springiness, cohesiveness, or water-holding capacity between the control and treated samples at Day 0 (p > 0.05). Scanning electron microscopy revealed that, at Day 21, the control sausage exhibited emulsion coalescence, as evidenced by an increase in the number of oil droplets and large voids, but not the whey protein-tannic acid conjugate-added sausage. There was no variation in the L*, a*, and b* values of the sausages when the whey protein-tannic acid conjugate was added (p > 0.05). However, there was a little increase in ΔE value in the treated sample. Thus, the whey-protein-tannic acid conjugate appeared to stabilize the lipid and physicochemical properties of the sausages by lowering the rate of TBARS production, retaining texture, water-holding capacity, and color, as well as by minimizing lipid coalescence during refrigerated storage.
Collapse
Affiliation(s)
- Tanong Aewsiri
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Hataikan Thongzai
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
8
|
Li G, Xu J, Wang H, Jiang L, Wang H, Zhang Y, Jin H, Fan Z, Xu J, Zhao Q. Physicochemical Antioxidative and Emulsifying Properties of Soybean Protein Hydrolysates Obtained with Dissimilar Hybrid Nanoflowers. Foods 2022; 11:foods11213409. [PMID: 36360021 PMCID: PMC9653765 DOI: 10.3390/foods11213409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the changes in the structure and properties of soybean protein after hydrolysis using two types of hybrid nanoflowers (alcalase@Cu3(PO4)2•3H2O (ACHNs) and dispase@Cu3(PO4)2•3H2O (DCHNs)) and examined the basic properties and oxidative stability of hydrolyzed soybean protein emulsions. The formations of the two hybrid nanoflowers were first determined using a scanning electron microscope, transmission electron microscope, and Fourier infrared spectroscopy. The structure and functional properties of soybean protein treated with hybrid nanoflowers were then characterized. The results indicated that the degree of hydrolysis (DH) of the ACHNs hydrolysates was higher than that of the DCHNs for an identical reaction time. Soybean protein hydrolysates treated with two hybrid nanoflowers showed different fluorescence and circular dichroism spectra. The solubility of the hydrolysates was significantly higher (p < 0.05) than that of the soybean protein (SPI) at all pH values tested (2.0−10.0)*: at the same pH value, the maximum solubility of ACHNs hydrolysates and DCHNs hydrolysates was increased by 46.2% and 42.2%, respectively. In addition, the ACHNs hydrolysates showed the highest antioxidant activity (DPPH IC50 = 0.553 ± 0.009 mg/mL, ABTS IC50 = 0.219 ± 0.019 mg/mL, and Fe2+ chelating activity IC50 = 40.947 ± 3.685 μg/mL). The emulsifying activity index of ACHNs and DCHNs hydrolysates reached its maximum after hydrolysis for 120 min at 61.38 ± 0.025 m2/g and 54.73 ± 0.75 m2/g, respectively. It was concluded that the two hydrolysates have better solubility and antioxidant properties, which provides a theoretical basis for SPI product development. More importantly, the basic properties and oxidative stability of the soybean-protein-hydrolysates oil-in-water emulsions were improved. These results show the importance of proteins hydrolyzed by hybrid nanoflowers as emulsifiers and antioxidants in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Geng Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huiwen Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Coastal Research and Extension Center, Mississippi State University, Starkville, MS 39762, USA
| | - Hua Jin
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhijun Fan
- Heilongjiang Beidahuang Green and Healthy Food Co., Ltd., Jiamusi 154007, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| | - Qingshan Zhao
- Experimental Practice and Demonstration Center, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (J.X.); (Q.Z.); Tel.: +86-13796652155 (J.X.); +86-13796653133 (Q.Z.)
| |
Collapse
|
9
|
Dash DR, Singh SK, Singha P. Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:3151-3166. [PMID: 36218326 DOI: 10.1080/10408398.2022.2130161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent trend in consumption of plant-based protein over animal protein opens up a new avenue for sustainable agriculture practice, less environmental impact and greenhouse gas emission. The modification of plant-based proteins by novel non-thermal technologies includes the structural transformation followed by the modulation of their functional properties that are exploited to develop a protein ingredient system for application in food formulation. This review explores the impact of non-thermal process technologies on structural modification of plant proteins followed by improvement in protein's function in food formulation. Novel concepts articulating the impact of non-thermal technologies on structural and functional modification of plant proteins affecting it's digestibility and bioavailability are addressed. Limitations and prospects of applying non-thermal technologies in developing an alternative plant-based protein food system are also summarized. Non-thermal processes are considered as the emerging technologies that results in conformational changes in secondary, tertiary and quaternary structure of plant proteins which helps in modification of functional properties without jeopardizing the organoleptic properties and bioactivity of the protein. However, extensive future study is needed to optimize the non-thermal process parameters along with the finding of new protein sources to achieve healthy and sustainable plant-based food system.
Collapse
Affiliation(s)
- Dibya Ranjan Dash
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
10
|
Asaithambi N, Singha P, Singh SK. Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|