1
|
Šupljika N, Paić A, Novačić A, Martinić Cezar T, Vallée B, Teparić R, Stuparević I, Žunar B. Saccharomyces cerevisiae Mub1, a substrate adaptor of E3 ubiquitin ligase Ubr2, modulates sensitivity to cell wall stressors through multiple transcription factors. FEBS J 2025. [PMID: 40165610 DOI: 10.1111/febs.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Yeasts evolved a complex regulatory programme to build and maintain their cell wall, the primary structure through which they interact with their environment. However, how this programme ties to essential cellular processes mostly remains unclear. Here, we focus on Saccharomyces cerevisiae MYND-type zinc finger protein MUB1 (Mub1), an adaptor protein of E3 ubiquitin-protein ligase Ubr2 that was previously associated with regulating proteasome genes through the transcription factor Rpn4. We show that S. cerevisiae cells lacking Mub1 become hyper-tolerant to standard cell wall stressors, outperforming wild-type cells. This protective mub1Δ phenotype stems from the activity of several transcription factors, leading to the inhibition of cell wall remodelling, a typically protective process that becomes maladaptive during chronic cell wall stress in laboratory conditions. Based on these results, we suggest that Mub1 regulates not only Rpn4 but a much broader range of transcription factors, and thus serves as an in-so-far unrecognised regulatory hub directly linking cell wall robustness with the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Nada Šupljika
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Antonia Paić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, Orléans Cedex 2, France
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Igor Stuparević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| |
Collapse
|
2
|
Schnepper AP, Kubo AMS, Pinto CM, Gomes RHM, Fioretto MN, Justulin LA, Braz AMM, Golim MDA, Grotto RMT, Valente GT. Long Noncoding RNAs Responding to Ethanol Stress in Yeast Seem Associated with Protein Synthesis and Membrane Integrity. Genes (Basel) 2025; 16:170. [PMID: 40004499 PMCID: PMC11854924 DOI: 10.3390/genes16020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Translation and the formation of membraneless organelles are linked mechanisms to promote cell stress surveillance. LncRNAs responsive to ethanol stress transcr_9136 of the SEY6210 strain and transcr_10027 of the BY4742 strain appear to act on tolerance to ethanol in these strains. Here, we investigate whether the ethanol responsiveness of transcr_9136 and transcr_10027 and their role in ethanol stress are associated with protein biogenesis and membraneless organelle assembly. Methods: SEY6210 transcr_9136∆ and BY4742 transcr_10027∆ and their wild-type counterparts were subjected to their maximum ethanol-tolerant stress. The expression of the transcr_9136, transcr_10027, ILT1, RRP1, 27S, 25S, TIR3, and FAA3 genes was accessed by qPCR. The level of DCP1a, PABP, and eIF4E proteins was evaluated by Western blotting. Bioinformatics analyses allowed us to check whether transcr_9136 may regulate the expression of RRP1 and predict the interaction between transcr_10027 and Tel1p. The cell death rate of SEY6210 strains under control and ethanol stress conditions was assessed by flow cytometry. Finally, we evaluated the total protein yield of all strains analyzed. Results: The results demonstrated that transcr_9136 of SEY6210 seems to control the expression of RRP1 and 27S rRNA and reduce the general translation. Furthermore, transcr_9136 seems to act on cell membrane integrity. Transcr_10027 of BY4742 appears to inhibit processing body formation and induce a general translation level. Conclusions: This is the first report on the effect of lncRNAs on yeast protein synthesis and new mechanisms of stress-responsive lncRNAs in yeast, with potential industrial applications such as ethanol production.
Collapse
Affiliation(s)
- Amanda Piveta Schnepper
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Agatha M. S. Kubo
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Camila Moreira Pinto
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Ramon Hernany Martins Gomes
- Department of Bioprocess and Biotechnology, School of Agriculture, Sao Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Luís Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Aline M. M. Braz
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Marjorie de Assis Golim
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rejane M. T. Grotto
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Guilherme Targino Valente
- Laboratory of Applied Biotechnology, School of Medicine, Sao Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
3
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
4
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
5
|
Garrido-Godino AI, Gupta I, Pelechano V, Navarro F. RNA Pol II Assembly Affects ncRNA Expression. Int J Mol Sci 2023; 25:507. [PMID: 38203678 PMCID: PMC10778713 DOI: 10.3390/ijms25010507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
RNA pol II assembly occurs in the cytoplasm before translocation of the enzyme to the nucleus. Affecting this assembly influences mRNA transcription in the nucleus and mRNA decay in the cytoplasm. However, very little is known about the consequences on ncRNA synthesis. In this work, we show that impairment of RNA pol II assembly leads to a decrease in cryptic non-coding RNAs (preferentially CUTs and SUTs). This alteration is partially restored upon overcoming the assembly defect. Notably, this drop in ncRNAs is only partially dependent on the nuclear exosome, which suggests a major specific effect of enzyme assembly. Our data also point out a defect in transcription termination, which leads us to propose that CTD phosphatase Rtr1 could be involved in this process.
Collapse
Affiliation(s)
- Ana I. Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
| | - Ishaan Gupta
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Francisco Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain;
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, Paraje de las Lagunillas, s/n, E-23071 Jaén, Spain
| |
Collapse
|
6
|
Hall RA, Wallace EW. Post-transcriptional control of fungal cell wall synthesis. Cell Surf 2022; 8:100074. [PMID: 35097244 PMCID: PMC8783092 DOI: 10.1016/j.tcsw.2022.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.
Collapse
Affiliation(s)
- Rebecca A. Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Edward W.J. Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
7
|
The long non-coding RNA landscape of Candida yeast pathogens. Nat Commun 2021; 12:7317. [PMID: 34916523 PMCID: PMC8677757 DOI: 10.1038/s41467-021-27635-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) constitute a poorly studied class of transcripts with emerging roles in key cellular processes. Despite efforts to characterize lncRNAs across a wide range of species, these molecules remain largely unexplored in most eukaryotic microbes, including yeast pathogens of the Candida clade. Here, we analyze thousands of publicly available sequencing datasets to infer and characterize the lncRNA repertoires of five major Candida pathogens: Candida albicans, Candida tropicalis, Candida parapsilosis, Candida auris and Candida glabrata. Our results indicate that genomes of these species encode hundreds of lncRNAs that show levels of evolutionary constraint intermediate between those of intergenic genomic regions and protein-coding genes. Despite their low sequence conservation across the studied species, some lncRNAs are syntenic and are enriched in shared sequence motifs. We find co-expression of lncRNAs with certain protein-coding transcripts, hinting at potential functional associations. Finally, we identify lncRNAs that are differentially expressed during infection of human epithelial cells for four of the studied species. Our comprehensive bioinformatic analyses of Candida lncRNAs pave the way for future functional characterization of these transcripts. Long non-coding RNAs (lncRNAs) play roles in key cellular processes, but remain largely unexplored in fungal pathogens such as Candida. Here, Hovhannisyan and Gabaldón analyze thousands of sequencing datasets to infer and characterize the lncRNA repertoires of five Candida species, paving the way for their future functional characterization.
Collapse
|
8
|
Silveira GO, Coelho HS, Amaral MS, Verjovski-Almeida S. Long non-coding RNAs as possible therapeutic targets in protozoa, and in Schistosoma and other helminths. Parasitol Res 2021; 121:1091-1115. [PMID: 34859292 DOI: 10.1007/s00436-021-07384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) emerged in the past 20 years due to massive amounts of scientific data regarding transcriptomic analyses. They have been implicated in a plethora of cellular processes in higher eukaryotes. However, little is known about lncRNA possible involvement in parasitic diseases, with most studies only detecting their presence in parasites of human medical importance. Here, we review the progress on lncRNA studies and their functions in protozoans and helminths. In addition, we show an example of knockdown of one lncRNA in Schistosoma mansoni, SmLINC156349, which led to in vitro parasite adhesion, motility, and pairing impairment, with a 20% decrease in parasite viability and 33% reduction in female oviposition. Other observed phenotypes were a decrease in the proliferation rate of both male and female worms and their gonads, and reduced female lipid and vitelline droplets that are markers for well-developed vitellaria. Impairment of female worms' vitellaria in SmLINC156349-silenced worms led to egg development deficiency. All those results demonstrate the great potential of the tools and methods to characterize lncRNAs as potential new therapeutic targets. Further, we discuss the challenges and limitations of current methods for studying lncRNAs in parasites and possible solutions to overcome them, and we highlight the future directions of this exciting field.
Collapse
Affiliation(s)
- Gilbert O Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Helena S Coelho
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Murilo S Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
9
|
Wang J, Hou Y, Wang Y, Zhao H. Integrative lncRNA landscape reveals lncRNA-coding gene networks in the secondary cell wall biosynthesis pathway of moso bamboo (Phyllostachys edulis). BMC Genomics 2021; 22:638. [PMID: 34479506 PMCID: PMC8417995 DOI: 10.1186/s12864-021-07953-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background LncRNAs are extensively involved in plant biological processes. However, the lack of a comprehensive lncRNA landscape in moso bamboo has hindered the molecular study of lncRNAs. Moreover, the role of lncRNAs in secondary cell wall (SCW) biosynthesis of moso bamboo is elusive. Results For comprehensively identifying lncRNA throughout moso bamboo genome, we collected 231 RNA-Seq datasets, 1 Iso-Seq dataset, and 1 full-length cDNA dataset. We used a machine learning approach to improve the pipeline of lncRNA identification and functional annotation based on previous studies and identified 37,009 lncRNAs in moso bamboo. Then, we established a network of potential lncRNA-coding gene for SCW biosynthesis and identified SCW-related lncRNAs. We also proposed that a mechanism exists in bamboo to direct phenylpropanoid intermediates to lignin or flavonoids biosynthesis through the PAL/4CL/C4H genes. In addition, we identified 4 flavonoids and 1 lignin-preferred genes in the PAL/4CL/C4H gene families, which gained implications in molecular breeding. Conclusions We provided a comprehensive landscape of lncRNAs in moso bamboo. Through analyses, we identified SCW-related lncRNAs and improved our understanding of lignin and flavonoids biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07953-z.
Collapse
Affiliation(s)
- Jiongliang Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China
| | - Yinguang Hou
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China
| | - Yu Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China
| | - Hansheng Zhao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, 100102, Beijing, China.
| |
Collapse
|
10
|
Novačić A, Beauvais V, Oskomić M, Štrbac L, Dantec AL, Rahmouni AR, Stuparević I. Yeast RNA exosome activity is necessary for maintaining cell wall stability through proper protein glycosylation. Mol Biol Cell 2021; 32:363-375. [PMID: 33439673 PMCID: PMC8098854 DOI: 10.1091/mbc.e20-08-0544-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 12/01/2022] Open
Abstract
Nuclear RNA exosome is the main 3'→5' RNA degradation and processing complex in eukaryotic cells and its dysregulation therefore impacts gene expression and viability. In this work we show that RNA exosome activity is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. While the essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, the second catalytic subunit Rrp6 has a noncatalytic role in this process. RNA exosome cofactors Rrp47 and Air1/2 are also involved. RNA exosome mutants undergo osmoremedial cell lysis at high temperature or at physiological temperature upon treatment with cell wall stressors. Finally, we show that a defect in protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. Genes encoding enzymes that act in the early steps of the protein glycosylation pathway are down-regulated at high temperature in cells lacking Rrp6 protein or Dis3 exoribonuclease activity and overexpression of the essential enzyme Psa1, that catalyzes synthesis of the mannosylation precursor, suppresses temperature sensitivity and aberrant morphology of these cells. Furthermore, this defect is connected to a temperature-dependent increase in accumulation of noncoding RNAs transcribed from loci of relevant glycosylation-related genes.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Valentin Beauvais
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Marina Oskomić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Lucija Štrbac
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Aurélia Le Dantec
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, 45071 Orléans, France
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
11
|
Chen Y, Guo E, Zhang J, Si T. Advances in RNAi-Assisted Strain Engineering in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:731. [PMID: 32714914 PMCID: PMC7343710 DOI: 10.3389/fbioe.2020.00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
Saccharomyces cerevisiae is a widely used eukaryotic model and microbial cell factory. RNA interference (RNAi) is a conserved regulatory mechanism among eukaryotes but absent from S. cerevisiae. Recent reconstitution of RNAi machinery in S. cerevisiae enables the use of this powerful tool for strain engineering. Here we first discuss the introduction of heterologous RNAi pathways in S. cerevisiae, and the design of various expression cassettes of RNAi precursor reagents for tunable, dynamic, and genome-wide regulation. We then summarize notable examples of RNAi-assisted functional genomics and metabolic engineering studies in S. cerevisiae. We conclude with the future challenges and opportunities of RNAi-based approaches, as well as the potential of other regulatory RNAs in advancing yeast engineering.
Collapse
Affiliation(s)
- Yongcan Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianzhi Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|