1
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
2
|
Jiang X, O'Neill A, Smith KR, Lai Z, Carss K, Wang Q, Petrovski S. Uncovering variable neoplasms between ATM protein-truncating and common missense variants using 394,694 UK Biobank exomes. Genes Chromosomes Cancer 2022; 61:523-529. [PMID: 35394676 DOI: 10.1002/gcc.23042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/07/2022] Open
Abstract
As an essential regulator of DNA damage, Ataxia-telangiectasia mutated (ATM) gene has been widely studied in oncology. However, the independent effects of ATM missense variants and protein-truncating variants (PTVs) on neoplasms have not been heavily studied. Whole-exome sequencing data and the clinical health records of ~400K UK Biobank European participants were used in this analysis. We mined genetic associations from gene-level and variant-level phenome-wide association studies, and conducted a variant-level conditional association study to test whether the effects of ATM missense variants on neoplasms were independent of ATM PTV carrier status. The gene-level PTV collapsing analysis was consistent with established ATM PTV literature showing that the aggregated impact of 286 ATM PTVs significantly (P<2x10-9 ) associated with 31 malignant neoplasm phenotypes. Of 773 distinct protein-coding variants in ATM, three individual missense variants significantly (P<2x10-9 ) associated with nine phenotypes. Remarkably, although the nine phenotypes were tumour-related, none overlapped the established ATM PTV-linked malignancies. A subsequent conditional analysis identified that the missense signals were acting independently of the known clinically relevant ATM PTVs.
Collapse
Affiliation(s)
- Xiao Jiang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda O'Neill
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine R Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Zhongwu Lai
- Translational Medicine, Early Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Keren Carss
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
3
|
Putti S, Giovinazzo A, Merolle M, Falchetti ML, Pellegrini M. ATM Kinase Dead: From Ataxia Telangiectasia Syndrome to Cancer. Cancers (Basel) 2021; 13:5498. [PMID: 34771661 PMCID: PMC8583659 DOI: 10.3390/cancers13215498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
ATM is one of the principal players of the DNA damage response. This protein exerts its role in DNA repair during cell cycle replication, oxidative stress, and DNA damage from endogenous events or exogenous agents. When is activated, ATM phosphorylates multiple substrates that participate in DNA repair, through its phosphoinositide 3-kinase like domain at the 3'end of the protein. The absence of ATM is the cause of a rare autosomal recessive disorder called Ataxia Telangiectasia characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility, and radiation sensitivity. There is a correlation between the severity of the phenotype and the mutations, depending on the residual activity of the protein. The analysis of patient mutations and mouse models revealed that the presence of inactive ATM, named ATM kinase-dead, is more cancer prone and lethal than its absence. ATM mutations fall into the whole gene sequence, and it is very difficult to predict the resulting effects, except for some frequent mutations. In this regard, is necessary to characterize the mutated protein to assess if it is stable and maintains some residual kinase activity. Moreover, the whole-genome sequencing of cancer patients with somatic or germline mutations has highlighted a high percentage of ATM mutations in the phosphoinositide 3-kinase domain, mostly in cancer cells resistant to classical therapy. The relevant differences between the complete absence of ATM and the presence of the inactive form in in vitro and in vivo models need to be explored in more detail to predict cancer predisposition of A-T patients and to discover new therapies for ATM-associated cancer cells. In this review, we summarize the multiple discoveries from humans and mouse models on ATM mutations, focusing into the inactive versus null ATM.
Collapse
Affiliation(s)
- Sabrina Putti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| | | | | | | | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| |
Collapse
|
4
|
Jiang P, Desai A, Ye H. Progress in molecular feature of smoldering mantle cell lymphoma. Exp Hematol Oncol 2021; 10:41. [PMID: 34256839 PMCID: PMC8278675 DOI: 10.1186/s40164-021-00232-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022] Open
Abstract
Mantle cell lymphoma (MCL) is considered one of the most aggressive lymphoid tumors. However, it sometimes displays indolent behavior in patients and might not necessitate treatment at diagnosis; this has been described as "smoldering MCL" (SMCL). There are significant differences in the diagnosis, prognosis, molecular mechanisms and treatments of indolent MCL and classical MCL. In this review, we discuss the progress in understanding the molecular mechanism of indolent MCL to provide insights into the genomic nature of this entity. Reported findings of molecular features of indolent MCL include a low Ki-67 index, CD200 positivity, a low frequency of mutations in TP53, a lack of SOX11, normal arrangement and expression of MYC, IGHV mutations, differences from classical MCL by L-MCL16 assays and MCL35 assays, an unmutated P16 status, few defects in ATM, no NOTCH1/2 mutation, Amp 11q gene mutation, no chr9 deletion, microRNA upregulation/downregulation, and low expression of several genes that have been valued in recent years (SPEN, SMARCA4, RANBP2, KMT2C, NSD2, CARD11, FBXW7, BIRC3, KMT2D, CELSR3, TRAF2, MAP3K14, HNRNPH1, Del 9p and/or Del 9q, SP140 and PCDH10). Based on the above molecular characteristics, we may distinguish indolent MCL from classical MCL. If so, indolent MCL will not be overtreated, whereas the treatment of classical MCL will not be delayed.
Collapse
Affiliation(s)
- Panruo Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University - Zhejiang, Wenzhou, China
| | - Aakash Desai
- Division of Hematology, Department of Medicine, Mayo Clinic-MN, Rochester, US
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University - Zhejiang, Wenzhou, China.
| |
Collapse
|
5
|
Recurrent somatic mutations and low germline predisposition mutations in Korean ALL patients. Sci Rep 2021; 11:8893. [PMID: 33903686 PMCID: PMC8076247 DOI: 10.1038/s41598-021-88449-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
In addition to somatic mutations, germline genetic predisposition to hematologic malignancies is currently emerging as an area attracting high research interest. In this study, we investigated genetic alterations in Korean acute lymphoblastic leukemia/lymphoma (ALL) patients using targeted gene panel sequencing. To this end, a gene panel consisting of 81 genes that are known to be associated with 23 predisposition syndromes was investigated. In addition to sequence variants, gene-level copy number variations (CNVs) were investigated as well. We identified 197 somatic sequence variants and 223 somatic CNVs. The IKZF1 alteration was found to have an adverse effect on overall survival (OS) and relapse-free survival (RFS) in childhood ALL. We found recurrent somatic alterations in Korean ALL patients similar to previous studies on both prevalence and prognostic impact. Six patients were found to be carriers of variants in six genes associated with primary immunodeficiency disorder (PID). Of the 81 genes associated with 23 predisposition syndromes, this study found only one predisposition germline mutation (TP53) (1.1%). Altogether, our study demonstrated a low probability of germline mutation predisposition to ALL in Korean ALL patients.
Collapse
|
6
|
Ortega V, Mendiola C, Rodriguez J, Ehman W, Qian YW, Velagaleti G. Bi-allelic amplification of ATM gene in blastoid variant of mantle cell lymphoma: a novel mechanism of inactivation due to chromoanagenesis? Mol Cytogenet 2021; 14:8. [PMID: 33541390 PMCID: PMC7863528 DOI: 10.1186/s13039-020-00526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) is derived from naïve CD5+ B-cells with the cytogenetic hallmark translocation 11;14. The presence of additional abnormalities is associated with blastoid variants in MCL (BMCL) and confers a poor prognosis. Many of these tumors also show deletion or loss of heterozygosity (LOH) of the ATM gene and biallelic ATM inactivation show significantly higher chromosomal imbalances. Case presentation Here we report a 52 year-old male who presented to the clinic with worsening dyspnea, fever, chills, diffuse lymphadenopathy, splenomegaly and leukocytosis with blastoid cells circulating in blood. The bone marrow aspirate showed about 40% abnormal blast-looking cells and biopsy revealed a remarkable lymphoid infiltrate. The patient was diagnosed with blastoid variant mantle cell lymphoma (BMCL). Chromosome analysis on bone marrow showed a complex karyotype. FISH analysis from B-cell lymphoma panel showed bi-allelic amplification of ATM gene. Other abnormalities were present including CCND1/IGH fusion, confirming the MCL diagnosis, in addition to RB1 and p53 deletion. High resolution SNP-microarray studies showed complex copy number changes, especially on chromosomes 7 and 11, consistent with chromoanagenesis. Microarray studies also showed LOH at the ATM locus indicating the amplification seen on FISH is not biallelic. Conclusion To the best of our knowledge, ATM gene amplification is not previously reported in BMCL and our case suggests a novel mechanism of ATM inactivation caused by chromoanagenesis resulting in mutant allele specific imbalance with copy number gain.
Collapse
Affiliation(s)
- Veronica Ortega
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Christina Mendiola
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Juana Rodriguez
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - William Ehman
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - You-Wen Qian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gopalrao Velagaleti
- Department of Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Bhalla K, Jaber S, Reagan K, Hamburg A, Underwood KF, Jhajharia A, Singh M, Bhandary B, Bhat S, Nanaji NM, Hisa R, McCracken C, Creasy HH, Lapidus RG, Kingsbury T, Mayer D, Polster B, Gartenhaus RB. SIRT3, a metabolic target linked to ataxia-telangiectasia mutated (ATM) gene deficiency in diffuse large B-cell lymphoma. Sci Rep 2020; 10:21159. [PMID: 33273545 PMCID: PMC7712916 DOI: 10.1038/s41598-020-78193-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Inactivation of Ataxia-telangiectasia mutated (ATM) gene results in an increased risk to develop cancer. We show that ATM deficiency in diffuse large B-cell lymphoma (DLBCL) significantly induce mitochondrial deacetylase sirtuin-3 (SIRT3) activity, disrupted mitochondrial structure, decreased mitochondrial respiration, and compromised TCA flux compared with DLBCL cells expressing wild type (WT)-ATM. This corresponded to enrichment of glutamate receptor and glutamine pathways in ATM deficient background compared to WT-ATM DLBCL cells. ATM-/- DLBCL cells have decreased apoptosis in contrast to radiosensitive non-cancerous A-T cells. In vivo studies using gain and loss of SIRT3 expression showed that SIRT3 promotes growth of ATM CRISPR knockout DLBCL xenografts compared to wild-type ATM control xenografts. Importantly, screening of DLBCL patient samples identified SIRT3 as a putative therapeutic target, and validated an inverse relationship between ATM and SIRT3 expression. Our data predicts SIRT3 as an important therapeutic target for DLBCL patients with ATM null phenotype.
Collapse
Affiliation(s)
- Kavita Bhalla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Sausan Jaber
- Department of Anesthesiology, University of Maryland, Baltimore, MD, 21201, USA
| | - Kayla Reagan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arielle Hamburg
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Karen F Underwood
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Aditya Jhajharia
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Maninder Singh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Binny Bhandary
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shambhu Bhat
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nahid M Nanaji
- Veterans Administration Medical Center, Baltimore, MD, 21201, USA
| | - Ruching Hisa
- Electron Microscopy Core Imaging Facility, Department of Medicine, University of Maryland, Baltimore, USA
| | - Carrie McCracken
- Institute of Genome Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Heather Huot Creasy
- Institute of Genome Sciences, University of Maryland, Baltimore, MD, 21201, USA
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tami Kingsbury
- Department of Physiology, The Center for Stem Cell Biology and Regenerative Medicine, Baltimore, MD, 21201, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Brian Polster
- Department of Anesthesiology, University of Maryland, Baltimore, MD, 21201, USA
| | - Ronald B Gartenhaus
- Hunter Holmes McGuire Veterans Administration Medical Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
8
|
Endogenous topoisomerase II-mediated DNA breaks drive thymic cancer predisposition linked to ATM deficiency. Nat Commun 2020; 11:910. [PMID: 32060399 PMCID: PMC7021672 DOI: 10.1038/s41467-020-14638-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
The ATM kinase is a master regulator of the DNA damage response to double-strand breaks (DSBs) and a well-established tumour suppressor whose loss is the cause of the neurodegenerative and cancer-prone syndrome Ataxia-Telangiectasia (A-T). A-T patients and Atm−/− mouse models are particularly predisposed to develop lymphoid cancers derived from deficient repair of RAG-induced DSBs during V(D)J recombination. Here, we unexpectedly find that specifically disturbing the repair of DSBs produced by DNA topoisomerase II (TOP2) by genetically removing the highly specialised repair enzyme TDP2 increases the incidence of thymic tumours in Atm−/− mice. Furthermore, we find that TOP2 strongly colocalizes with RAG, both genome-wide and at V(D)J recombination sites, resulting in an increased endogenous chromosomal fragility of these regions. Thus, our findings demonstrate a strong causal relationship between endogenous TOP2-induced DSBs and cancer development, confirming these lesions as major drivers of ATM-deficient lymphoid malignancies, and potentially other conditions and cancer types. The ATM kinase is a key regulator of the DNA damage response to double-strand breaks (DSBs) and its homozygous loss in patients predisposes to lymphoid malignancies. Here, the authors develop a Tdp2−/−Atm−/− double-deficient mouse model to uncover topoisomerase II-induced DSBs as significant drivers of the genomic rearrangements that underpin these tumours.
Collapse
|
9
|
Oldreive CE, Byrd PJ, Stewart GS, Taylor AJ, Farhat S, Skowronska A, Smith E, Raghavan M, Janic D, Dokmanovic L, Clokie S, Davies N, Kwok M, Pratt G, Paneesha S, Moss P, Stankovic T, Taylor M. PALB2 variant status in hematological malignancies - a potential therapeutic target? Leuk Lymphoma 2019; 60:1823-1826. [PMID: 30614742 DOI: 10.1080/10428194.2018.1551539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Ceri E Oldreive
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Philip J Byrd
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Grant S Stewart
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Alexander J Taylor
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Sana Farhat
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Anna Skowronska
- b West Midlands Regional Genetics Laboratory , Birmingham , UK
| | - Edward Smith
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Manoj Raghavan
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Dragana Janic
- c School of Medicine, University Children's Hospital , University of Belgrade , Belgrade , Serbia
| | - Lidija Dokmanovic
- c School of Medicine, University Children's Hospital , University of Belgrade , Belgrade , Serbia
| | - Sam Clokie
- b West Midlands Regional Genetics Laboratory , Birmingham , UK
| | - Nicholas Davies
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Marwan Kwok
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Guy Pratt
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | | | - Paul Moss
- e Institute of Immunity and Infection, University of Birmingham , Birmingham , UK
| | - Tatjana Stankovic
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| | - Malcolm Taylor
- a Institute of Cancer and Genomic Sciences, University of Birmingham , Birmingham , UK
| |
Collapse
|
10
|
Cross M, Dearden C. B and T cell prolymphocytic leukaemia. Best Pract Res Clin Haematol 2019; 32:217-228. [PMID: 31585622 DOI: 10.1016/j.beha.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Prolymphocytic leukaemias B-PLL and T-PLL are rare disorders, typically with an aggressive clinical course and poor prognosis. Combining morphology, immunophenotyping, cytogenetic and molecular diagnostics reliably separates B-PLL and T-PLL from one another and other disorders. In T-PLL discovery of frequent mutations in the JAK-STAT pathway have increased understanding of disease pathogenesis. Alemtuzumab (anti-CD52) produces excellent response rates but long-term remissions are only achieved in a minority following consolidation with allogeneic stem cell transplant. Molecular abnormalities in B-PLL are less understood. Disruption of TP53 is a key finding, conveying chemotherapy resistance requiring novel therapies such as B-cell receptor inhibitors (BCRi). Both conditions require improved pathobiological knowledge to identify new treatment targets and guide therapy with novel pathway inhibitors.
Collapse
Affiliation(s)
- M Cross
- The Royal Marsden Hospital and the Institute of Cancer Research, UK
| | - C Dearden
- The Royal Marsden Hospital and the Institute of Cancer Research, UK.
| |
Collapse
|
11
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
12
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
13
|
Takagi M, Yoshida M, Nemoto Y, Tamaichi H, Tsuchida R, Seki M, Uryu K, Nishii R, Miyamoto S, Saito M, Hanada R, Kaneko H, Miyano S, Kataoka K, Yoshida K, Ohira M, Hayashi Y, Nakagawara A, Ogawa S, Mizutani S, Takita J. Loss of DNA Damage Response in Neuroblastoma and Utility of a PARP Inhibitor. J Natl Cancer Inst 2017; 109:4096548. [PMID: 29059438 DOI: 10.1093/jnci/djx062] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background Neuroblastoma (NB) is the most common solid tumor found in children, and deletions within the 11q region are observed in 11% to 48% of these tumors. Notably, such tumors are associated with poor prognosis; however, little is known regarding the molecular targets located in 11q. Methods Genomic alterations of ATM , DNA damage response (DDR)-associated genes located in 11q ( MRE11A, H2AFX , and CHEK1 ), and BRCA1, BARD1, CHEK2, MDM2 , and TP53 were investigated in 45 NB-derived cell lines and 237 fresh tumor samples. PARP (poly [ADP-ribose] polymerase) inhibitor sensitivity of NB was investigated in in vitro and invivo xenograft models. All statistical tests were two-sided. Results Among 237 fresh tumor samples, ATM, MRE11A, H2AFX , and/or CHEK1 loss or imbalance in 11q was detected in 20.7% of NBs, 89.8% of which were stage III or IV. An additional 7.2% contained ATM rare single nucleotide variants (SNVs). Rare SNVs in DDR-associated genes other than ATM were detected in 26.4% and were mutually exclusive. Overall, samples with SNVs and/or copy number alterations in these genes accounted for 48.4%. ATM-defective cells are known to exhibit dysfunctions in homologous recombination repair, suggesting a potential for synthetic lethality by PARP inhibition. Indeed, 83.3% NB-derived cell lines exhibited sensitivity to PARP inhibition. In addition, NB growth was markedly attenuated in the xenograft group receiving PARP inhibitors (sham-treated vs olaprib-treated group; mean [SD] tumor volume of sham-treated vs olaprib-treated groups = 7377 [1451] m 3 vs 298 [312] m 3 , P = .001, n = 4). Conclusions Genomic alterations of DDR-associated genes including ATM, which regulates homologous recombination repair, were observed in almost half of NBs, suggesting that synthetic lethality could be induced by treatment with a PARP inhibitor. Indeed, DDR-defective NB cell lines were sensitive to PARP inhibitors. Thus, PARP inhibitors represent candidate NB therapeutics.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Misa Yoshida
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Yoshino Nemoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Hiroyuki Tamaichi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Rika Tsuchida
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Masafumi Seki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Kumiko Uryu
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Rina Nishii
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Masahiro Saito
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Ryoji Hanada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Hideo Kaneko
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Satoru Miyano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Keisuke Kataoka
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Kenichi Yoshida
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Miki Ohira
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Yasuhide Hayashi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Akira Nakagawara
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Seishi Ogawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| | - Junko Takita
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, School of Medicine, Juntendo University, Tokyo, Japan; Department of Pediatric Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan, Department of Pediatrics, Nagara Medical Center, Gifu, Japan; Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan; Division of Cancer Genomics, Saitama Cancer Center Research Institute, Saitama, Japan; Division of Cancer Genomics, Chiba Cancer Center, Chiba, Japan; Gunma Children's Medical Center, Gunma, Japan; Saga Medical Center, Saga, Japan
| |
Collapse
|
14
|
Wang C, Jette N, Moussienko D, Bebb DG, Lees-Miller SP. ATM-Deficient Colorectal Cancer Cells Are Sensitive to the PARP Inhibitor Olaparib. Transl Oncol 2017; 10:190-196. [PMID: 28182994 PMCID: PMC5299208 DOI: 10.1016/j.tranon.2017.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Jette
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Moussienko
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - D Gwyn Bebb
- Department on Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada; Department on Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Vendetti FP, Lau A, Schamus S, Conrads TP, O'Connor MJ, Bakkenist CJ. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget 2016; 6:44289-305. [PMID: 26517239 PMCID: PMC4792557 DOI: 10.18632/oncotarget.6247] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022] Open
Abstract
ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic. We describe AZD6738, an orally active and bioavailable ATR kinase inhibitor. AZD6738 induces cell death and senescence in non-small cell lung cancer (NSCLC) cell lines. AZD6738 potentiates the cytotoxicity of cisplatin and gemcitabine in NSCLC cell lines with intact ATM kinase signaling, and potently synergizes with cisplatin in ATM-deficient NSCLC cells. In contrast to expectations, daily administration of AZD6738 and ATR kinase inhibition for 14 consecutive days is tolerated in mice and enhances the therapeutic efficacy of cisplatin in xenograft models. Remarkably, the combination of cisplatin and AZD6738 resolves ATM-deficient lung cancer xenografts.
Collapse
Affiliation(s)
- Frank P Vendetti
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alan Lau
- Cancer Bioscience, AstraZeneca, Macclesfield, United Kingdom
| | - Sandra Schamus
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas P Conrads
- Women's Health Integrated Research Center at Inova Health System, Department of Defense Gynecologic Cancer Center of Excellence, Annandale, VA, USA
| | - Mark J O'Connor
- Cancer Bioscience, AstraZeneca, Macclesfield, United Kingdom
| | - Christopher J Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Li L, Zhu T, Gao YF, Zheng W, Wang CJ, Xiao L, Huang MS, Yin JY, Zhou HH, Liu ZQ. Targeting DNA Damage Response in the Radio(Chemo)therapy of Non-Small Cell Lung Cancer. Int J Mol Sci 2016; 17:ijms17060839. [PMID: 27258253 PMCID: PMC4926373 DOI: 10.3390/ijms17060839] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide due to its high incidence and mortality. As the most common lung cancer, non-small cell lung cancer (NSCLC) is a terrible threat to human health. Despite improvements in diagnosis and combined treatments including surgical resection, radiotherapy and chemotherapy, the overall survival for NSCLC patients still remains poor. DNA damage is considered to be the primary cause of lung cancer development and is normally recognized and repaired by the intrinsic DNA damage response machinery. The role of DNA repair pathways in radio(chemo)therapy-resistant cancers has become an area of significant interest in the clinical setting. Meanwhile, some studies have proved that genetic and epigenetic factors can alter the DNA damage response and repair, which results in changes of the radiation and chemotherapy curative effect in NSCLC. In this review, we focus on the effect of genetic polymorphisms and epigenetic factors such as miRNA regulation and lncRNA regulation participating in DNA damage repair in response to radio(chemo)therapy in NSCLC. These may provide novel information on the radio(chemo)therapy of NSCLC based on the individual DNA damage response.
Collapse
Affiliation(s)
- Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Chen-Jing Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ma-Sha Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China.
| |
Collapse
|
17
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
18
|
Concurrent Mutations in ATM and Genes Associated with Common γ Chain Signaling in Peripheral T Cell Lymphoma. PLoS One 2015; 10:e0141906. [PMID: 26536348 PMCID: PMC4633051 DOI: 10.1371/journal.pone.0141906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/14/2015] [Indexed: 11/19/2022] Open
Abstract
Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy.
Collapse
|
19
|
Cordeiro-Stone M, McNulty JJ, Sproul CD, Chastain PD, Gibbs-Flournoy E, Zhou Y, Carson C, Rao S, Mitchell DL, Simpson DA, Thomas NE, Ibrahim JG, Kaufmann WK. Effective intra-S checkpoint responses to UVC in primary human melanocytes and melanoma cell lines. Pigment Cell Melanoma Res 2015; 29:68-80. [PMID: 26437005 DOI: 10.1111/pcmr.12426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The objective of this study was to assess potential functional attenuation or inactivation of the intra-S checkpoint during melanoma development. Proliferating cultures of skin melanocytes, fibroblasts, and melanoma cell lines were exposed to increasing fluences of UVC and intra-S checkpoint responses were quantified. Melanocytes displayed stereotypic intra-S checkpoint responses to UVC qualitatively and quantitatively equivalent to those previously demonstrated in skin fibroblasts. In comparison with fibroblasts, primary melanocytes displayed reduced UVC-induced inhibition of DNA strand growth and enhanced degradation of p21Waf1 after UVC, suggestive of enhanced bypass of UVC-induced DNA photoproducts. All nine melanoma cell lines examined, including those with activating mutations in BRAF or NRAS oncogenes, also displayed proficiency in activation of the intra-S checkpoint in response to UVC irradiation. The results indicate that bypass of oncogene-induced senescence during melanoma development was not associated with inactivation of the intra-S checkpoint response to UVC-induced DNA replication stress.
Collapse
Affiliation(s)
- Marila Cordeiro-Stone
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA
| | - John J McNulty
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | - Paul D Chastain
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eugene Gibbs-Flournoy
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchun Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Craig Carson
- Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
| | - Shangbang Rao
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - David L Mitchell
- Science Park - Research Division, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Dennis A Simpson
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nancy E Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA.,Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - William K Kaufmann
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.,Center for Environmental Health and Susceptibility, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Prochazkova J, Sakaguchi S, Owusu M, Mazouzi A, Wiedner M, Velimezi G, Moder M, Turchinovich G, Hladik A, Gurnhofer E, Hayday A, Behrens A, Knapp S, Kenner L, Ellmeier W, Loizou JI. DNA Repair Cofactors ATMIN and NBS1 Are Required to Suppress T Cell Activation. PLoS Genet 2015; 11:e1005645. [PMID: 26544571 PMCID: PMC4636180 DOI: 10.1371/journal.pgen.1005645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.
Collapse
Affiliation(s)
- Jana Prochazkova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Michel Owusu
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Abdelghani Mazouzi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georgia Velimezi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Moder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gleb Turchinovich
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Adrian Hayday
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Axel Behrens
- London Research Institute, Cancer Research UK, London, United Kingdom
| | - Sylvia Knapp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute for Pathology, Medical University Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
21
|
ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood 2015; 126:2291-301. [PMID: 26400962 DOI: 10.1182/blood-2015-06-654749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022] Open
Abstract
The serine-threonine kinase ataxia-telangiectasia mutated (ATM) plays a central role in maintaining genomic integrity. In mice, ATM deficiency is exclusively associated with T-cell lymphoma development, whereas B-cell tumors predominate in human ataxia-telangiectasia patients. We demonstrate in this study that when T cells are removed as targets for lymphomagenesis and as mediators of immune surveillance, ATM-deficient mice exclusively develop early-onset immunoglobulin M(+) B-cell lymphomas that do not transplant to immunocompetent mice and that histologically and genetically resemble the activated B cell-like (ABC) subset of human diffuse large B-cell lymphoma (DLBCL). These B-cell lymphomas show considerable chromosomal instability and a recurrent genomic amplification of a 4.48-Mb region on chromosome 18 that contains Malt1 and is orthologous to a region similarly amplified in human ABC DLBCL. Of importance, amplification of Malt1 in these lymphomas correlates with their dependence on nuclear factor (NF)-κB, MALT1, and B-cell receptor (BCR) signaling for survival, paralleling human ABC DLBCL. Further, like some human ABC DLBCLs, these mouse B-cell lymphomas also exhibit constitutive BCR-dependent NF-κB activation. This study reveals that ATM protects against development of B-cell lymphomas that model human ABC DLBCL and identifies a potential role for T cells in preventing the emergence of these tumors.
Collapse
|
22
|
Navrkalova V, Kafkova LR, Divoky V, Pospisilova S. Oxidative stress as a therapeutic perspective for ATM-deficient chronic lymphocytic leukemia patients. Haematologica 2015; 100:994-6. [PMID: 26314081 DOI: 10.3324/haematol.2015.130260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Veronika Navrkalova
- CEITEC - Center of Molecular Medicine, Masaryk University, Brno and Department of Internal Medicine - Hematology and Oncology, University Hospital Brno
| | - Leona Raskova Kafkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sarka Pospisilova
- CEITEC - Center of Molecular Medicine, Masaryk University, Brno and Department of Internal Medicine - Hematology and Oncology, University Hospital Brno
| |
Collapse
|
23
|
Epstein-barr virus-associated extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT Lymphoma) arising in the parotid gland of a child with ataxia telangiectasia. J Pediatr Hematol Oncol 2015; 37:e114-7. [PMID: 25692616 DOI: 10.1097/mph.0b013e31829f3496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hematologic malignancies, in particular T-cell lymphomas/leukemias, are prevalent in patients with ataxia telangiectasia (AT), with most reported cases being clinically aggressive and high grade. Epstein-Barr virus (EBV) is often associated with lymphoid proliferations/neoplasms arising in immunodeficient patients. Reports of low-grade B-cell neoplasms in the ataxia telangiectasia population are extremely rare. Here, we describe a case of EBV-associated extranodal marginal zone lymphoma (mucosa-associated lymphoid tissue lymphoma) of the parotid gland in a 16-year-old boy with AT. In addition, we review the literature of hematologic malignancies in the AT population as well as the occurrence of EBV in mucosa-associated lymphoid tissue lymphoma.
Collapse
|
24
|
Aberrant TCRδ rearrangement underlies the T-cell lymphocytopenia and t(12;14) translocation associated with ATM deficiency. Blood 2015; 125:2665-8. [PMID: 25721125 DOI: 10.1182/blood-2015-01-622621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM) is a protein kinase and a master regulator of DNA-damage responses. Germline ATM inactivation causes ataxia-telangiectasia (A-T) syndrome with severe lymphocytopenia and greatly increased risk for T-cell lymphomas/leukemia. Both A-T and T-cell prolymphoblastic leukemia patients with somatic mutations of ATM frequently carry inv(14;14) between the T-cell receptor α/δ (TCRα/δ) and immunoglobulin H loci, but the molecular origin of this translocation remains elusive. ATM(-/-) mice recapitulate lymphocytopenia of A-T patients and routinely succumb to thymic lymphomas with t(12;14) translocation, syntenic to inv(14;14) in humans. Here we report that deletion of the TCRδ enhancer (Eδ), which initiates TCRδ rearrangement, significantly improves αβ T cell output and effectively prevents t(12;14) translocations in ATM(-/-) mice. These findings identify the genomic instability associated with V(D)J recombination at the TCRδ locus as the molecular origin of both lymphocytopenia and the signature t(12;14) translocations associated with ATM deficiency.
Collapse
|
25
|
T-cell Prolymphocytic Leukemia Frequently Shows Cutaneous Involvement and Is Associated With Gains of MYC, Loss of ATM, and TCL1A Rearrangement. Am J Surg Pathol 2014; 38:1468-83. [DOI: 10.1097/pas.0000000000000272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Multifunctional role of ATM/Tel1 kinase in genome stability: from the DNA damage response to telomere maintenance. BIOMED RESEARCH INTERNATIONAL 2014; 2014:787404. [PMID: 25247188 PMCID: PMC4163350 DOI: 10.1155/2014/787404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development.
Collapse
|
27
|
Kubota E, Williamson CT, Ye R, Elegbede A, Peterson L, Lees-Miller SP, Bebb DG. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines. Cell Cycle 2014; 13:2129-37. [PMID: 24841718 DOI: 10.4161/cc.29212] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small-molecule inhibitors of poly (ADP-ribose) polymerase (PARP) have shown considerable promise in the treatment of homologous recombination (HR)-defective tumors, such as BRCA1- and BRCA2-deficient breast and ovarian cancers. We previously reported that mantle cell lymphoma cells with deficiency in ataxia telangiectasia mutated (ATM) are sensitive to PARP-1 inhibitors in vitro and in vivo. Here, we report that PARP inhibitors can potentially target ATM deficiency arising in a solid malignancy. We show that ATM protein expression varies between gastric cancer cell lines, with NUGC4 having significantly reduced protein levels. Significant correlation was found between ATM protein expression and sensitivity to the PARP inhibitor olaparib, with NUGC4 being the most sensitive. Moreover, reducing ATM kinase activity using a small-molecule inhibitor (KU55933) or shRNA-mediated depletion of ATM protein enhanced olaparib sensitivity in gastric cancer cell lines with depletion or inactivation of p53. Our results demonstrate that ATM is a potential predictive biomarker for PARP-1 inhibitor activity in gastric cancer harboring disruption of p53, and that combined inhibition of ATM and PARP-1 is a rational strategy for expanding the utility of PARP-1 inhibitors to gastric cancer with p53 disruption.
Collapse
Affiliation(s)
- Eiji Kubota
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - Christopher T Williamson
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - Anifat Elegbede
- Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada; Tom Baker Cancer Center; Calgary, Alberta, Canada
| | - Lars Peterson
- Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada; Tom Baker Cancer Center; Calgary, Alberta, Canada
| | - Susan P Lees-Miller
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary, Alberta, Canada; Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada
| | - D Gwyn Bebb
- Southern Alberta Cancer Research Institute; University of Calgary; Calgary, Alberta, Canada; Tom Baker Cancer Center; Calgary, Alberta, Canada
| |
Collapse
|
28
|
Synthetic cytotoxicity: digenic interactions with TEL1/ATM mutations reveal sensitivity to low doses of camptothecin. Genetics 2014; 197:611-23. [PMID: 24653001 PMCID: PMC4063919 DOI: 10.1534/genetics.114.161307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tumors contain mutations that confer defects in the DNA-damage response and genome stability. DNA-damaging agents are powerful therapeutic tools that can differentially kill cells with an impaired DNA-damage response. The response to DNA damage is complex and composed of a network of coordinated pathways, often with a degree of redundancy. Tumor-specific somatic mutations in DNA-damage response genes could be exploited by inhibiting the function of a second gene product to increase the sensitivity of tumor cells to a sublethal concentration of a DNA-damaging therapeutic agent, resulting in a class of conditional synthetic lethality we call synthetic cytotoxicity. We used the Saccharomyces cerevisiae nonessential gene-deletion collection to screen for synthetic cytotoxic interactions with camptothecin, a topoisomerase I inhibitor, and a null mutation in TEL1, the S. cerevisiae ortholog of the mammalian tumor-suppressor gene, ATM. We found and validated 14 synthetic cytotoxic interactions that define at least five epistasis groups. One class of synthetic cytotoxic interaction was due to telomere defects. We also found that at least one synthetic cytotoxic interaction was conserved in Caenorhabditis elegans. We have demonstrated that synthetic cytotoxicity could be a useful strategy for expanding the sensitivity of certain tumors to DNA-damaging therapeutics.
Collapse
|
29
|
Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 2014; 15:259-71. [PMID: 24614311 DOI: 10.1038/nrg3673] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a conserved role for histones as general DNA packaging agents, it is now clear that another key function of these proteins is to confer variations in chromatin structure to ensure dynamic patterns of transcriptional regulation in eukaryotes. The incorporation of histone variants is particularly important to this process. Recent knockdown and knockout studies in various cellular systems, as well as direct mutational evidence from human cancers, now suggest a crucial role for histone variant regulation in processes as diverse as differentiation and proliferation, meiosis and nuclear reprogramming. In this Review, we provide an overview of histone variants in the context of their unique functions during mammalian germ cell and embryonic development, and examine the consequences of aberrant histone variant regulation in human disease.
Collapse
|
30
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lozanski G, Ruppert AS, Heerema NA, Lozanski A, Lucas DM, Gordon A, Gribben JG, Morrison VA, Rai KM, Marcucci G, Larson RA, Byrd JC. Variations of the ataxia telangiectasia mutated gene in patients with chronic lymphocytic leukemia lack substantial impact on progression-free survival and overall survival: a Cancer and Leukemia Group B study. Leuk Lymphoma 2012; 53:1743-8. [PMID: 22369572 DOI: 10.3109/10428194.2012.668683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The impact of mutation of the ATM (ataxia telangiectasia mutated) gene in chronic lymphocytic leukemia (CLL) treatment outcome has not been examined. We studied ATM mutations in 73 patients treated with fludarabine and rituximab. ATM gene mutation analysis was performed using temperature gradient capillary electrophoresis. The impact of detected variants on overall survival (OS) and progression-free survival (PFS) was tested with proportional hazards models. None of the 73 patients demonstrated truncating ATM mutations; 17 (23%, 95% confidence interval 14-35%) had non-silent variants (ATM-NSVs), including 13 known ATM polymorphisms and four missense variants. ATM-NSVs were not significantly associated with any baseline characteristics including immunoglobulin heavy chain variable gene (IGVH) status. In multivariable models, no significant differences in complete response (p =0.70), PFS (p =0.59) or OS (p =0.13) were observed. Our data indicate that truncating ATM mutations are rare in patients with CLL. Furthermore, in this dataset, these non-silent variants had limited impact on PFS and OS.
Collapse
Affiliation(s)
- Gerard Lozanski
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION Sapacitabine is an orally bioavailable nucleoside analog prodrug that is in clinical trials for hematologic malignancies and solid tumors. The active metabolite of sapacitabine, CNDAC (2'-C-cyano-2'-deoxy-1-β-D-arabino-pentofuranosylcytosine), exhibits the unique mechanism of action of causing single-strand breaks (SSBs) after incorporation into DNA, which are converted into double-strand breaks (DSBs) when cells enter a second S-phase. CNDAC-induced DSBs are predominantly repaired through homologous recombination (HR). Cells deficient in HR components are greatly sensitized to CNDAC. Therefore, sapacitabine could be specifically effective against tumors that are deficient in this repair pathway. AREAS COVERED This review summarizes results from supporting evidence for the mechanisms of action of sapacitabine, its preclinical activities and the current results of clinical trials in a variety of cancers. The novel action mechanism of sapacitabine is discussed, with a view to validate it as a chemotherapeutic drug targeting malignancies with defects in HR. EXPERT OPINION Knowledge of CNDAC mechanism identifies tumors that may be sensitized to sapacitabine, thus enabling a personalized treatment strategy. It also creates the opportunity to overcome resistance to current front-line therapies and identify synergistic interactions with known anticancer drugs. The results of such investigations may provide rationales for the design of sapacitabine-based clinical trials.
Collapse
Affiliation(s)
- Xiaojun Liu
- The University of Texas M.D. Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX, USA
| | - Hagop Kantarjian
- The University of Texas M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - William Plunkett
- The University of Texas M.D. Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX, USA
- The University of Texas M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| |
Collapse
|
34
|
McKinnon PJ. ATM and the molecular pathogenesis of ataxia telangiectasia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:303-21. [PMID: 22035194 DOI: 10.1146/annurev-pathol-011811-132509] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ataxia telangiectasia (A-T) results from inactivation of the ATM protein kinase. DNA-damage signaling is a prime function of this kinase, although other roles have been ascribed to ATM. Identifying the primary ATM function(s) for tissue homeostasis is key to understanding how these functions contribute to the prevention of A-T-related pathology. In this regard, because A-T is primarily a neurodegenerative disease, it is essential to understand how ATM loss results in degenerative effects on the nervous system. In addition to delineating the biochemistry and cell biology of ATM, important insights into the molecular basis for neurodegeneration in A-T come from a spectrum of phenotypically related neurodegenerative diseases that directly result from DNA-repair deficiency. Together with A-T, these syndromes indicate that neurodegeneration can be caused by the failure to appropriately respond to DNA damage. This review focuses on defective DNA-damage signaling as the underlying cause of A-T.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
35
|
Armata HL, Shroff P, Garlick DE, Penta K, Tapper AR, Sluss HK. Loss of p53 Ser18 and Atm results in embryonic lethality without cooperation in tumorigenesis. PLoS One 2011; 6:e24813. [PMID: 21980358 PMCID: PMC3181255 DOI: 10.1371/journal.pone.0024813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation at murine Serine 18 (human Serine 15) is a critical regulatory process for the tumor suppressor function of p53. p53Ser18 residue is a substrate for ataxia-telangiectasia mutated (ATM) and ATM-related (ATR) protein kinases. Studies of mice with a germ-line mutation that replaces Ser18 with Ala (p53S18A mice) have demonstrated that loss of phosphorylation of p53Ser18 leads to the development of tumors, including lymphomas, fibrosarcomas, leukemia and leiomyosarcomas. The predominant lymphoma is B-cell lymphoma, which is in contrast to the lymphomas observed in Atm−/− animals. This observation and the fact that multiple kinases phosphorylate p53Ser18 suggest Atm-independent tumor suppressive functions of p53Ser18. Therefore, in order to examine p53Ser18 function in relationship to ATM, we analyzed the lifespan and tumorigenesis of mice with combined mutations in p53Ser18 and Atm. Surprisingly, we observed no cooperation in survival and tumorigenesis in compound p53S18A and Atm−/− animals. However, we observed embryonic lethality in the compound mutant animals. In addition, the homozygous p53Ser18 mutant allele impacted the weight of Atm−/− animals. These studies examine the genetic interaction of p53Ser18 and Atm in vivo. Furthermore, these studies demonstrate a role of p53Ser18 in regulating embryonic survival and motor coordination.
Collapse
Affiliation(s)
- Heather L. Armata
- Division of Endocrinology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Punita Shroff
- Division of Endocrinology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David E. Garlick
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Krista Penta
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Andrew R. Tapper
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hayla K. Sluss
- Division of Endocrinology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Vanhees K, de Bock L, Godschalk RWL, van Schooten FJ, van Waalwijk van Doorn-Khosrovani SB. Prenatal exposure to flavonoids: implication for cancer risk. Toxicol Sci 2010; 120:59-67. [PMID: 21177254 DOI: 10.1093/toxsci/kfq388] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids are potent antioxidants, freely available as high-dose dietary supplements. However, they can induce DNA double-strand breaks (DSB) and rearrangements in the mixed-lineage leukemia (MLL) gene, which are frequently observed in childhood leukemia. We hypothesize that a deficient DSB repair, as a result of an Atm mutation, may reinforce the clastogenic effect of dietary flavonoids and increase the frequency of Mll rearrangements. Therefore, we examined the effects of in vitro and transplacental exposure to high, but biological amounts of flavonoids in mice with different genetic capacities for DSB repair (homozygous/heterozygous knock-in for human Atm mutation [Atm-ΔSRI] vs. wild type [wt]). In vitro exposure to genistein/quercetin induced higher numbers of Mll rearrangements in bone marrow cells of Atm-ΔSRI mutant mice compared with wt mice. Subsequently, heterozygous Atm-ΔSRI mice were placed on either a flavonoid-poor or a genistein-enriched (270 mg/kg) or quercetin-enriched (302 mg/kg) feed throughout pregnancy. Prenatal exposure to flavonoids associated with higher frequencies of Mll rearrangements and a slight increase in the incidence of malignancies in DNA repair-deficient mice. These data suggest that prenatal exposure to both genistein and quercetin supplements could increase the risk on Mll rearrangements especially in the presence of compromised DNA repair.
Collapse
Affiliation(s)
- Kimberly Vanhees
- Department of Health Risk Analysis and Toxicology, Nutrition and Toxicology Research, Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 2010; 116:4578-87. [PMID: 20739657 DOI: 10.1182/blood-2010-01-265769] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ataxia Telangiectasia Mutated (ATM) gene is frequently inactivated in lymphoid malignancies such as chronic lymphocytic leukemia (CLL), T-prolymphocytic leukemia (T-PLL), and mantle cell lymphoma (MCL) and is associated with defective apoptosis in response to alkylating agents and purine analogues. ATM mutant cells exhibit impaired DNA double strand break repair. Poly (ADP-ribose) polymerase (PARP) inhibition that imposes the requirement for DNA double strand break repair should selectively sensitize ATM-deficient tumor cells to killing. We investigated in vitro sensitivity to the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) of 5 ATM mutant lymphoblastoid cell lines (LCL), an ATM mutant MCL cell line, an ATM knockdown PGA CLL cell line, and 9 ATM-deficient primary CLLs induced to cycle and observed differential killing compared with ATM wildtype counterparts. Pharmacologic inhibition of ATM and ATM knockdown confirmed the effect was ATM-dependent and mediated through mitotic catastrophe independently of apoptosis. A nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft model of an ATM mutant MCL cell line demonstrated significantly reduced tumor load and an increased survival of animals after olaparib treatment in vivo. Addition of olaparib sensitized ATM null tumor cells to DNA-damaging agents. We suggest that olaparib would be an appropriate agent for treating refractory ATM mutant lymphoid tumors.
Collapse
|
38
|
Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 2010; 206:591-601. [PMID: 20674189 DOI: 10.1016/j.prp.2010.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All forms of life on earth must cope with constant exposure to DNA-damaging agents that may promote cancer development. As a biological barrier, known as DNA damage response (DDR), cells are provided with both DNA repair mechanisms and highly conserved cell cycle checkpoints. The latter are responsible for the control of cell cycle phase progression with ATM, ATR, Chk1, and Chk2 as the main signaling molecules, thus dealing with both endogenous and exogenous sources of DNA damage. As cell cycle checkpoint and also DNA repair genes, such as BRCA1 and BRCA2, are frequently mutated, we here discuss their fundamental roles in the pathogenesis of human cancers. Importantly, as current evidence also suggests a role of MAPK's (mitogen activated protein kinases) in cell cycle checkpoint control, we describe in this review both the ATR/ATM-Chk1/Chk2 signaling pathways as well as the regulation of cell cycle checkpoints by MAPK's as molecular mechanisms in DDR, and how their dysfunction is related to cancer development. Moreover, since damage to DNA might be the common underlying mechanism for the positive outcome of chemotherapy, we also discuss targeting anticancer treatments on cell cycle checkpoints as an important issue emerging in drug discovery.
Collapse
Affiliation(s)
- Angela Poehlmann
- Department of Pathology, Otto-von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | |
Collapse
|
39
|
Dickinson JD, Gilmore J, Iqbal J, Sanger W, Lynch JC, Chan J, Bierman PJ, Joshi SS. 11q22.3 deletion in B-chronic lymphocytic leukemia is specifically associated with bulky lymphadenopathy and ZAP-70 expression but not reduced expression of adhesion/cell surface receptor molecules. Leuk Lymphoma 2009; 47:231-44. [PMID: 16321852 DOI: 10.1080/10428190500254141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The presence of chromosome abnormalities promotes tumor progression in B-chronic lymphocytic leukemia (CLL). However, the molecular pathways that are relevant to tumor progression remain unclear. In this study, we screened for common chromosome abnormalities [13q14 del, 11q22.3 (ATM) del, 17p13 (p53) del and trisomy 12] by fluorescent in situ hybridization in 40 B-CLL patients. Each of the four chromosome abnormality groups was compared to several clinical factors related to lymphocyte behaviour in CLL. The 11q22.3 (ATM) deletion group was significantly associated with the presence of bulky abdominal/mediastinal lymphadenopathy (P = 0.014). We hypothesized that this phenotype would be associated with an altered transcription pattern of genes. Class comparison analysis by significance analysis of microarrays on a subset of CLL samples (n = 14) indicated that a number of cell surface receptor and adhesion related genes were under-expressed in the 11q22.3 deletion group (CD44, CD11a, PTPRC, CD79a, chemokine ligand 17 and chemokine receptor type 6). The presence of additional prognostic factors, such as CD38 and immunoglobulin heavy chain variable region mutational status, may also influence the transcriptional pathways between the two groups. Therefore, we employed a novel analysis technique for the correlation of log(2) gene expression ratios with the percentage of each tumor that carried the 11q22.3 deletion. Using Spearman's correlation, ZAP-70, chemokine ligand 17, BSAP (PAX5), CD7, LAG3 and PTPR6 were significantly correlated with the percentage of cells with the 11q22.3 deletion. However, the down-regulation of cell surface receptors and adhesion molecules observed by class comparison could not be confirmed to be specific for the 11q22.3 deletion by this method.
Collapse
MESH Headings
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 17/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphatic Diseases/complications
- Lymphatic Diseases/genetics
- Male
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Trisomy
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
Affiliation(s)
- John D Dickinson
- Department of Genetics, University of Nebraska Medical Center, Omaha, 68198-6395, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
D'Arce LPG, Bassi CL, Fachin AL, Passos GAS, Sakamoto-Hojo ET. Occurrence of TRGV-BJ hybrid gene in SV40-transformed fibroblast cell lines. Genetica 2009; 136:471-8. [PMID: 19142737 DOI: 10.1007/s10709-008-9348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.
Collapse
Affiliation(s)
- L P G D'Arce
- Laboratório de Citogenética e Mutagênese, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
41
|
Honda M, Takagi M, Chessa L, Morio T, Mizuatni S. Rapid diagnosis of ataxia-telangiectasia by flow cytometric monitoring of DNA damage-dependent ATM phosphorylation. Leukemia 2008; 23:409-14. [DOI: 10.1038/leu.2008.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY. Expression status of ataxia-telangiectasia-mutated gene correlated with prognosis in advanced gastric cancer. Mutat Res 2008; 638:17-25. [DOI: 10.1016/j.mrfmmm.2007.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 08/09/2007] [Accepted: 08/20/2007] [Indexed: 04/09/2023]
|
43
|
Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia. Blood 2007; 111:2321-8. [PMID: 18073348 DOI: 10.1182/blood-2007-06-095570] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is consistently associated with inactivation of the ATM gene and chromosomal re-arrangements leading to an overexpression of MTCP1/TCL1 oncoproteins. These alterations are present at the earliest stage of malignant transformation, suggesting that additional events are required for overt malignancy. In this study, we pursued the investigation of the 12p13 deletion, previously shown to occur in approximately half of T-PLLs. We refined the minimal region of deletion by single nucleotide and microsatellite polymorphism allelotyping. We defined a 216-kb region containing the CDKN1B gene that encodes the cyclin-dependent kinase inhibitory protein p27(KIP1). Sequencing this gene in 47 T-PLL patient samples revealed a nonsense mutation in one case without 12p13 deletion. The absence of biallelic inactivation of CDKN1B for most patients suggested a haploinsufficiency mechanism for tumor suppression, which was investigated in an animal model of the disease. In a Cdkn1b(+/-) background, MTCP1 transgenics had consistent and multiple emergences of preleukemic clones not observed in control cohorts. The second Cdkn1b allele was maintained and expressed in these preleukemic clones. Altogether, these data strongly implicate CDKN1B haploinsufficiency in the pathogenesis of T-PLL.
Collapse
|
44
|
Sipahimalani P, Spinelli JJ, MacArthur AC, Lai A, Leach SR, Janoo-Gilani RT, Palmquist DL, Connors JM, Gascoyne RD, Gallagher RP, Brooks-Wilson AR. A systematic evaluation of the ataxia telangiectasia mutated gene does not show an association with non-Hodgkin lymphoma. Int J Cancer 2007; 121:1967-1975. [PMID: 17640065 DOI: 10.1002/ijc.22888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ataxia telangiectasia mutated (ATM) gene is critical for the detection and repair of DNA double-stranded breaks. Mutations in this gene cause the autosomal recessive syndrome ataxia telangiectasia (AT), an attribute of which is an increased risk of cancer, particularly lymphoma. We have undertaken a population-based case/control study to assess the influence of genetic variation in ATM on the risk of non-Hodgkin lymphoma (NHL). A number of the subtypes that constitute NHL have in common the occurrence of specific somatic translocations that contribute to lymphomagenesis. We hypothesize that ATM function is slightly attenuated by some variants, which could reduce double-stranded break repair capacity, contributing to the occurrence of translocations and subsequent lymphomas. We sequenced the promoter and all exons of ATM in the germline DNA of 86 NHL patients and identified 79 variants. Eighteen of these variants correspond to nonsynonymous amino acid differences, 6 of which were predicted to be deleterious to protein function; these variants were all rare. Eleven common variants make up 10 haplotypes that are specified by 7 tagSNPs. Linkage disequilibrium across the ATM gene is high but incomplete. TagSNPs and the 6 putatively deleterious variants were genotyped in 798 NHL cases and 793 controls. Our results indicate that common variants of ATM do not significantly contribute to the risk of NHL in the general population. However, some rare, functionally deleterious variants may contribute to an increased risk of development of rare subtypes of the disease.
Collapse
Affiliation(s)
- Payal Sipahimalani
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John J Spinelli
- Cancer Control Research Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Amy C MacArthur
- Cancer Control Research Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Agnes Lai
- Cancer Control Research Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Stephen R Leach
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Rozmin T Janoo-Gilani
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Diana L Palmquist
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Joseph M Connors
- Division of Medical Oncology, British Columbia Cancer Agency and the University of British Columbia, Vancouver, BC, Canada
| | - Randy D Gascoyne
- Department of Pathology, British Columbia Cancer Agency and the University of British Columbia, Vancouver, BC, Canada
| | - Richard P Gallagher
- Cancer Control Research Department, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
45
|
Ford RJ, Shen L, Lin-Lee YC, Pham LV, Multani A, Zhou HJ, Tamayo AT, Zhang C, Hawthorn L, Cowell JK, Ambrus JL. Development of a murine model for blastoid variant mantle-cell lymphoma. Blood 2007; 109:4899-906. [PMID: 17311992 PMCID: PMC1885517 DOI: 10.1182/blood-2006-08-038497] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 02/12/2007] [Indexed: 12/20/2022] Open
Abstract
Blastoid-variant mantle-cell lymphoma (MCL-BV), unlike most B-cell non-Hodgkin lymphomas (NHL-Bs), is refractory to conventional chemotherapy and associated with a very poor prognosis. Development of new therapies has been hampered by the lack of valid animal models. We have developed a novel murine model of MCL-BV by crossing interleukin 14alpha (IL-14alpha) transgenic mice with c-Myc transgenic mice (double transgenic [DTG]). IL-14alpha is a B-cell growth factor that is expressed in a number of high-grade lymphomas, including MCL-BV. Ninety-five percent of IL-14alpha transgenic mice develop CD5(+) large B-cell lymphomas by 18 months of age. Sixty percent of c-Myc transgenic mice develop pre-B-cell lymphomas by 12 months of age. Close to 100% of DTG mice develop an aggressive, rapidly fatal lymphoma at 3 to 4 months of age that is CD5(+), CD19(+), CD21(-), CD23(-), sIgM(+). The tumor is found in the blood, bone marrow, liver, spleen, lymph nodes, gastrointestinal tract, and lungs and rarely in the brain, similar to the involvement seen in human MCL-BV. Immunoglobulin gene rearrangements document the monoclonality of the tumor. Cyclin D1 is highly expressed in these tumors, as it is in MCL-BV. DTG represents a novel model for MCL-BV that should reveal important insights into the pathogenesis of the lymphoma and contribute to the development of new forms of therapy.
Collapse
Affiliation(s)
- Richard J Ford
- Department of Hematopathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Matei IR, Guidos CJ, Danska JS. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol Rev 2006; 209:142-58. [PMID: 16448540 DOI: 10.1111/j.0105-2896.2006.00361.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The immune system is capable of recognizing and eliminating an enormous array of pathogens due to the extremely diverse antigen receptor repertoire of T and B lymphocytes. However, the development of lymphocytes bearing receptors with unique specificities requires the generation of programmed double strand breaks (DSBs) coupled with bursts of proliferation, rendering lymphocytes susceptible to mutations contributing to oncogenic transformation. Consequently, mechanisms responsible for monitoring global genomic integrity must be activated during lymphocyte development to limit the oncogenic potential of antigen receptor locus recombination. Mutations in ATM (ataxia-telangiectasia mutated), a kinase that coordinates DSB monitoring and the response to DNA damage, result in impaired T-cell development and predispose to T-cell leukemia. Here, we review recent evidence providing insight into the mechanisms by which ATM promotes normal lymphocyte development and protects from neoplastic transformation.
Collapse
Affiliation(s)
- Irina R Matei
- Program in Developmental Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Yoo SK, Onishi N, Kato N, Yoda A, Minami Y. [Relationship between abnormalities of genes involved in DNA damage responses and malignant tumors/autoimmune diseases]. ACTA ACUST UNITED AC 2006; 29:136-47. [PMID: 16819262 DOI: 10.2177/jsci.29.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The maintenance of genomic stability is an essential cellular function for a variety of well-coordinated regulation of biological activities of organisms, and a failure in its function results in the accumulation of mutations and/or abnormality in the induction of apoptosis, eventually leading to onsets of various diseases, including malignant tumors. DNA damage responses, in particular cell-cycle checkpoint regulation, play important roles in maintaining genomic integrity. In response to DNA damages induced by gamma-irradiation, ultraviolet irradiation, various chemicals, or reactive oxygen species (ROS), intrinsic cell-cycle checkpoint machinery is rapidly activated to arrest cells at particular cell-cycle points, and during cell-cycle checkpoint arrest cells may try to repair damaged DNAs, and then re-start cell-cycle upon the completion of DNA repair. Alternatively, if the extents of DNA damage overwhelm the capacity of the cellular repair machinery, cells may undergo apoptosis to prevent the accumulation of mutations within the organisms. In this article, we will first explain about our current view of DNA damage responses, in particular cell-cycle checkpoint regulation, and summarize our knowledge of the relationships between abnormalities of genes involved in DNA damage responses and malignant tumors, including hematopoietic malignancies. We will also discuss a possible implication of DNA damage responses in autoimmune diseases, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Sa Kan Yoo
- Division of Biomedical Regulation, Department of Genome Sciences, Graduate School of Medicine, Kobe University
| | | | | | | | | |
Collapse
|
48
|
Jeggo PA, Löbrich M. Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 2006; 5:1192-8. [PMID: 16797253 DOI: 10.1016/j.dnarep.2006.05.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA damage response mechanisms encompass pathways of DNA repair, cell cycle checkpoint arrest and apoptosis. Together, these mechanisms function to maintain genomic stability in the face of exogenous and endogenous DNA damage. ATM is activated in response to double strand breaks and initiates cell cycle checkpoint arrest. Recent studies in human fibroblasts have shown that ATM also regulates a mechanism of end-processing that is required for a component of double strand break repair. Human fibroblasts rarely undergo apoptosis after ionising radiation and, therefore, apoptosis is not considered in our review. The dual function of ATM raises the question as to how the two processes, DNA repair and checkpoint arrest, interplay to maintain genomic stability. In this review, we consider the impact of ATM's repair and checkpoint functions to the maintenance of genomic stability following irradiation in G2. We discuss evidence that ATM's repair function plays little role in the maintenance of genomic stability following exposure to ionising radiation. ATM's checkpoint function has a bigger impact on genomic stability but strikingly the two damage response pathways co-operate in a more than additive manner. In contrast, ATM's repair function is important for survival post irradiation.
Collapse
Affiliation(s)
- Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, East Sussex BN1 9RQ, UK.
| | | |
Collapse
|
49
|
Rashi-Elkeles S, Elkon R, Weizman N, Linhart C, Amariglio N, Sternberg G, Rechavi G, Barzilai A, Shamir R, Shiloh Y. Parallel induction of ATM-dependent pro- and antiapoptotic signals in response to ionizing radiation in murine lymphoid tissue. Oncogene 2006; 25:1584-92. [PMID: 16314843 DOI: 10.1038/sj.onc.1209189] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ATM protein kinase, functionally missing in patients with the human genetic disorder ataxia-telangiectasia, is a master regulator of the cellular network induced by DNA double-strand breaks. The ATM gene is also frequently mutated in sporadic cancers of lymphoid origin. Here, we applied a functional genomics approach that combined gene expression profiling and computational promoter analysis to obtain global dissection of the transcriptional response to ionizing radiation in murine lymphoid tissue. Cluster analysis revealed a prominent pattern characterizing dozens of genes whose response to irradiation was Atm-dependent. Computational analysis identified significant enrichment of the binding site signatures of NF-kappaB and p53 among promoters of these genes, pointing to the major role of these two transcription factors in mediating the Atm-dependent transcriptional response in the irradiated lymphoid tissue. Examination of the response showed that pro- and antiapoptotic signals were simultaneously induced, with the proapoptotic pathway mediated by p53 targets, and the prosurvival pathway by NF-kappaB targets. These findings further elucidate the molecular network induced by IR, point to novel putative NF-kappaB targets, and suggest a mechanistic model for cellular balancing between pro- and antiapoptotic signals induced by IR in lymphoid tissues, which has implications for cancer management. The emerging model suggests that restoring the p53-mediated apoptotic arm while blocking the NF-kappaB-mediated prosurvival arm could effectively increase the radiosensitivity of lymphoid tumors.
Collapse
Affiliation(s)
- S Rashi-Elkeles
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics, Sackler School of Medicine, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Greiner TC, Dasgupta C, Ho VV, Weisenburger DD, Smith LM, Lynch JC, Vose JM, Fu K, Armitage JO, Braziel RM, Campo E, Delabie J, Gascoyne RD, Jaffe ES, Muller-Hermelink HK, Ott G, Rosenwald A, Staudt LM, Im MY, Karaman MW, Pike BL, Chan WC, Hacia JG. Mutation and genomic deletion status of ataxia telangiectasia mutated (ATM) and p53 confer specific gene expression profiles in mantle cell lymphoma. Proc Natl Acad Sci U S A 2006; 103:2352-7. [PMID: 16461462 PMCID: PMC1413716 DOI: 10.1073/pnas.0510441103] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although mantle cell lymphoma (MCL) frequently harbors inactivated ataxia telangiectasia mutated (ATM) and p53 alleles, little is known about the molecular phenotypes caused by these genetic changes. We identified point mutations and genomic deletions in these genes in a series of cyclin D1-positive MCL cases and correlated genotype with gene expression profiles and overall survival. Mutated and/or deleted ATM and p53 alleles were found in 56% (40/72) and 26% (21/82) of the cases examined, respectively. Although MCL patients with inactive p53 alleles showed a significant reduction in median overall survival, aberrant ATM status did not predict for survival. Nevertheless, specific gene expression signatures indicative of the mutation and genomic deletion status of each gene were identified that were different from wild-type cases. These signatures were comprised of a select group of genes related to apoptosis, stress responses, and cell cycle regulation that are relevant to ATM or p53 function. Importantly, we found the molecular signatures are different between cases with mutations and deletions, because the latter are characterized by loss of genes colocalized in the same chromosome region of ATM or p53. This information on molecular phenotypes may provide new areas of investigation for ATM function or may be exploited by designing specific therapies for MCL cases with p53 aberrations.
Collapse
Affiliation(s)
- Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|