1
|
Gao S, Liu B, Yuan S, Quan Y, Song S, Jin W, Wang Y, Wang Y. Cross-talk between signal transduction systems and metabolic networks in antibiotic resistance and tolerance. Int J Antimicrob Agents 2025; 65:107479. [PMID: 40024604 DOI: 10.1016/j.ijantimicag.2025.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The comprehensive antibiotic resistance of pathogens signifies the oneset of the "post-antibiotic era", and the myriad treatment challenges posed by "superbugs" have emerged as the primary threat to human health. Recent studies indicate that bacterial resistance and tolerance development are mediated at the metabolic level by various signalling networks (e.g., quorum sensing systems, second messenger systems, and two-component systems), resulting in metabolic rearrangements and alterations in bacterial community behaviour. This review focuses on current research, highlighting the intrinsic link between signalling and metabolic networks in bacterial resistance and tolerance.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Baobao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Shenao Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, China.
| |
Collapse
|
2
|
Bai Y, Liang T, Zhao J, Lin Y, Lu Q, Zhou X, Yang M, Zhong X. The Two-Component System TtrRS Regulates the Expression of the 05890-05900 Operon that Promotes the Sulfur Metabolism of Vibrio parahaemolyticus. Curr Microbiol 2025; 82:136. [PMID: 39953365 DOI: 10.1007/s00284-025-04115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
The marine bacterium Vibrio parahaemolyticus is responsible for the seafood-borne gastroenteritis in humans. Two-component system (TCS) TtrRS plays important roles in host colonization and works as an important regulator in V. parahaemolyticus. However, the mechanisms by which TtrRS regulates the downstream genes, as well as the function of their target genes, remain largely unknown. In this study, we performed a Find Individual Motif Occurrences (FIMO) analysis using the ttrR box to scan the V. parahaemolyticus genome and identified 68 potential binding sites harboring the ttrR box. Thereinto, a ttrR box exists in the promoter region of the 05890-05900 operon. We further demonstrated that TtrR directly regulates the expression of the 05890-05900 operon by binding to the ttrR box. In addition, another TCS, 05905/05910, could assist in the regulation of TtrR to the 05890-05900 operon. Subsequent study showed that the 05890-05900 operon promotes the sulfur metabolism of V. parahaemolyticus at the early growth stage. Our results suggested that TtrRS and their target genes generate a complex regulatory pathway to better control sulfur metabolism in V. parahaemolyticus.Please check and confirm the edit made in the article title and amend if necessary.It's OK.
Collapse
Affiliation(s)
- Yameng Bai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Tianqi Liang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Jie Zhao
- Nanjing Dr. Vet Health Management Co., Ltd, Nanjing, China
| | - Yawen Lin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Qian Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Xiujuan Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China
| | - Menghua Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China.
| | - Xiaojun Zhong
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Hangzhou, China.
| |
Collapse
|
3
|
Mao M, He L, Yan Q. An updated overview on the bacterial PhoP/PhoQ two-component signal transduction system. Front Cell Infect Microbiol 2025; 15:1509037. [PMID: 39958932 PMCID: PMC11825808 DOI: 10.3389/fcimb.2025.1509037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
The PhoP response regulator and the cognate sensor kinase PhoQ form one of the two-component signal transduction systems that is highly conserved in bacteria. The PhoP/PhoQ system is a crucial mediator of signal transduction. It regulates the expression of bacterial environmental tolerance genes, virulence factors, adhesion, and invasion-related genes by sensing various environmental signals in the host, including Mg2+, low pH, antimicrobial peptides, and osmotic pressure. In this review, we describe the PhoP/PhoQ system-induced signal composition and its feedback mechanism, and the abundance of PhoP phosphorylation in the activated state directly or indirectly controls the transcription and expression of related genes, regulating bacterial stability. Then, we discuss the relationship between the PhoP/PhoQ system and other components of the TCS system. Under the same induction conditions, their interaction relationship determines whether bacteria can quickly restore their homeostasis and exert virulence effects. Finally, we investigate the coordinated role of the PhoP/PhoQ system in acquiring pathogenic virulence.
Collapse
Affiliation(s)
| | | | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Hu M, Zhou Z, Liu C, Zhan Z, Cui Y, He S, Shi X. Roles of Response Regulators in the Two-Component System in the Formation of Stress Tolerance, Motility and Biofilm in Salmonella Enteritidis. Foods 2024; 13:3709. [PMID: 39594124 PMCID: PMC11594007 DOI: 10.3390/foods13223709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Two-component systems (TCS) of Salmonella enterica serovar Enteritidis are composed of a histidine kinase and a response regulator (RR) and represent a critical mechanism by which bacteria develop resistance to environmental stress. Here, we characterized the functions of RRs in TCS in the formation of stress tolerance, motility and biofilm using twenty-six S. Enteritidis RR-encoding gene deletion mutants. The viability results unraveled their essential roles in resistance to elevated temperature (GlrR), pH alterations (GlrR, TctD, YedW, ArcA and YehT), high salt (PhoB, BaeR, CpxR, PhoP, UvrY and TctD), oxidative stress (PhoB, YedW, BaeR, ArcA, PhoP, UvrY, PgtA and QseB) and motility (ArcA, GlnG, PgtA, PhoB, UhpA, OmpR, UvrY and QseB) of S. Enteritidis. The results of the crystal violet staining, microscopy observation and Congo red binding assays demonstrated that the absence of ArcA, GlnG, PhoP, OmpR, ZraR or SsrB in S. Enteritidis led to a reduction in biofilms and an impairment in red/dry/rough macrocolony formation, whereas the absence of UvrY exhibited an increase in biofilms and formed a brown/smooth/sticky macrocolony. The results indicated the regulatory effects of these RRs on the production of biofilm matrix, curli fimbriae and cellulose. Our findings yielded insights into the role of TCSs, making them a promising target for combating S. Enteritidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (M.H.); (Z.Z.); (C.L.); (Z.Z.); (Y.C.); (S.H.)
| |
Collapse
|
5
|
Gao X, Han J, Zhu L, Nychas GJE, Mao Y, Yang X, Liu Y, Jiang X, Zhang Y, Dong P. The Effect of the PhoP/PhoQ System on the Regulation of Multi-Stress Adaptation Induced by Acid Stress in Salmonella Typhimurium. Foods 2024; 13:1533. [PMID: 38790833 PMCID: PMC11121531 DOI: 10.3390/foods13101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.
Collapse
Affiliation(s)
- Xu Gao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Jina Han
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China;
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - George-John E. Nychas
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xueqing Jiang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| |
Collapse
|
6
|
Zhang L, Wu T, Wang F, Liu W, Zhao G, Zhang Y, Zhang Z, Shi Q. CheV enhances the virulence of Salmonella Enteritidis, and the Chev-deleted Salmonella vaccine provides immunity in mice. BMC Vet Res 2024; 20:100. [PMID: 38468314 PMCID: PMC10926574 DOI: 10.1186/s12917-024-03951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Salmonella enteritidis (SE) is a major zoonotic pathogen and causes infections in a variety of hosts. The development of novel vaccines for SE is necessary to eradicate this pathogen. Genetically engineered attenuated live vaccines are more immunogenic and safer. Thus, to develop a live attenuated Salmonella vaccine, we constructed a cheV gene deletion strain of SE (named ΔcheV) and investigated the role of cheV in the virulence of SE. First, the ability to resist environmental stress in vitro, biofilm formation capacity, drug resistance and motility of ΔcheV were analyzed. Secondly, the bacterial adhesion, invasion, intracellular survival assays were performed by cell model. Using a mouse infection model, an in vivo virulence assessment was conducted. To further evaluate the mechanisms implicated by the reduced virulence, qPCR analysis was utilized to examine the expression of the strain's major virulence genes. Finally, the immune protection rate of ΔcheV was evaluated using a mouse model. RESULTS Compared to C50336, the ΔcheV had significantly reduced survival ability under acidic, alkaline and thermal stress conditions, but there was no significant difference in survival under oxidative stress conditions. There was also no significant change in biofilm formation ability, drug resistance and motility. It was found that the adhesion ability of ΔcheV to Caco-2 cells remained unchanged, but the invasion ability and survival rate in RAW264.7 cells were significantly reduced. The challenge assay results showed that the LD50 values of C50336 and ΔcheV were 6.3 × 105 CFU and 1.25 × 107 CFU, respectively. After the deletion of the cheV gene, the expression levels of fimD, flgG, csgA, csgD, hflK, lrp, sipA, sipB, pipB, invH, mgtC, sodC, rfbH, xthA and mrr1 genes were significantly reduced. The live attenuated ΔcheV provided 100% protection in mice against SE infection. CONCLUSION All the results confirmed that the deletion of the cheV gene reduces the virulence of SE and provides significant immune protection in mice, indicating that ΔcheV could be potential candidates to be explored as live-attenuated vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China.
| | - Fengjie Wang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China
| | - Wan Liu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China
| | - Guixin Zhao
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China
| | - Yanying Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, PR China.
| |
Collapse
|
7
|
Zhai YJ, Liu PY, Luo XW, Liang J, Sun YW, Cui XD, He DD, Pan YS, Wu H, Hu GZ. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0053023. [PMID: 37358428 PMCID: PMC10434024 DOI: 10.1128/spectrum.00530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.
Collapse
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pei-Yi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing-Wei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Liang
- Zhengzhou Animal Husbandry Bureau, Zhengzhou, China
| | - Ya-Wei Sun
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-Die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
The role of PhoP/PhoQ system in regulating stress adaptation response in Escherichia coli O157:H7. Food Microbiol 2023; 112:104244. [PMID: 36906298 DOI: 10.1016/j.fm.2023.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The development of acid tolerance response (ATR) as a result of low pH in Escherichia coli O157:H7 (E. coli O157:H7) contaminating beef during processing is considered a major food safety concern. Thus, in order to explore the formation and molecular mechanisms of the tolerance response of E. coli O157:H7 in a simulated beef processing environment, the resistance of a wild-type (WT) strain and its corresponding ΔphoP mutant to acid, heat, and osmotic pressure was evaluated. Strains were pre-adapted under different conditions of pH (5.4 and 7.0), temperature (37 °C and 10 °C), and culture medium (meat extract and Luria-Bertani broth media). In addition, the expression of genes related to stress response and virulence was also investigated among WT and ΔphoP strains under the tested conditions. Pre-acid adaptation increased the resistance of E. coli O157:H7 to acid and heat treatment while resistance to osmotic pressure decreased. Moreover, acid adaptation in meat extract medium simulating slaughter environment increased ATR, whereas pre-adaptation at 10 °C reduced the ATR. Furthermore, it was shown that mildly acidic conditions (pH = 5.4) and the PhoP/PhoQ two-component system (TCS) acted synergistically to enhance acid and heat tolerance in E. coli O157:H7. Additionally, the expression of genes related to arginine and lysine metabolism, heat shock, and invasiveness was up-regulated, which revealed that the mechanism of acid resistance and cross-protection under mildly acidic conditions was mediated by the PhoP/PhoQ TCS. Both acid adaptation and phoP gene knockout reduced the relative expression of stx1 and stx2 genes which were considered as critical pathogenic factors. Collectively, the current findings indicated that ATR could occur in E. coli O157:H7 during beef processing. Thus, there is an increased food safety risk due to the persistence of tolerance response in the following processing conditions. The present study provides a more comprehensive basis for the effective application of hurdle technology in beef processing.
Collapse
|
9
|
Luo Z, Li Z, Sun J, Shi K, Lei M, Tie B, Du H. Multiple mechanisms collectively mediate tungsten homeostasis and resistance in Citrobacter sp. Lzp2. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130877. [PMID: 36731318 DOI: 10.1016/j.jhazmat.2023.130877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Tungsten (W) is an emerging contaminant, and current knowledge on W resistance profiles of microorganisms remains scarce and fragmentary. This study aimed to explore the physiological responses of bacteria under W stress and to resolve genes and metabolic pathways involved in W resistance using a transcriptome expression profiling assay. The results showed that the bacterium Citrobacter sp. Lzp2, screened from W-contaminated soil, could tolerate hundreds of mM W(VI) with a 50% inhibiting concentration of ∼110 mM. To cope with W stress, Citrobacter sp. Lzp2 secreted large amounts of proteins through the type VI secretory system (T6SS) to chelate W oxoanions via carboxylic groups in extracellular polymeric substances (EPS), and could transport cytosolic W outside via the multidrug efflux pumps (mdtABC and acrD). Intracellular W is probably bound by chaperone proteins and metal-binding pterin (tungstopterin) through the sulfur relay system. We propose that tetrathionate respiration is a new metabolic pathway for cellular W detoxification likely producing thio-tungstate. We conclude that multiple mechanisms collectively mediate W homeostasis and resistance in Citrobacter sp. Lzp2. Our results have important implications not only for understanding the intricate regulatory network of W homeostasis in microbes but also for bio-recovery and bioremediation of W in contaminated environments.
Collapse
Affiliation(s)
- Zipei Luo
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Boqing Tie
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China
| | - Huihui Du
- College of Resources and Environment, Hunan Agricultural University, 410127 Changsha, China.
| |
Collapse
|
10
|
Chen J, Zhou X, Tang Y, Jiang Z, Kang X, Wang J, Yue M. Characterization of two-component system CitB family in Salmonella enterica serovar Gallinarum biovar Gallinarum. Vet Microbiol 2023; 278:109659. [PMID: 36645991 DOI: 10.1016/j.vetmic.2023.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum is an avian-adapted pathogen causing fowl typhoid and leading to enormous economic loss in the global poultry industry. Two-component systems (TCSs) are crucial for bacteria survival, virulence, sensing and responding to the environment. 23 pairs of TCSs classified into five families were found in S. Gallinarum strain 287/91, of which the CitB family contains three pairs of TCSs, namely CitA/CitB, DcuS/DcuR and DpiB/DpiA, whose functions remained unaddressed. Thus, four mutants of S. Gallinarum strain U20, ΔcitAB (Δcit), ΔdcuSR (Δdcu), ΔdpiBA (Δdpi) and ΔcitABΔdcuSRΔdpiBA (Δ3), were constructed. The results suggested that the CitB family did not affect the growth or the metabolic capacities tested, while different TCSs exerted various effects on biofilm formation and antimicrobial resistance against multiple drug classes. Furthermore, the CitB family negatively impacted the tolerance of environmental stress, contributing to compromised virulence in chicken embryos and in vivo survival of S. Gallinarum. Collectively, this research provided new knowledge of how the CitB family is involved in the pathogenicity of S. Gallinarum.
Collapse
Affiliation(s)
- Jiaqi Chen
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Jianfeng Wang
- Hangzhou Original Breeding Farm, Hangzhou 311115, Zhejiang, China.
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
11
|
Omptin Proteases of Enterobacterales Show Conserved Regulation by the PhoPQ Two-Component System but Exhibit Divergent Protection from Antimicrobial Host Peptides and Complement. Infect Immun 2023; 91:e0051822. [PMID: 36533918 PMCID: PMC9872669 DOI: 10.1128/iai.00518-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteria that colonize eukaryotic surfaces interact with numerous antimicrobial host-produced molecules, including host defense peptides, complement, and antibodies. Bacteria have evolved numerous strategies to both detect and resist these molecules, and in the Enterobacterales order of bacteria these include alterations of the cell surface lipopolysaccharide structure and/or charge and the production of proteases that can degrade these antimicrobial molecules. Here, we show that omptin family proteases from Escherichia coli and Citrobacter rodentium are regulated by the PhoPQ system. Omptin protease activity is induced by growth in low Mg2+, and deletion of PhoP dramatically reduces omptin protease activity, transcriptional regulation, and protein levels. We identify conserved PhoP-binding sites in the promoters of the E. coli omptin genes ompT, ompP, and arlC as well as in croP of Citrobacter rodentium and show that mutation of the putative PhoP-binding site in the ompT promoter abrogates PhoP-dependent expression. Finally, we show that although regulation by PhoPQ is conserved, each of the omptin proteins has differential activity toward host defense peptides, complement components, and resistance to human serum, suggesting that each omptin confers unique survival advantages against specific host antimicrobial factors.
Collapse
|
12
|
Kim JS, Born A, Till JKA, Liu L, Kant S, Henen MA, Vögeli B, Vázquez-Torres A. Promiscuity of response regulators for thioredoxin steers bacterial virulence. Nat Commun 2022; 13:6210. [PMID: 36266276 PMCID: PMC9584953 DOI: 10.1038/s41467-022-33983-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/11/2022] [Indexed: 12/24/2022] Open
Abstract
The exquisite specificity between a sensor kinase and its cognate response regulator ensures faithful partner selectivity within two-component pairs concurrently firing in a single bacterium, minimizing crosstalk with other members of this conserved family of paralogous proteins. We show that conserved hydrophobic and charged residues on the surface of thioredoxin serve as a docking station for structurally diverse response regulators. Using the OmpR protein, we identify residues in the flexible linker and the C-terminal β-hairpin that enable associations of this archetypical response regulator with thioredoxin, but are dispensable for interactions of this transcription factor to its cognate sensor kinase EnvZ, DNA or RNA polymerase. Here we show that the promiscuous interactions of response regulators with thioredoxin foster the flow of information through otherwise highly dedicated two-component signaling systems, thereby enabling both the transcription of Salmonella pathogenicity island-2 genes as well as growth of this intracellular bacterium in macrophages and mice.
Collapse
Affiliation(s)
- Ju-Sim Kim
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado USA
| | - Alexandra Born
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Biochemistry & Molecular Genetics, Aurora, Colorado USA
| | - James Karl A. Till
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado USA
| | - Lin Liu
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado USA
| | - Sashi Kant
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado USA
| | - Morkos A. Henen
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Biochemistry & Molecular Genetics, Aurora, Colorado USA ,grid.10251.370000000103426662Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Beat Vögeli
- grid.430503.10000 0001 0703 675XUniversity of Colorado School of Medicine, Department of Biochemistry & Molecular Genetics, Aurora, Colorado USA
| | - Andrés Vázquez-Torres
- University of Colorado School of Medicine, Department of Immunology & Microbiology, Aurora, Colorado, USA. .,Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA.
| |
Collapse
|
13
|
Two Additional Connections between the Transcriptional Programs Controlling Invasion and Intracellular Replication of Salmonella: HilD-SprB Positively Regulates phoP and slyA. J Bacteriol 2022; 204:e0020422. [PMID: 36214553 PMCID: PMC9664945 DOI: 10.1128/jb.00204-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella virulence relies on the ability of this bacterium to invade the intestinal epithelium and to replicate inside macrophages, which are functions mainly encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), respectively. Complex regulatory programs control the expression of SPI-1 and SPI-2 and functionally related genes, involving the integration of ancestral regulators and regulators that Salmonella has acquired during its evolution. Interestingly, some previous studies have revealed cross talk between the regulatory programs for SPI-1 and SPI-2. Here, we report two additional connections between the regulatory programs controlling the expression of genes for invasion and intracellular replication. Our results show that the acquired regulators HilD and SprB, both encoded in SPI-1, induce, in a cascade fashion, the expression of PhoP and SlyA, two ancestral regulators that activate the expression of SPI-2 and other genes required for intracellular replication. We provide evidence supporting that the regulation of phoP and slyA by HilD-SprB was adapted during the divergence of Salmonella from its closer species, Escherichia coli, with the acquisition of SPI-1 and thus the gain of HilD and SprB, as well as through cis-regulatory evolution of phoP and slyA. Therefore, our study further expands the knowledge about the intricate regulatory network controlling the expression of virulence genes in Salmonella. IMPORTANCE Bacteria have developed diverse regulatory mechanisms to control genetic expression, in the case of pathogenic bacteria, to induce the expression of virulence genes in particular niches during host infection. In Salmonella, an intricate regulatory network has been determined, which controls the spatiotemporal expression of the SPI-1 and SPI-2 gene clusters that mediate the invasion to and the replication inside host cells, respectively. In this study, we report two additional pathways of cross talk between the transcriptional programs for SPI-1 and SPI-2. Additionally, our results support that these additional regulatory pathways were adapted during the divergence of Salmonella from its closer species, Escherichia coli. This study further expands the knowledge about the mechanisms determining the Salmonella virulence.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Nontyphoidal Salmonella is a major food safety concern in developed and developing countries. Table eggs are often linked to cases of foodborne gastrointestinal disease. This review is focused on the latest findings on foodborne Salmonella infections acquired from poultry products and their implications on food safety. RECENT FINDINGS Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) are the predominant Salmonella serovars associated with human Salmonellosis. In Australia, ST is the predominant serovar but SE has been recently detected in some commercial free-range egg flocks. The Salmonella shedding in poultry flocks can be highly variable across different flocks and farms; as a result, the level of product contamination is largely attributed to the flock management. The microevolution in the ST genome after in-vivo passaging may have clinical significance. On farm use of Salmonella vaccines and/or interventions during the processing of the product can influence the bacterial load. The refrigeration of the product also influences the safety of the poultry product. SUMMARY Many interventions are in place for the control of Salmonella from farm to fork. However, given the biosecurity challenges because of the increase in public demand for free-range products, the emergence of Salmonella virulent types and expensive diagnostics, ongoing collaborative efforts from farmers, regulators and public health officials are required.
Collapse
|
15
|
Li D, He S, Dong R, Cui Y, Shi X. Stress Response Mechanisms of Salmonella Enteritidis to Sodium Hypochlorite at the Proteomic Level. Foods 2022; 11:foods11182912. [PMID: 36141039 PMCID: PMC9498478 DOI: 10.3390/foods11182912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Salmonella Enteritidis (S. Enteritidis) can adapt to sublethal sodium hypochlorite conditions, which subsequently triggers stress resistance mechanisms in this pathogen. Hence, the current work aimed to reveal the underlying stress adaptation mechanisms in S. Enteritidis by phenotypic, proteomic, and physiological analyses. It was found that 130 ppm sodium hypochlorite resulted in a moderate inhibitory effect on bacterial growth and an increased accumulation of intracellular reactive oxygen species. In response to this sublethal treatment, a total of 492 proteins in S. Enteritidis showed significant differential abundance (p < 0.05; fold change >2.0 or <0.5), including 225 more abundant proteins and 267 less abundant proteins, as revealed by the tandem-mass-tags-based quantitative proteomics technology. Functional characterization further revealed that proteins related to flagellar assembly, two-component system, and phosphotransferase system were in less abundance, while those associated with ABC transporters were generally in more abundance. Specifically, the repression of flagellar-assembly-related proteins led to diminished swimming motility, which served as a potential energy conservation strategy. Moreover, altered abundance of lipid-metabolism-related proteins resulted in reduced cell membrane fluidity, which provided a survival advantage to S. Enteritidis. Taken together, these results indicate that S. Enteritidis employs multiple adaptation pathways to cope with sodium hypochlorite stress.
Collapse
|
16
|
Kang X, Zhou X, Tang Y, Jiang Z, Chen J, Mohsin M, Yue M. Characterization of Two-Component System CitB Family in Salmonella Pullorum. Int J Mol Sci 2022; 23:ijms231710201. [PMID: 36077599 PMCID: PMC9456408 DOI: 10.3390/ijms231710201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica, serovar Gallinarum, biovar Pullorum, is an avian-specific pathogen which has caused considerable economic losses to the poultry industry worldwide. Two-component systems (TCSs) play an essential role in obtaining nutrients, detecting the presence of neighboring bacteria and regulating the expression of virulence factors. The genome analysis of S. Pullorum strain S06004 suggesting the carriage of 22 pairs of TCSs, which belong to five families named CitB, OmpR, NarL, Chemotaxis and LuxR. In the CitB family, three pairs of TCSs, namely CitA-CitB, DcuS-DcuR and DpiB-DpiA, remain unaddressed in S. Pullorum. To systematically investigate the function of the CitB family in S. Pullorum, four mutants, ΔcitAB (abbreviated as Δcit), ΔdcuSR (Δdcu), ΔdpiBA (Δdpi) and ΔcitABΔdcuSRΔdpiBA (Δ3), were made using the CRISPR/Cas9 system. The results demonstrated that the CitB family did not affect the growth of bacteria, the results of biochemical tests, invasion and proliferation in chicken macrophage HD-11 cells and the expression of fimbrial protein. But the mutants showed thicker biofilm formation, higher resistance to antimicrobial agents, enhanced tolerance to inhibition by egg albumen and increased virulence in chicken embryos. Moreover, the deletion of Dpi TCS was detrimental to survival after exposure to hyperosmotic and oxidative environments, as well as the long-term colonization of the small intestine of chickens. Collectively, we provided new knowledge regarding the possible role of the CitB family involved in the pathogenic processes of S. Pullorum.
Collapse
Affiliation(s)
- Xiamei Kang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Jiaqi Chen
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Muhammad Mohsin
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Zhejiang Provincial Key Laboratory, Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-571-88982832
| |
Collapse
|
17
|
Guard J. Through the Looking Glass: Genome, Phenome, and Interactome of Salmonella enterica. Pathogens 2022; 11:pathogens11050581. [PMID: 35631102 PMCID: PMC9144603 DOI: 10.3390/pathogens11050581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This review revisits previous concepts on biological phenomenon contributing to the success of the Salmonella enterica subspecies I as a pathogen and expands upon them to include progress in epidemiology based on whole genome sequencing (WGS). Discussion goes beyond epidemiological uses of WGS to consider how phenotype, which is the biological character of an organism, can be correlated with its genotype to develop a knowledge of the interactome. Deciphering genome interactions with proteins, the impact of metabolic flux, epigenetic modifications, and other complex biochemical processes will lead to new therapeutics, control measures, environmental remediations, and improved design of vaccines.
Collapse
Affiliation(s)
- Jean Guard
- U. S. Department of Agriculture, Agricultural Research Service, U. S. National Poultry Research Center, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
18
|
He S, Cui Y, Dong R, Chang J, Cai H, Liu H, Shi X. Global transcriptomic analysis of ethanol tolerance response in Salmonella Enteritidis. Curr Res Food Sci 2022; 5:798-806. [PMID: 35600539 PMCID: PMC9114158 DOI: 10.1016/j.crfs.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022] Open
Abstract
Adaptation to sublethal amounts of ethanol enables Salmonella Enteritidis to survive under normally lethal ethanol conditions, which is referred to as the ethanol tolerance response (ETR). To uncover mechanisms underlying this adaptative response, RNA-seq and RT-qPCR techniques were employed to reveal global gene expression patterns in S. Enteritidis after sublethal ethanol treatment. It was observed that 811 genes were significantly differentially expressed in ethanol-treated cells compared with control cells, among which 328 were up-regulated and 483 were down-regulated. Functional analysis revealed that these genes were enriched in different pathways, including signal transduction, membrane transport, metabolism, transcription, translation, and cell motility. Specifically, a couple of genes encoding histidine kinases and response regulators in two-component systems were up-regulated to activate sensing and signaling pathways. Membrane function was also influenced by ethanol treatment since ABC transporter genes for transport of glutamate, phosphate, 2-aminoethylphosphonate, and osmoprotectant were up-regulated, while those for transport of iron complex, manganese, and ribose were down-regulated. Accompanied with this, diverse gene expression alterations related to the metabolism of amino acids, carbohydrates, vitamins, and nucleotides were observed, which suggested nutritional requirements for S. Enteritidis to mount the ETR. Furthermore, genes associated with ribosomal units, bacterial chemotaxis, and flagellar assembly were generally repressed as a possible energy conservation strategy. Taken together, this transcriptomic study indicates that S. Enteritidis employs multiple genes and adaptation pathways to develop the ETR. A total of 811 genes were involved in ethanol tolerance of Salmonella Enteritidis. Certain genes encoding two-component signaling systems were upregulated. Differential expression of many metabolism-related genes was observed. Bacterial chemotaxis and flagellar assembly were repressed by ethanol stress. Diverse membrane transport functions were influenced by ethanol stress.
Collapse
|