1
|
Lu T, Li D, Feng J, Zhang W, Kang Y. Efficient extraction performance and mechanisms of Cd 2+ and Pb 2+ in water by novel dicationic ionic liquids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119767. [PMID: 38109826 DOI: 10.1016/j.jenvman.2023.119767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Ten novel hydrophobic dicationic ionic liquids (DILs) were synthesized and applied for the extraction of heavy metals in aqueous solutions. Their physicochemical properties were measured at ambient temperature, and the leaching behaviors of the as-prepared DILs in water were assessed by TOC analysis. Metal extraction experiments were carried out to evaluate the extraction performances of the DILs. It was found that the extraction rates of up to 0.45 and 0.53 mg·(g·min)-1 were achieved with 100 mg DILs for 5 mL of 5 mg/L Cd2+ and Pb2+ solutions. Besides, the extraction efficiencies of Cd2+ and Pb2+ were respectively up to 95.48% and 98.46%, when the volumes of the simulated wastewater were expanded by a factor of 20 at a constant extraction phase ratio (1000 mg DILs for 50 mL of 5 mg/L Cd2+ or Pb2+ solutions). The reusability of the novel DILs was successfully proved by the back-extraction experiments with 0.5 M HNO3. Finally, taking Cd2+ extraction as an example, the extraction mechanism based on FTIR analysis and quantum chemical calculations showed that both S and O atoms in the anions of DILs had physical and quasi-chemical interactions with Cd2+, which were stronger than the electrostatic attraction.
Collapse
Affiliation(s)
- Tangzheng Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Dan Li
- Tianjin Key Laboratory of Advanced Electromechanical System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiayi Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenlong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yong Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Mehranfar A, Khavani M, Mofrad MRK. Adsorption Process of Various Antimicrobial Peptides on Different Surfaces of Cellulose. ACS APPLIED BIO MATERIALS 2023; 6:1041-1053. [PMID: 36935640 DOI: 10.1021/acsabm.2c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Current antimicrobial challenges in hospitals, pharmaceutical production units, and food packaging have motivated the development of antimicrobial agents, among them the antimicrobial compounds based on cellulose and peptides. Herein, we develop molecular dynamics (MD) models to dissect and characterize the adsorption process of antimicrobial peptides (AMPs) such as protegrin 1, magainin 2, and cyclic indolicidin on various surfaces of cellulose including [-1-10], [1-10], [-100], [100], [-110], and [110]. Our results suggest that the magainin 2 antimicrobial peptide loses most of its initial helix form, spreads on the cellulose surface, and makes the most rigid structure with [110] surface. The cyclic indolicidin peptide has the lowest affinity to adsorb on the cellulose surfaces, and the protegrin 1 peptide successfully adsorbs on all the proposed cellulose surfaces. Our MD simulations confirmed that cellulose can improve the corresponding peptides' structural stability and change their secondary structures during adsorption. The [-1-10] and [100] surfaces of cellulose show considerable affinity against the AMPs, exhibiting greater interactions with and adsorption to the peptides. Our data imply that the stronger adsorptions are caused by a set of H-bonds, van der Waals, and electrostatic interactions, where van der Waals interactions play a prominent role in the stability of the AMP-cellulose structures. Our energy analysis results suggest that glutamic acid and arginine amino acids have key roles in the stability of AMPs on cellulose surfaces due largely to stronger interactions with the cellulose surfaces as compared with other residues. Our results can provide useful insight at the molecular level that can help design better antimicrobial biomaterials based on cellulose.
Collapse
Affiliation(s)
- Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
3
|
U NKP, K JV, K M. Complexation behaviour of piceatannol ligand with Ti(IV) and Zr(IV) metal ions: a combined DFT and deep learning investigation. Struct Chem 2023. [DOI: 10.1007/s11224-023-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Khavani M, Mehranfar A, Mofrad MRK. On the potentials of sialic acid derivatives as inhibitors for the mumps virus: A molecular dynamics and quantum chemistry investigation. Virus Res 2023; 326:199050. [PMID: 36682462 DOI: 10.1016/j.virusres.2023.199050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Mumps virus is an infectious pathogen causing major health problems for humans such as encephalitis, orchitis, and parotitis. Therefore, designing an inhibitor for this virus is of great medical and public health importance. With this goal in mind, we investigate the affinity of different sialic acid-based compounds (ligands) against the hemagglutinin-neuraminidase (HN) protein of the mumps virus, using a combination of molecular dynamics (MD) simulations and quantum chemistry calculations. Our MD simulation results indicate that the ligands form stable complexes with the HN protein through a combination of electrostatic, van der Waals (vdW), and hydrogen bond (H-bond) interactions, which the electrostatic interactions play a more important role in the complexation process. Based on the obtained results from the structural analysis Arg381, Arg291, and Arg49 play a key role in the binding site interactions with the different ligands, in comparison with other residues. There are some candidates such as Neu5Acα2-6Galβ1-4GlcNAcβ, Neu5Acα2-3Galβ1-3GlcNacβ1-3Galβ1-4Glc, and Neu5Acα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc that form more stable complexes with the HN than the α2-3-Sialyllactose confirmed by the calculated Gibbs binding energies (-39.65, -46.93, and -36.49 kcal.mol-1, respectively). To investigate the relationship between the molecular properties of the selected compounds and their affinity to the HN receptor, density functional theory dispersion corrected (DFT-D3) calculations were employed. According to our DFT-D3 results, neutral sialic acid-based compounds have lower reactivity to the mumps virus than the negativity charge structures. Moreover, by increasing the electronic chemical potential (μ) the vdW and H-bond interactions between drugs and the HN protein increase. In other words, by elevating the electron tendency of the selected ligands their affinity to the mumps virus increases. Our quantum chemistry calculations reveal that in addition to the structural features the molecular properties of the drugs can play important roles in their affinity and reactivity against the virus. The results of this study can provide useful details to design new compounds or improve their properties against the mumps virus.
Collapse
Affiliation(s)
- Mohammad Khavani
- Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Aliyeh Mehranfar
- Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mohammad R K Mofrad
- Departments of Bioengineering and Mechanical Engineering, Molecular Cell Biomechanics Laboratory, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Khavani M, Mehranfar A, Mofrad MRK. On the Sensitivity and Affinity of Gold, Silver, and Platinum Surfaces against the SARS-CoV-2 Virus: A Comparative Computational Study. J Chem Inf Model 2023; 63:1276-1292. [PMID: 36735895 PMCID: PMC9924083 DOI: 10.1021/acs.jcim.2c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/05/2023]
Abstract
The novel coronavirus disease and its complications have motivated the design of new sensors with the highest sensitivity, and affinity for the detection of the SARS-CoV-2 virus is considered in many research studies. In this research article, we employ full atomistic molecular dynamics (MD) models to study the interactions between the receptor binding domain (RBD) and spike protein of the coronavirus and different metals such as gold (Au), platinum (Pt), and silver (Ag) to analyze their sensitivity against this virus. The comparison between the RBD interactions with ACE2 (angiotensin-converting enzyme 2) and different metals indicates that metals have remarkable effects on the structural features and dynamical properties of the RBD. The binding site of the RBD has more affinity to the surfaces of gold, platinum, and silver than to the other parts of the protein. Moreover, the initial configuration of the RBD relative to the metal surface plays an important role in the stability of metal complexes with the RBD. The binding face of the protein to the metal surface has been changed in the presence of different metals. In other words, the residues of the RBD that participate in RBD interactions with the metals are different irrespective of the initial configurations in which the [Asn, Thr, Tyr], [Ser, Thr, Tyr], and [Asn, Asp, Tyr] residues of the protein have a greater affinity to Ag, Au, and Pt, respectively. The corresponding metals have a considerable affinity to the RBD, which due to strong interactions with the protein can change the secondary structure and structural features. Based on the obtained results during the complexation process between the protein and metals, the helical structure of the protein changes to the bend and antiparallel β-sheets. The calculated binding energies for the RBD complexes with silver, gold, and platinum are -95.03, -138.03, and -133.96 kcal·mol-1, respectively. The adsorption process of the spike protein on the surfaces of different metals represents similar results and indicates that the entire spike protein of the coronavirus forms a more stable complex with the gold surface compared with other metals. Moreover, the RBD of the spike protein has more interactions with the surfaces than with the other parts of the protein. Therefore, it is possible to predict the properties of the coronavirus on the metal surface based on the dynamical behavior of the RBD. Overall, our computational results confirm that the gold surface can be considered as an outstanding substrate for developing new sensors with the highest sensitivity against SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and
Mechanical Engineering, University of California Berkeley,
Berkeley, California94720, United States
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and
Mechanical Engineering, University of California Berkeley,
Berkeley, California94720, United States
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and
Mechanical Engineering, University of California Berkeley,
Berkeley, California94720, United States
| |
Collapse
|
6
|
Neenu Krishna P, Muraleedharan K. Metal chelation ability of Protocatechuic acid anion with 210Po84; A theoretical insight. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Khavani M, Mehranfar A, Mofrad MRK. Effects of Ionic Liquids on the Stabilization Process of Gold Nanoparticles. J Phys Chem B 2022; 126:9617-9631. [PMID: 36367820 DOI: 10.1021/acs.jpcb.2c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Improving the stability of the gold nanoparticles (AuNPs) is an important challenge in nanoscience, given that the activity and ubiquitous application of the AuNPs in different fields depend largely on their stability in the solution phase. Ionic liquids (ILs) can be used as new alternatives in comparison to water and organic solvents due to their considerable properties to elevate the stability and resistance of the AuNPs against aggregation for a long period of storage. In this study, we employ molecular dynamics simulation and quantum chemistry calculations to investigate the effects of amino acid ILs ([BMIM][Gly], [BMIM][Leu], [BMIM][Pro], [BMIM][Val], and [BMIM][Ala]) on the stability and aggregation process of the AuNPs from the molecular viewpoint. Our results suggest that ILs can prevent AuNP aggregation. These ILs penetrate the solvation shell of the nanoparticles and by increasing the electrostatic repulsions on the surface of the AuNPs improve their stability against aggregation. Moreover, the [BMIM]+ cation is more effective on the stability of the AuNPs in comparison with the corresponding anions. The ring of the cation, due to the stronger interaction with the AuNPs compared to the side chain, contributes predominantly to the stability of the nanostructures. Our quantum chemistry calculations confirm that dispersion interactions between the cation and anions of the ILs and the surface of gold play a key role in the stability of the IL-AuNP complexes. [Leu]- anion has the strongest dispersion interactions with the metal surface and forms the most stable complex with the AuNPs. Overall, the results of this study offer new insights into the properties of amino acid ILs as effective agents to improve the stability of AuNPs for long-term storage.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Khavani M, Mehranfar A, Vahid H. Application of amino acid ionic liquids for increasing the stability of DNA in long term storage. J Biomol Struct Dyn 2022:1-15. [PMID: 35467487 DOI: 10.1080/07391102.2022.2067239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The structural stability of DNA is important because of its biological activity. DNAs due to their inherent chemical properties are not stable in an aqueous solution, therefore, a long period of storage of DNA at the ambient condition in bioscience is of importance. Ionic liquids (ILs) as interesting alternatives compared to organic solvents and water due to their considerable properties can be used as new agents to increase the stability of DNA for a long period of storage. In this article, molecular dynamics (MD) simulations and quantum chemistry calculations were applied to investigate the effects of amino acid ionic liquids ([BMIM][Ala], [BMIM][Gly], [BMIM][Val], [BMIM][Pro] and [BMIM][Leu]) on the dynamical behavior and the structural stability of calf thymus DNA. Based on the obtained MD results ILs enter into the solvation shell of the DNA and push away the water molecules from the DNA surface. Structural analysis shows that [BMIM]+ cations can occupy the DNA minor groove without disturbing the double-helical structure of DNA. ILs due to strong electrostatic and van der Waals (vdW) interactions with the DNA structure contribute to the stability of the double-helical structure. Quantum chemistry calculations indicate that the interactions between the [BMIM]+ cation and DNA structure has an electrostatic character. Moreover, this cation forms a more stable complex with the CGCG region of the DNA in comparison with AATT base pairs. Overall, the results of this study can provide new insight into the application of ILs for maintaining DNA stability during long-term storage.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, Finland.,Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Aliyeh Mehranfar
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, Finland
| | - Hossein Vahid
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto, Finland.,Department of Applied Physics, Aalto University, Aalto, Finland
| |
Collapse
|
9
|
Mehranfar A, Khavani M, Izadyar M. A molecular dynamic study on the ability of phosphorene for designing new sensor for SARS-CoV-2 detection. J Mol Liq 2022; 345:117852. [PMID: 34690390 PMCID: PMC8520178 DOI: 10.1016/j.molliq.2021.117852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022]
Abstract
Due to the dramatic increase in the number of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), designing new selective and sensitive sensors for the detection of this virus is of importance. In this research, by employing full atomistic molecular dynamics (MD) simulations, the interactions of the receptor-binding domain (RBD) of the SARS-CoV-2 with phosphorene and graphene nanosheets were analyzed to investigate their sensing ability against this protein. Based on the obtained results, the RBD interactions with the surface of graphene and phosphorene nanosheets do not have important effects on the folding properties of the RBD but this protein has unique dynamical behavior against each nanostructure. In the presence of graphene and phosphorene, the RBD has lower stability because due to the strong interactions between RBD and these nanostructures. This protein spreads on the surface and has lower structural compaction, but in comparison with graphene, RBD shows greater stability on the surface of the phosphorene nanosheet. Moreover, RBD forms a more stable complex with phosphorene nanosheet in comparison with graphene due to greater electrostatic and van der Waals interactions. The calculated Gibbs binding energy for the RBD complexation process with phosphorene and graphene are −200.37 and −83.65 kcal mol−1, respectively confirming that phosphorene has higher affinity and sensitivity against this protein than graphene. Overall, the obtained results confirm that phosphorene can be a good candidate for designing new nanomaterials for selective detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Aliyeh Mehranfar
- Research Center for Modeling and Computational Sciences, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Khavani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Mohammad Izadyar
- Research Center for Modeling and Computational Sciences, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Kaviani S, Shahab S, Sheikhi M, Potkin V, Zhou H. A DFT study of Se-decorated B12N12 nanocluster as a possible drug delivery system for ciclopirox. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Zhao Z, Li Z, Wang Q. Structures, electronic and magnetic properties of transition metal atoms encapsulated in B12N12 cage. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136922] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Kaviani S, Shahab S, Sheikhi M, Ahmadianarog M. DFT study on the selective complexation of meso-2,3-dimercaptosuccinic acid with toxic metal ions (Cd2+, Hg2+ and Pb2+) for pharmaceutical and biological applications. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|