1
|
Chen Z, Ding L, Yu J, Jin J, Zhang Z, Fu J, Hong P, Fu L. Biological characteristics and prognosis of acute myeloid leukemia in elderly patients. Front Genet 2025; 16:1524177. [PMID: 40255482 PMCID: PMC12006902 DOI: 10.3389/fgene.2025.1524177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background Our study aimed to investigate the effects of chromosomal aberrations and genetic mutations of elderly individuals diagnosed with AML and determine its prognostic significance. Methods We retrospectively collected data over nearly 7 years from our hospital, encompassing 90 cases of elderly AML patients. Baseline information of patients was gathered and followed up, and statistical analysis was conducted using SPSS 25.0. Results Among the 90 elderly non-M3 AML patients, 56 (62.2%) exhibited multiple gene mutations, with 9 (10%) patients displaying five or more gene mutations. The incidence of NPM1 mutation was significantly higher in patients with normal karyotypes compared to those with abnormal karyotypes (P = 0.001). Patients with FLT3, ASXL1, or TP53 mutations displayed lower rates of CR compared to wild-type counterparts. Kaplan-Meier analysis revealed that TET2 mutation (P = 0.0474), FLT3-ITD mutation (P = 0.0364), TP53 mutation (P = 0.0031), and 17p abnormality (P = 0.00285) were predictive of shorter OS. TP53 mutations (P = 0.0440), 17p abnormalities (P = 0.0272), 7q abnormalities (P = 0.0174), and complex karyotypes (P = 0.0447) were associated with shorter RFS. Conclusion Our findings suggest that elderly AML patients exhibit distinctive genetic profiles, and favorable prognosis genes do not seem to apply to elderly AML patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leihua Fu
- Department of Hematology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
2
|
Xiao Y, Yang K, Huang Q, Wei C, Wei M, Geng Z, Wu H, Zhou T, Yin X, Zhou Y. Selinexor in combination with venetoclax and decitabine in patients with refractory myelodysplastic syndrome previously exposed to hypomethylating agents: three case reports. Front Oncol 2024; 14:1477697. [PMID: 39749030 PMCID: PMC11693730 DOI: 10.3389/fonc.2024.1477697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The management of patients with myelodysplastic syndrome (MDS) refractory to hypomethylating agents (HMAs) remains a challenge with few reliably effective treatments. Preclinical studies have shown that the inhibition of the nuclear export protein XPO1 causes nuclear accumulation of p53 and disruption of NF-κB signaling; both of which are relevant targets for MDS. Selinexor is an XPO1 inhibitor with demonstrated efficacy in MDS patients. Herein, we report three patients with MDS refractory to HMAs, however, when selinexor and venetoclax were added to the treatment regimen, the patients achieved a complete response and a significant reduction in spleen size. All patients successfully underwent hematopoietic stem cell transplantation. These cases demonstrate that the combination therapy can achieve CR and significant reductions in spleen size, offering a promising therapeutic option for patients with limited treatment choices. Combination therapy would also offer a potential way for patients to bridge to transplantation. Formal evaluations of this regimen in patients with MDS refractory to HMAs may be meaningful.
Collapse
Affiliation(s)
- Yunshuo Xiao
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Kun Yang
- Department of Hematology, Zigong First People’s Hospital, Zigong, China
- Department of Hematology, West China Hospital, Chengdu, China
| | - Qiuying Huang
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Changqing Wei
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Manlv Wei
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Zhili Geng
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Hui Wu
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Tianhong Zhou
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Xialoin Yin
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| | - Yali Zhou
- Department of Hematology, The 923rd Hospital of the Joint Logistics Support Force of the People’s Liberation Army, Nanning, China
| |
Collapse
|
3
|
Skuli S, Matthews A, Carroll M, Lai C. A line in shifting sand: Can we define and target TP53 mutated MDS? Semin Hematol 2024; 61:449-456. [PMID: 39542753 PMCID: PMC11960488 DOI: 10.1053/j.seminhematol.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Mutations in the tumor suppressor protein, TP53, lead to dismal outcomes in myeloid malignancies, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Recent pathological reclassifications have integrated TP53 mutated MDS and AML under a unified category of TP53 mutated myeloid neoplasms, which allows for more flexibility in treatment approaches. Therapeutic strategies have predominantly mirrored those for AML, with allogeneic stem cell transplantation emerging as critical for long-term disease control. The question remains whether there are physiological distinctions within TP53 mutated myeloid neoplasms that will significantly impact prognosis and therapeutic considerations. This review explores the unique aspects of classically defined "TP53 mutated MDS", focusing on its distinct biological characteristics and outcomes. Our current understanding is that TP53 mutated MDS and AML are globally quite similar, but as a group have unique features compared to TP53 wildtype (WT) disease. Optimizing immunotherapy and targeting vulnerabilities due to co-mutations and/or chromosome abnormalities should be the focus of future research.
Collapse
Affiliation(s)
- Sarah Skuli
- Division of Hematology and Oncology, Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Andrew Matthews
- Division of Hematology and Oncology, Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Division of Hematology and Oncology, Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Catherine Lai
- Division of Hematology and Oncology, Department of Medicine, The University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
4
|
Shao Y, Qin T. High TCTA expression is an adverse prognostic biomarker in acute myeloid leukemia. Cancer Biomark 2024; 41:18758592241296287. [PMID: 40095473 DOI: 10.1177/18758592241296287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
BackgroundAcute myeloid leukemia (AML) prognosis varies greatly, underscoring the need for novel biomarkers to improve patient stratification. T-cell leukemia translocation-associated gene (TCTA) has emerged as a potential player in hematological malignancies, yet its role in AML remains unexplored.ObjectiveTo investigate the prognostic significance of TCTA in AML and elucidate its functional mechanisms.MethodsRNA sequencing data from 173 AML patients (TCGA) and 70 normal controls (GTEx) were analyzed. Patients were categorized into high and low TCTA expression groups. Bioinformatics tools assessed Gene Ontology, KEGG pathways, and immune infiltration and constructed a nomogram predicting 1-5-year overall survival (OS).ResultsHigh TCTA expression correlated with significantly reduced OS (P < 0.001), with multivariate analysis identifying TCTA expression alongside age and cytogenetic risk as independent OS predictors. Receiver operating characteristic analysis validated TCTA's diagnostic potential. Enrichment analyses implicated TCTA in pathways critical to AML, such as hematopoiesis, p53 signaling, and DNA methylation, with a notable association with natural killer (NK) cell activity.ConclusionsElevated TCTA expression signifies poor prognosis in AML, positioning it as a promising prognostic biomarker. Its involvement in key AML-related pathways highlights TCTA's functional relevance and potential as a therapeutic target in AML management.
Collapse
Affiliation(s)
- Yunli Shao
- Department of Hematology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Tong Qin
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
5
|
Puzo CJ, Hager KM, Rinder HM, Weinberg OK, Siddon AJ. Overall survival in TP53-mutated AML and MDS. Ann Hematol 2024:10.1007/s00277-024-06054-7. [PMID: 39443370 DOI: 10.1007/s00277-024-06054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
TP53 mutations in patients with AML and MDS frequently portend a poor prognosis, related to both p53 allele status and blast count. In 2022, the ICC and WHO released updated guidelines for classifying p53-mutated AML/MDS. The characteristics of p53 mutations, their associated co-mutations, and their effects on overall survival (OS) are not known in the context of these new guidelines. A retrospective chart review was undertaken for all patients with AML or MDS and at least one TP53 mutation detected on next generation sequencing (NGS) at Yale New Haven Hospital from 2015 to 2023. All patients (N = 210) met criteria for one of the 5 diagnostic classes based on WHO and ICC guidelines. Kaplan-Meier curves with associated log-rank testing and Cox proportional hazards model quantified the effects of clinical and molecular data on survival. Multi-hit pathogenic mutations were related to poorer OS in MDS but not AML using either the WHO (p = .02) or the ICC (p = .01) diagnostic criteria. The most significant predictors of OS in the sample overall were platelet count < 50 K (HR: 2.01, 95% CI [1.47, 2.75], p < .001) and TP53 VAF ≤ 40% (HR: 0.68, 95% CI[0.50, 0.91], p = .01). Blast count ranges, complex karyotype, and p53 mutation type or location, showed no association with OS. In our cohort defined by the 2022 ICC and WHO criteria, VAF and thrombocytopenia, rather than blast count or p53 mutation features, significantly predicted OS. These results speak to each criteria's ability to identify cases of similarly aggressive disease biology and prognosis.
Collapse
Affiliation(s)
| | - Karl M Hager
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Henry M Rinder
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Serrano G, Berastegui N, Díaz-Mazkiaran A, García-Olloqui P, Rodriguez-Res C, Huerga-Dominguez S, Ainciburu M, Vilas-Zornoza A, Martin-Uriz PS, Aguirre-Ruiz P, Ullate-Agote A, Ariceta B, Lamo-Espinosa JM, Acha P, Calvete O, Jimenez T, Molero A, Montoro MJ, Díez-Campelo M, Valcarcel D, Solé F, Alfonso-Pierola A, Ochoa I, Prósper F, Ezponda T, Hernaez M. Single-cell transcriptional profile of CD34+ hematopoietic progenitor cells from del(5q) myelodysplastic syndromes and impact of lenalidomide. Nat Commun 2024; 15:5272. [PMID: 38902243 PMCID: PMC11189937 DOI: 10.1038/s41467-024-49529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
While myelodysplastic syndromes with del(5q) (del(5q) MDS) comprises a well-defined hematological subgroup, the molecular basis underlying its origin remains unknown. Using single cell RNA-seq (scRNA-seq) on CD34+ progenitors from del(5q) MDS patients, we have identified cells harboring the deletion, characterizing the transcriptional impact of this genetic insult on disease pathogenesis and treatment response. Interestingly, both del(5q) and non-del(5q) cells present similar transcriptional lesions, indicating that all cells, and not only those harboring the deletion, may contribute to aberrant hematopoietic differentiation. However, gene regulatory network (GRN) analyses reveal a group of regulons showing aberrant activity that could trigger altered hematopoiesis exclusively in del(5q) cells, pointing to a more prominent role of these cells in disease phenotype. In del(5q) MDS patients achieving hematological response upon lenalidomide treatment, the drug reverts several transcriptional alterations in both del(5q) and non-del(5q) cells, but other lesions remain, which may be responsible for potential future relapses. Moreover, lack of hematological response is associated with the inability of lenalidomide to reverse transcriptional alterations. Collectively, this study reveals transcriptional alterations that could contribute to the pathogenesis and treatment response of del(5q) MDS.
Collapse
Affiliation(s)
- Guillermo Serrano
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nerea Berastegui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Aintzane Díaz-Mazkiaran
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Paula García-Olloqui
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carmen Rodriguez-Res
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Sofia Huerga-Dominguez
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Marina Ainciburu
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Amaia Vilas-Zornoza
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Patxi San Martin-Uriz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Paula Aguirre-Ruiz
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Asier Ullate-Agote
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
| | - Beñat Ariceta
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | | | - Pamela Acha
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Oriol Calvete
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tamara Jimenez
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - Antonieta Molero
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Julia Montoro
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Maria Díez-Campelo
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Department of Hematology, Hospital Universitario de Salamanca-IBSAL, Salamanca, Spain
| | - David Valcarcel
- Service of Hematology, Hospital Universitari Vall d'Hebron, Barcelona; Vall d'Hebron Instituto de Oncología (VHIO), Barcelona, Spain
| | - Francisco Solé
- MDS Research Group, Josep Carreras Leukaemia Research Institut, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Alfonso-Pierola
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain
| | - Idoia Ochoa
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain
- Department of Electrical and Electronics engineering, School of Engineering (Tecnun), University of Navarra, Donostia, Spain
| | - Felipe Prósper
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
| | - Teresa Ezponda
- Hematology-Oncology Program, CIMA, Cancer Center Clínica Universidad de Navarra (CCUN), IdiSNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
| | - Mikel Hernaez
- Computational Biology Program CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), University of Navarra, Pamplona, Spain.
| |
Collapse
|
7
|
Kwon A, Weinberg OK. Acute Myeloid Leukemia Arising from Myelodysplastic Syndromes. Clin Lab Med 2023; 43:657-667. [PMID: 37865509 DOI: 10.1016/j.cll.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Myelodysplastic syndromes (MDS) are a group of myeloid neoplasms characterized by clonal hematopoiesis and abnormal maturation of hematopoietic cells, resulting in cytopenias. The transformation of MDS to acute myeloid leukemia (AML) reflects a progressive increase in blasts due to impaired maturation of the malignant clone, and thus MDS and many AML subtypes form a biological continuum rather than representing two distinct diseases. Recent data suggest that, in addition to previously described translocations, NPM1 mutations and KMT2A rearrangements are also AML-defining genetic alterations that lead to rapid disease progression, even if they present initially with less than 20% blasts. While some adult patients <20% blasts can be treated effectively with intensive AML-type chemotherapy, in the future, treatment of individual patients in this MDS/AML group will likely be dictated by genetic, biological, and patient-related factors rather than an arbitrary blast percentage.
Collapse
Affiliation(s)
- Adelaide Kwon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Muto T, Walker CS, Agarwal P, Vick E, Sampson A, Choi K, Niederkorn M, Ishikawa C, Hueneman K, Varney M, Starczynowski DT. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation. Haematologica 2023; 108:2715-2729. [PMID: 37102608 PMCID: PMC10542836 DOI: 10.3324/haematol.2022.282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Hematology, Chiba University Hospital, Chiba.
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric Vick
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Melinda Varney
- Department of Pharmaceutical Science and Research, Marshall University, Huntington, WV
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; UC Cancer Center, Cincinnati, OH.
| |
Collapse
|
9
|
Marks JA, Wang X, Fenu EM, Bagg A, Lai C. TP53 in AML and MDS: The new (old) kid on the block. Blood Rev 2023; 60:101055. [PMID: 36841672 DOI: 10.1016/j.blre.2023.101055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
MDS and AML are clonal hematopoietic stem cell disorders of increasing incidence, having a variable prognosis based, among others, on co-occurring molecular abnormalities. TP53 mutations are frequently detected in these myeloid neoplasms and portend a poor prognosis with known therapeutic resistance. This article provides a timely review of the complexity of TP53 alterations, providing updates in diagnosis and prognosis based on new 2022 International Consensus Classification (ICC) and World Health Organization (WHO) guidelines. The article addresses optimal testing strategies and reviews current and arising therapeutic approaches. While the treatment landscape for this molecular subgroup is under active development, further exploration is needed to optimize the care of this group of patients with unmet needs.
Collapse
Affiliation(s)
- Jennifer A Marks
- Department of Medicine, Division of Hematology and Oncology, Georgetown University, 3800 Reservoir Road NW, Washington, D.C. 20007, USA.
| | - Xin Wang
- Department of Medicine, Division of Hematology and Oncology, Georgetown University, 3800 Reservoir Road NW, Washington, D.C. 20007, USA; Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, 12 South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Elena M Fenu
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Catherine Lai
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, 12 South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Daver NG, Iqbal S, Huang J, Renard C, Lin J, Pan Y, Williamson M, Ramsingh G. Clinical characteristics and overall survival among acute myeloid leukemia patients with TP53 gene mutation or chromosome 17p deletion. Am J Hematol 2023. [PMID: 37139921 DOI: 10.1002/ajh.26941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Approximately 5% to 15% of acute myeloid leukemia (AML) patients have TP53 gene mutations (TP53m), which are associated with very poor outcomes. Adults (≥18 years) with a new AML diagnosis were included from a nationwide, de-identified, real-world database. Patients receiving first-line therapy were divided into three cohorts: venetoclax (VEN) + hypomethylating agents (HMAs; Cohort A), intensive chemotherapy (Cohort B), or HMA without VEN (Cohort C). A total of 370 newly diagnosed AML patients with TP53m (n = 124), chromosome 17p deletion (n = 166), or both (n = 80) were included. The median age was 72 years (range, 24-84); most were male (59%) and White (69%). Baseline bone marrow (BM) blasts were ≤30%, 31%-50%, and >50% in 41%, 24%, and 29% of patients in Cohorts A, B, and C, respectively. BM remission (<5% blasts) with first-line therapy was reported in 54% of patients (115/215) overall, and 67% (38/57), 62% (68/110), and 19% (9/48) for respective cohorts (median BM remission duration: 6.3, 6.9, and 5.4 months). Median overall survival (95% CI) was 7.4 months (6.0-8.8) for Cohort A, 9.4 months (7.2-10.4) for Cohort B, and 5.9 months (4.3-7.5) for Cohort C. There were no differences in survival by treatment type after adjusting for the effects of relevant covariates (Cohort A vs. C adjusted hazard ratio [aHR] = 0.9; 95% CI, 0.7-1.3; Cohort A vs. B aHR = 1.0; 95% CI, 0.7-1.5; and Cohort C vs. B aHR = 1.1; 95% CI, 0.8-1.6). Patients with TP53m AML have dismal outcomes with current therapies, demonstrating the high unmet need for improved treatments.
Collapse
Affiliation(s)
- Naval G Daver
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shahed Iqbal
- Gilead Sciences, Inc., Foster City, California, USA
| | - Julie Huang
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Joyce Lin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Yang Pan
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | |
Collapse
|
11
|
Ling Q, Mao S, Pan J, Wei W, Qian Y, Li F, Huang S, Ye W, Lin X, Huang J, Wang J, Jin J. CPT1B, a metabolic molecule, is also an independent risk factor in CN-AML. Cancer Biomark 2023:CBM210043. [PMID: 36938722 DOI: 10.3233/cbm-210043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Fatty acid oxidation has been considered as an important energy source for tumorigenesis and development. Several studies have investigated the role of CPT1A, a kind of fatty acid oxidation rate-limiting enzyme, in AML. However, prognostic value and regulatory network of another subtype, CPT1B in AML remains elusive. This study aims to clarify the independent prognostic role of CPT1B in CN-AML based on clinical data and molecular level data (mRNA, miRNA and lncRNA). OBJECTIVE The aim of this study is to investigate the prognostic value of CPT1B in AML patients. METHODS First, we analyzed the CPT1B expression in AML cohort via the online database "GEPIA". Subsequently, miRNA-mRNA and ceRNA networks were constructed to help predict the role of CPT1B in AML. Several molecules which showed the prognostic value and metabolic function of CPT1B were identified. Finally, the expression of CPT1B in our own cohort of 324 CN-AML patients was analyzed to clarify the results. RESULTS It was found that CPT1B was markedly higher in AML patients compared to normal people and this upregulation was associated with the poor clinical outcome. Several molecules revealed the possible regulatory mechanism of CPT1B in AML. CONCLUSION CPT1B is a potential prognostic factor and a therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Daver NG, Iqbal S, Renard C, Chan RJ, Hasegawa K, Hu H, Tse P, Yan J, Zoratti MJ, Xie F, Ramsingh G. Treatment outcomes for newly diagnosed, treatment-naïve TP53-mutated acute myeloid leukemia: a systematic review and meta-analysis. J Hematol Oncol 2023; 16:19. [PMID: 36879351 PMCID: PMC9990239 DOI: 10.1186/s13045-023-01417-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND TP53 mutations, which are present in 5% to 10% of patients with acute myeloid leukemia (AML), are associated with treatment resistance and poor outcomes. First-line therapies for TP53-mutated (TP53m) AML consist of intensive chemotherapy (IC), hypomethylating agents (HMA), or venetoclax combined with HMA (VEN + HMA). METHODS We conducted a systematic review and meta-analysis to describe and compare treatment outcomes in newly diagnosed treatment-naïve patients with TP53m AML. Randomized controlled trials, single-arm trials, prospective observational studies, and retrospective studies were included that reported on complete remission (CR), CR with incomplete hematologic recovery (CRi), overall survival (OS), event-free survival (EFS), duration of response (DoR), and overall response rate (ORR) among patients with TP53m AML receiving first-line treatment with IC, HMA, or VEN + HMA. RESULTS Searches of EMBASE and MEDLINE identified 3006 abstracts, and 17 publications describing 12 studies met the inclusion criteria. Random-effects models were used to pool response rates, and time-related outcomes were analyzed with the median of medians method. IC was associated with the greatest CR rate of 43%, and CR rates were 33% for VEN + HMA and 13% for HMA. Rates of CR/CRi were comparable for IC (46%) and VEN + HMA (49%) but were lower for HMA (13%). Median OS was uniformly poor across treatments: IC, 6.5 months; VEN + HMA, 6.2 months; and HMA, 6.1 months. For IC, the EFS estimate was 3.7 months; EFS was not reported for VEN + HMA or HMA. The ORR was 41% for IC, 65% for VEN + HMA, and 47% for HMA. DoR was 3.5 months for IC, 5.0 months for VEN + HMA, and was not reported for HMA. CONCLUSIONS Despite improved responses seen with IC and VEN + HMA compared to HMA, survival was uniformly poor, and clinical benefits were limited across all treatments for patients with newly diagnosed, treatment-naïve TP53m AML, demonstrating a significant need for improved treatment for this difficult-to-treat population.
Collapse
Affiliation(s)
- Naval G Daver
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Shahed Iqbal
- Gilead Sciences, Inc, 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Camille Renard
- Gilead Sciences, Inc, 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Rebecca J Chan
- Gilead Sciences, Inc, 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Ken Hasegawa
- Gilead Sciences, Inc, 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Hao Hu
- Gilead Sciences, Inc, 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Preston Tse
- McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Jiajun Yan
- McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | | | - Feng Xie
- McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | | |
Collapse
|
13
|
Aubrey BJ, Brunner AM. SOHO State of the Art and Next Questions: Treatment of Higher-Risk Myelodysplastic Syndromes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:869-877. [PMID: 36030175 DOI: 10.1016/j.clml.2022.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Higher-risk myelodysplastic syndromes (MDS) carry a dismal prognosis with rapid disease progression, disease-related complications that impact quality of life, high risk of transformation to acute myeloid leukemia (AML), and poor long-term survival. Higher-risk disease is determined by a number of factors including the depth and type of cytopenias, percentage of myeloblasts occupying the bone marrow, cytogenetic abnormalities, and increasingly also by the presence of higher-risk molecular alterations. In addition to disease characteristics, a patient's performance status and degree of co-morbidity strongly influence treatment decisions and clinical outcomes. A critical first step in the management of patients with higher-risk MDS is evaluating eligibility for allogeneic hematopoietic stem cell transplant (HCT), which currently remains the only curative therapy, and is available to an ever-increasing number of patients. Outside of stem cell transplant, treatment with hypomethylating agent chemotherapy, azacitidine or decitabine, remains the cornerstone of therapy with improvements in overall survival and reduced transformation to AML; however, these approaches are palliative in nature and outcomes remain very poor overall. With a deepening understanding of disease pathophysiology has come a burgeoning array of novel targeted therapies that are currently in pre-clinical and early phase clinical trials offering hope for new treatment options for this malignancy.
Collapse
Affiliation(s)
- Brandon J Aubrey
- Harvard Medical School, Massachusetts General Hospital, Boston, MA
| | - Andrew M Brunner
- Harvard Medical School, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
14
|
Bone Marrow Fibrosis at Diagnosis and during the Course of Disease Is Associated with TP53 Mutations and Adverse Prognosis in Primary Myelodysplastic Syndrome. Cancers (Basel) 2022; 14:cancers14122984. [PMID: 35740649 PMCID: PMC9221530 DOI: 10.3390/cancers14122984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary To understand the role of bone marrow fibrosis and its molecular changes in myelodysplastic syndrome, we retrospectively analyzed data from 814 patients. Older age, lower hemoglobin, unfavorable karyotype and higher BM blast were more often observed in patients with moderate/severe fibrosis. Cases with bone marrow fibrosis had reduced overall survival. TP53, U2AF1 and KMT2D mutations were more frequent in patients with moderate/severe fibrosis. In addition, 15.1% of patients progressed to moderate/severe fibrosis during the follow-up interval. The clinical features, mutation landscape and prognosis of patients with progressed fibrosis were similar to those patients with moderate/severe fibrosis at diagnosis. We concluded that bone marrow fibrosis was associated with reduced overall survival in primary MDS and correlated with TP53 mutations both at the time of initial diagnosis and during the course of the disease. Abstract The prognostic significance of bone marrow fibrosis (MF) grade in patients with myelodysplastic syndrome (MDS) is still debated and the molecular changes remain unclear. In our large cohort, a normal reticulum was found in 211 (25.9%) patients, whereas MF1, MF2 and MF3 were detected in 478 (58.7%), 90 (11.1%) and 35 (4.3%) patients at initial diagnosis, respectively. Patients with MF often correlated with some poor prognostic characteristics, including older age, anemia, unfavorable karyotype, higher BM blast and a higher IPSS-R category. For the entire cohort, the median OS was not reached, 30, 16 and 15 months for patients with MF 0, 1, 2 and 3, respectively. After adjusting for IPSS-R, the hazard ratio for mortality was 1.56 (95% CI, 1.18–2.06) for patients with MF1, 2.29 (95% CI, 1.61–3.27) for patients with MF2 and 2.75 (95% CI, 1.69–4.49) for patients with MF3 compared with those with MF0. The mutational landscape of 370 patients showed that TP53, U2AF1 and KMT2D mutations were more frequent in patients with MF2-3. In addition, of the 408 patients with MF0-1, 62 patients (15.1%) progressed to MF2-3 during the follow-up interval. The clinical features, mutation landscape and prognosis of patients with progressed fibrosis were similar to those of patients with MF2-3 at diagnosis. We concluded that BM fibrosis (MF1, 2 and 3) was an adverse prognosis feature in primary MDS and correlated with TP53 mutations both at the time of initial diagnosis and during the course of the disease. Therefore, BM fibrosis should be included in the revised prognostic scoring system and carefully considered in treatment selection.
Collapse
|
15
|
Guo Y, Liu Z, Duan L, Shen H, Ding K, Fu R. Selinexor synergizes with azacitidine to eliminate myelodysplastic syndrome cells through p53 nuclear accumulation. Invest New Drugs 2022; 40:738-746. [PMID: 35576022 DOI: 10.1007/s10637-022-01251-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal malignancies of multipotent hematopoietic stem cells, characterized by ineffective hematopoiesis leading to cytopenia. Hypomethylating agents, including azacitidine, have been used for treating MDS with some success; however, the overall survival rate remains poor and, therefore, finding new therapies is necessary. Selinexor, which exerts anticancer effects against some hematologic tumors, is a nuclear export protein inhibitor that blocks cell proliferation and induces apoptosis in various cancer cell lines. We investigated the effects of combined selinexor and azacitidine administration on two MDS cell lines, namely SKM-1 and MUTZ-1. Cells were subjected to a proliferation assay, and the effects of each drug alone, and in combination, were compared. Changes in apoptosis and the cell cycle between groups were also analyzed. Western blotting was conducted to identify the underlying mechanism of action of combined selinexor and azacitidine therapy. The results revealed that the combination of selinexor and azacitidine synergistically inhibited MDS cell proliferation and arrested the cell cycle at the G2/M phase. This combination also promoted MDS cell apoptosis and enhanced p53 accumulation in the nucleus, thereby allowing p53 to be activated and to function as a tumor suppressor. Overall, our results indicate that the combination of selinexor and azacitidine may be a promising approach for treating MDS.
Collapse
Affiliation(s)
- Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lixiang Duan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Hematology, Yuncheng Central Hospital, Shanxi, China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
16
|
Li M, Lan F, Li C, Li N, Chen X, Zhong Y, Yang Y, Shao Y, Kong Y, Li X, Wu D, Zhang J, Chen W, Li Z, Zhu X. Expression and Regulation Network of HDAC3 in Acute Myeloid Leukemia and the Implication for Targeted Therapy Based on Multidataset Data Mining. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4703524. [PMID: 35371279 PMCID: PMC8966751 DOI: 10.1155/2022/4703524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Background Histone deacetylase 3 (HDAC3) plays an important role in the development and progression of a variety of cancers, but its regulatory mechanism in acute myeloid leukemia (LAML) is not entirely understood. Methods We analyzed the expression of HDAC3 in normal and cancerous tissues using Oncomine, UALCAN, and GEO databases. Changes of the HDAC3 gene were analyzed by cBioPortal. The genes coexpressed with HDAC3 were analyzed by WebGestalt, and the predicted signaling pathways in KEGG were discussed. Results We discovered that the expression of HDAC3 was elevated in some types of acute myeloid leukemia. The HDAC3 gene has a strong positive correlation with SLC25A5, NDUFA2, Cox4I1, and EIF3K, which regulate cell growth and development. HDAC3 transcription is higher in patients with FLT3 mutation than in healthy people. HDAC3 can be directly involved in regulating the thyroid hormone signaling pathway. MEF2D is directly involved in the cGMP-PKG signaling pathway, and the HDAC3 gene has a strong synergistic relationship with MEF2D. HDAC3 is indirectly involved in the cGMP-PKG signaling pathway, thereby indirectly regulating the expression levels of p53 and p21 genes in patients with LAML. Genomics of Drug Sensitivity in Cancer (GDSC) database analysis revealed that the application of the HDAC3 inhibitor can inhibit the proliferation of leukemia cells. Conclusions Therefore, our data suggest that HDAC3 may be a possible therapeutic target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Minhua Li
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Feifei Lan
- Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, 14195 Berlin, Germany
| | - Ning Li
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Xiaojie Chen
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yueyuan Zhong
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yue Yang
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yingqi Shao
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Yi Kong
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Xinming Li
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Danny Wu
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Jingyu Zhang
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Wenqing Chen
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhu's Group, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
17
|
Decreased serum apolipoprotein A1 level predicts poor prognosis of patients with de novo myelodysplastic syndromes. BMC Cancer 2022; 22:127. [PMID: 35100989 PMCID: PMC8805344 DOI: 10.1186/s12885-022-09248-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/27/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) is a group of heterogeneous myeloid clonal diseases originating from hematopoietic stem cells. It has been demonstrated that apolipoproteins A1(ApoA1) are associated with disease risk in many cancer types. However, there still lacks evidence regarding the link between ApoA1 and MDS. This study was designed to investigate the prognostic value of pretreatment ApoA1 levels in MDS patients. METHODS We retrospectively analyzed a cohort of 228 MDS patients to explore the prognostic value of the serum ApoA1 levels at diagnosis. Patients were divided into the high ApoA1 group and the low ApoA1 group. The prognostic significance was determined by univariate and multivariate Cox hazard models. RESULTS MDS patients with low ApoA1 levels had significantly shorter overall survival (OS, P < 0.0001) along with a higher frequency of TP53 mutation (P = 0.002). Based on univariate analysis, age (≥ 60 years), gender (male), lower levels of hemoglobin (< 10 g/dl), HDL (≤0.91 mmol/L), higher bone marrow blast percentage (> 5%), higher IPSS-R scores and poorer karyotype were significantly associated with decreased OS. However, low ApoA1 level did not influence leukemia-free survival (LFS, P = 0.367). Multivariate Cox proportional hazards regression analysis indicated that low ApoA1 level (≤ 1.02 g/L) was also an independent adverse prognostic factor for OS in MDS (P = 0.034). CONCLUSIONS Decreased ApoA1 level predicts a poor prognosis of MDS patients and thus provides a novel evaluation factor for them that is independent of the IPSS-R system.
Collapse
|
18
|
Monosomal karyotype as an adverse risk factor for inferior survivals in children with acute myeloid leukemia. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2021. [DOI: 10.1016/j.phoj.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Abstract
PURPOSE OF REVIEW To review available data on the relationship of MDS and aging and to address the question if biological changes of (premature) aging are a prerequisite for the development of MDS. RECENT FINDINGS Whereas the association of MDS with advanced age and some common biologic features of aging and MDS are well established, additional evidence for both, especially on the role of stem cells, the stem cell niche, and inflammation, has been recently described. Biologically, many but not all drivers of aging also play a role in the development and propagation of MDS and vice versa. As a consequence, aging contributes to the development of MDS which can be seen as an interplay of clonal disease and normal and premature aging. The impact of aging may be different in specific MDS subtypes and risk groups.
Collapse
Affiliation(s)
- Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen, Wels, Austria
- Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Stauder
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Pfeilstöcker
- 3rd Medical Department, Hanusch Hospital, H.Collinstr 30, 1140, Vienna, Austria.
| |
Collapse
|
20
|
Fink A, Hung E, Singh I, Ben-Neriah Y. Immunity in acute myeloid leukemia: Where the immune response and targeted therapy meet. Eur J Immunol 2021; 52:34-43. [PMID: 34648664 DOI: 10.1002/eji.202048945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive disease with high relapse and mortality rates. Recent years have shown a surge in novel therapeutic development for AML, both in clinical and preclinical stages. These developments include targeted therapies based on AML-specific molecular signatures as well as more general immune modulation and vaccination studies. In this review, we will explore the evolving arena of AML therapy and suggest some intriguing connections between immune system modulation and targeted therapy. Improved understanding of the immune system involvement in various stages of the disease and the crosstalk between immune effectors, targeted therapy, and AML cells can provide a better framework for designing the next generation of AML therapies.
Collapse
Affiliation(s)
- Avner Fink
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eric Hung
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Indranil Singh
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
21
|
Balla B, Tripon F, Banescu C. From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. Int J Mol Sci 2021; 22:10065. [PMID: 34576226 PMCID: PMC8470190 DOI: 10.3390/ijms221810065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Genome engineering makes the precise manipulation of DNA sequences possible in a cell. Therefore, it is essential for understanding gene function. Meganucleases were the start of genome engineering, and it continued with the discovery of Zinc finger nucleases (ZFNs), followed by Transcription activator-like effector nucleases (TALENs). They can generate double-strand breaks at a desired target site in the genome, and therefore can be used to knock in mutations or knock out genes in the same way. Years later, genome engineering was transformed by the discovery of clustered regularly interspaced short palindromic repeats (CRISPR). Implementation of CRISPR systems involves recognition guided by RNA and the precise cleaving of DNA molecules. This property proves its utility in epigenetics and genome engineering. CRISPR has been and is being continuously successfully used to model mutations in leukemic cell lines and control gene expression. Furthermore, it is used to identify targets and discover drugs for immune therapies. The descriptive and functional genomics of leukemias is discussed in this study, with an emphasis on genome engineering methods. The CRISPR/Cas9 system's challenges, viewpoints, limits, and solutions are also explored.
Collapse
Affiliation(s)
- Beata Balla
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
| | - Claudia Banescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania; (B.B.); (C.B.)
- Center for Advanced Medical and Pharmaceutical Research, Genetics Laboratory, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Strada Gheorghe Marinescu 38, 540139 Târgu Mureș, Romania
- Clinical and Emergency County Hospital of Târgu Mureș, Strada Gheorghe Marinescu 50, 540136 Târgu Mureș, Romania
| |
Collapse
|
22
|
PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression. Leukemia 2021; 36:370-382. [PMID: 34465864 PMCID: PMC8807395 DOI: 10.1038/s41375-021-01392-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As an important epigenetic regulator, PHF6 mutations frequently coexist with JAK3 mutations in T-ALL patients. However, the role(s) of PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor (tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL patients with PHF6 and JAK3 comutation.
Collapse
|
23
|
Song J, Shang B, Pei Y, Shi M, Niu X, Dou L, Drokow EK, Xu F, Bai Y, Sun K. A higher percentage of leukemic blasts with vacuoles predicts unfavorable outcomes in patients with acute myeloid leukemia. Leuk Res 2021; 109:106638. [PMID: 34116372 DOI: 10.1016/j.leukres.2021.106638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Cytoplasmic vacuoles, which are a morphological feature of dysplasia, can be observed under a microscope at initial diagnosis. Recently, this typical morphological feature has been found to be associated with impaired survival. To investigate the clinical significance of the grading of blasts with vacuoles in acute myeloid leukemia (AML), we retrospectively studied 152 patients newly diagnosed with non-M3 AML. The patients were categorized into three groups according to the percentage of blasts with vacuoles (>20 %, 11-20 %, 0-10 %). A high percentage of blasts with vacuoles (>20 %) was positively associated with the European Leukemia Net (2017-ELN) high-risk AML, a complex karyotype, TP53 and IDH1/2 mutations, and CD71 expression and negatively associated with the ELN low-risk category. Importantly, patients who had a higher percentage of blasts with vacuoles had a lower complete remission rate in response to first-cycle induction chemotherapy. The overall survival and event-free survival of patients who had a higher percentage of blasts with vacuoles were significantly shorter. Moreover, multivariate analysis showed that blast vacuolization was an independent high prognostic factor for AML. In conclusion, a higher percentage of leukemic blasts with vacuoles predicts worse outcomes in AML and may have potential as a prognostic marker.
Collapse
Affiliation(s)
- Juanjuan Song
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Baojun Shang
- Institute of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Yanru Pei
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Liurui Dou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Emmanuel Kwateng Drokow
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Fangfang Xu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Henan, People's Republic of China.
| |
Collapse
|
24
|
Shi L, Huang R, Lai Y. Identification and validation of signal recognition particle 14 as a prognostic biomarker predicting overall survival in patients with acute myeloid leukemia. BMC Med Genomics 2021; 14:127. [PMID: 33985510 PMCID: PMC8120815 DOI: 10.1186/s12920-021-00975-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to determine and verify the prognostic value and potential functional mechanism of signal recognition particle 14 (SRP14) in acute myeloid leukemia (AML) using a genome-wide expression profile dataset. METHODS We obtained an AML genome-wide expression profile dataset and clinical prognostic data from The Cancer Genome Atlas (TCGA) and GSE12417 databases, and explored the prognostic value and functional mechanism of SRP14 in AML using survival analysis and various online tools. RESULTS Survival analysis showed that AML patients with high SRP14 expression had poorer overall survival than patients with low SRP14 expression. Time-dependent receiver operating characteristic curves indicated that SRP14 had good accuracy for predicting the prognosis in patients with AML. Genome-wide co-expression analysis suggested that SRP14 may play a role in AML by participating in the regulation of biological processes and signaling pathways, such as cell cycle, cell adhesion, mitogen-activated protein kinase, tumor necrosis factor, T cell receptor, DNA damage response, and nuclear factor-kappa B (NF-κB) signaling. Gene set enrichment analysis indicated that SRP14 was significantly enriched in biological processes and signaling pathways including regulation of hematopoietic progenitor cell differentiation and stem cell differentiation, intrinsic apoptotic signaling pathway by p53 class mediator, interleukin-1, T cell mediated cytotoxicity, and NF-κB-inducing kinase/NF-κB signaling. Using the TCGA AML dataset, we also identified four drugs (phenazone, benzydamine, cinnarizine, antazoline) that may serve as SRP14-targeted drugs in AML. CONCLUSION The current results revealed that high SRP14 expression was significantly related to a poor prognosis and may serve as a prognostic biomarker in patients with AML.
Collapse
Affiliation(s)
- Lingling Shi
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021 Guangxi People’s Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021 Guangxi People’s Republic of China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
25
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
26
|
Lin XC, Yang Q, Fu WY, Lan LB, Ding H, Zhang YM, Li N, Zhang HT. Integrated analysis of microRNA and transcription factors in the bone marrow of patients with acute monocytic leukemia. Oncol Lett 2020; 21:50. [PMID: 33281961 PMCID: PMC7709554 DOI: 10.3892/ol.2020.12311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Acutemonocytic leukemia (AMoL) is a distinct subtype of acute myeloid leukemia (AML) with poor prognosis. However, the molecular mechanisms and key regulators involved in the global regulation of gene expression levels in AMoL are poorly understood. In order to elucidate the role of microRNAs (miRNAs/miRs) and transcription factors (TFs) in AMoL pathogenesis at the network level, miRNA and TF expression level profiles were systematically analyzed by miRNA sequencing and TF array, respectively; this identified 285 differentially expressed miRNAs and 139 differentially expressed TFs in AMoL samples compared with controls. By combining expression level profile data and bioinformatics tools available for predicting TF and miRNA targets, a comprehensive AMoL-specific miRNA-TF-mediated regulatory network was constructed. A total of 26 miRNAs and 23 TFs were identified as hub nodes in the network. Among these hubs, miR-29b-3p, MYC, TP53 and NFKB1 were determined to be potential AMoL regulators, and were subsequently extracted to construct sub-networks. A hypothetical pathway model was also proposed for miR-29b-3p to reveal the potential co-regulatory mechanisms of miR-29b-3p, MYC, TP53 and NFKB1 in AMoL. The present study provided an effective approach to discover critical regulators via a comprehensive regulatory network in AMoL, in addition to enhancing understanding of the pathogenesis of this disease at the molecular level.
Collapse
Affiliation(s)
- Xiao-Cong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qin Yang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Wei-Yu Fu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liu-Bo Lan
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yu-Ming Zhang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
27
|
Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, Fisher PB, Mi QS, Moreno E, Gogna R. Cell Competition Boosts Clonal Evolution and Hypoxic Selection in Cancer. Trends Cell Biol 2020; 30:967-978. [PMID: 33160818 DOI: 10.1016/j.tcb.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The comparison of fitness between cells leads to the elimination of less competent cells in the presence of more competent neighbors via cell competition (CC). This phenomenon has been linked with several cancer-related genes and thus may play an important role in cancer. Various processes are involved in the regulation of tumor initiation and growth, including tumor hypoxia, clonal stem cell selection, and immune cell response, all of which have been recently shown to have a potential connection with the mechanisms involved in CC. This review aims to unravel the relation between these processes and competitive cell interactions and how this affects disease progression.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Michail Yekelchyk
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
28
|
Eskandari M, Shi Y, Liu J, Albanese J, Goel S, Verma A, Wang Y. The expression of MDM2, MDM4, p53 and p21 in myeloid neoplasms and the effect of MDM2/MDM4 dual inhibitor. Leuk Lymphoma 2020; 62:167-175. [PMID: 32924682 DOI: 10.1080/10428194.2020.1817441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p53 together with its downstream product p21 plays an important role in tumorigenesis development. MDM2 and MDM4 are two p53 regulators. We studied the expression of p53, p21, MDM2, and MDM4 in a total of 120 cases of myeloid neoplasms including MDS, AML or MDS/MPN, and control, using single and double immunohistochemical stains. We found TP53 mutations had a worse outcome in patients with AML/MDS, and p53 expression detected by immunohistochemistry had a similar prognostic value. p21 expression was strongly related to TP53 mutation status, with loss of expression in almost all TP53 mutated cases. MDM2 and MDM4 were highly expressed in hematopoietic cells in both benign and neoplastic cells. MDM2/p53 double positive cells exceeded MDM4/p53 double positive cells in neoplastic cases. Finally, we observed that p21 protein expression was up regulated upon the use of ALRN-6924 (Aileron) while no significant changes were seen in p53, MDM2 and MDM4 expression.
Collapse
Affiliation(s)
| | - Yang Shi
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| | - John Liu
- Rensselaer Polytechnic Institute, Troy, MI, USA
| | - Joseph Albanese
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| | - Swati Goel
- Department of Oncology, Montefiore Einstein Center for Cancer Care, New York, NY, USA
| | - Amit Verma
- Department of Oncology, Montefiore Einstein Center for Cancer Care, New York, NY, USA
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| |
Collapse
|
29
|
Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in Myelodysplastic Syndromes: Recent Biological and Clinical Findings. Int J Mol Sci 2020; 21:E3432. [PMID: 32414002 PMCID: PMC7279310 DOI: 10.3390/ijms21103432] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
TP53 dysregulation plays a pivotal role in the molecular pathogenesis of myelodysplastic syndromes (MDS), identifying a subgroup of patients with peculiar features. In this review we report the recent biological and clinical findings of TP53-mutated MDS, focusing on the molecular pathways activation and on its impact on the cellular physiology. In MDS, TP53 mutational status is deeply associated with del(5q) syndrome and its dysregulation impacts on cell cycle, DNA repair and apoptosis inducing chromosomal instability and the clonal evolution of disease. TP53 defects influence adversely the MDS clinical outcome and the treatment response rate, thus new therapeutic approaches are being developed for these patients. TP53 allelic state characterization and the mutational burden evaluation can therefore predict prognosis and identify the subgroup of patients eligible for targeted therapy. For these reasons, in the era of precision medicine, the MDS diagnostic workup cannot do without the complete assessment of TP53 mutational profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (C.C.); (G.T.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
30
|
Yu J, Li Y, Zhang D, Wan D, Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol 2020; 9:4. [PMID: 32231866 PMCID: PMC7099827 DOI: 10.1186/s40164-020-00161-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal malignancy characterized by recurrent gene mutations. Genomic heterogeneity, patients’ individual variability, and recurrent gene mutations are the major obstacles among many factors that impact treatment efficacy of the AML patients. With the application of cost- and time-effective next-generation sequencing (NGS) technologies, an enormous diversity of genetic mutations has been identified. The recurrent gene mutations and their important roles in acute myeloid leukemia (AML) pathogenesis have been studied extensively. In this review, we summarize the recent development on the gene mutation in patients with AML.
Collapse
Affiliation(s)
- Jifeng Yu
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China.,2Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Danfeng Zhang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhongxing Jiang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
31
|
Badar T, Szabo A, Sallman D, Komrojki R, Lancet J, Padron E, Song J, Hussaini MO. Interrogation of molecular profiles can help in differentiating between MDS and AML with MDS-related changes. Leuk Lymphoma 2020; 61:1418-1427. [DOI: 10.1080/10428194.2020.1719089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Talha Badar
- Division of Hematology and Oncology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Hematology and Oncology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, WI, USA
| | - David Sallman
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Rami Komrojki
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jefferey Lancet
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL, USA
| | - Mohammad Omar Hussaini
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
32
|
Ferrara F, Picardi A. Is outcome of older people with acute myeloid leukemia improving with new therapeutic approaches and stem cell transplantation? Expert Rev Hematol 2020; 13:99-108. [PMID: 31922453 DOI: 10.1080/17474086.2020.1715207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The clinical outcome of older patients with acute myeloid leukemia (AML) is still poor, especially for those who are unfit to treatments aimed at altering the natural course of the disease. Hypomethylating agents (HMA) offer an important therapeutic opportunity to a consistent number of patients, but long-term results are largely unsatisfactory.Area covered: Recently, a number of new agents have been registered for AML, some of which selectively available for older patient population, with promising results in terms of response rate and survival. Furthermore, the upper age limit for allogeneic stem cell transplantation is constantly increasing, so that this procedure is offered and actually given to an increasing number of older patients with AML. A literature review was conducted of the PubMed database for articles published in English as well as for abstracts from most important and recent hematology meetings on AML in older patients.Expert opinion: Appropriate selection among different options on the basis of clinical fitness and molecular findings at diagnosis as well as at relapse would result in improvement of therapeutic results, sparing unnecessary toxicity and optimizing health systems resources.
Collapse
Affiliation(s)
- Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy
| | - Alessandra Picardi
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| |
Collapse
|
33
|
Dhakal P, Pyakuryal B, Pudasainee P, Rajasurya V, Gundabolu K, Bhatt VR. Treatment Strategies for Therapy-related Acute Myeloid Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 20:147-155. [PMID: 31953046 DOI: 10.1016/j.clml.2019.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/20/2023]
Abstract
Prospective evidence for management of therapy-related acute myeloid leukemia (t-AML) is limited, with evidence extrapolated from major AML trials. Optimal treatment is challenging and needs consideration of patient-specific, disease-specific, and therapy-specific factors. Clinical trials are recommended, especially for unfit patients or those with unfavorable cytogenetics or mutations. CPX-351 as an upfront intensive chemotherapy is preferred for fit patients; venetoclax with decitabine or azacitidine is an option for patients unfit for intensive chemotherapy. Hematopoietic cell transplant, the only curative option, should be offered to eligible patients with intermediate or unfavorable t-AML or patients with good-risk AML with minimal residual disease. Ongoing clinical trials focusing on treatment of t-AML, including targeted agents and immunotherapy, bode well for the future.
Collapse
Affiliation(s)
- Prajwal Dhakal
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE.
| | - Bimatshu Pyakuryal
- Department of Internal Medicine, Nepal Medical College, Kathmandu, Nepal
| | - Prasun Pudasainee
- Department of Internal Medicine, Nepal Medical College, Kathmandu, Nepal
| | | | - Krishna Gundabolu
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Vijaya Raj Bhatt
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
34
|
Mutations associated with age-related clonal hematopoiesis in PMF patients with rapid progression to myelofibrosis. Leukemia 2019; 34:1364-1372. [PMID: 31776465 DOI: 10.1038/s41375-019-0668-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Accepted: 11/17/2019] [Indexed: 01/07/2023]
Abstract
Besides histopathological findings there are no indicators of increased risk for fibrotic progression in myeloproliferative neoplasms (MPN). Age-related clonal hematopoiesis (ARCH/CHIP) is a frequent finding in the elderly and combinations with MPN driver mutations (JAK2, MPL, and CALR) have been described. To determine the impact of ARCH/CHIP-related mutations for development of fibrosis in primary myelofibrosis (PMF), the mutational status of cases with fibrotic progression from grade 0 to grade 2/3 (n = 77) as evidenced by follow-up bone marrow biopsies (median 6.2 years) was compared with prefibrotic PMF samples without development of fibrosis (n = 27; median follow-up 7.3 years). Frequent ARCH/CHIP-associated mutations (TET2, ASXL1, and DNMT3A) demonstrable at presentation were not connected with fibrotic progression. However, mutations which are rarely found in ARCH/CHIP (SRSF2, U2AF1, SF3B1, IDH1/2, and EZH2) were present in 24.7% of cases with later development of fibrosis and not detectable in cases staying free from fibrosis (P = 0.0028). Determination of the tumor mutational burden (TMB) in a subgroup of cases (n = 32) did not show significant differences (7.68 mutations/MB vs. 6.85 mutations/MB). We conclude that mutations rarely found in ARCH/CHIP provide an independent risk factor for rapid fibrotic progression (median 2.0 years) when manifest already at first presentation.
Collapse
|
35
|
Zimta AA, Tomuleasa C, Sahnoune I, Calin GA, Berindan-Neagoe I. Long Non-coding RNAs in Myeloid Malignancies. Front Oncol 2019; 9:1048. [PMID: 31681586 PMCID: PMC6813191 DOI: 10.3389/fonc.2019.01048] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) represents 80% of adult leukemias and 15-20% of childhood leukemias. AML are characterized by the presence of 20% blasts or more in the bone marrow, or defining cytogenetic abnormalities. Laboratory diagnoses of myelodysplastic syndromes (MDS) depend on morphological changes based on dysplasia in peripheral blood and bone marrow, including peripheral blood smears, bone marrow aspirate smears, and bone marrow biopsies. As leukemic cells are not functional, the patient develops anemia, neutropenia, and thrombocytopenia, leading to fatigue, recurrent infections, and hemorrhage. The genetic background and associated mutations in AML blasts determine the clinical course of the disease. Over the last decade, non-coding RNAs transcripts that do not codify for proteins but play a role in regulation of functions have been shown to have multiple applications in the diagnosis, prognosis and therapeutic approach of various types of cancers, including myeloid malignancies. After a comprehensive review of current literature, we found reports of multiple long non-coding RNAs (lncRNAs) that can differentiate between AML types and how their exogenous modulation can dramatically change the behavior of AML cells. These lncRNAs include: H19, LINC00877, RP11-84C10, CRINDE, RP11848P1.3, ZNF667-AS1, AC111000.4-202, SFMBT2, LINC02082-201, MEG3, AC009495.2, PVT1, HOTTIP, SNHG5, and CCAT1. In addition, by performing an analysis on available AML data in The Cancer Genome Atlas (TCGA), we found 10 lncRNAs with significantly differential expression between patients in favorable, intermediate/normal, or poor cytogenetic risk categories. These are: DANCR, PRDM16-DT, SNHG6, OIP5-AS1, SNHG16, JPX, FTX, KCNQ1OT1, TP73-AS1, and GAS5. The identification of a molecular signature based on lncRNAs has the potential for have deep clinical significance, as it could potentially help better define the evolution from low-grade MDS to high-grade MDS to AML, changing the course of therapy. This would allow clinicians to provide a more personalized, patient-tailored therapeutic approach, moving from transfusion-based therapy, as is the case for low-grade MDS, to the introduction of azacytidine-based chemotherapy or allogeneic stem cell transplantation, which is the current treatment for high-grade MDS.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MedFuture - Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Iman Sahnoune
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| |
Collapse
|
36
|
Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Precision medicine for TP53-mutated acute myeloid leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1644164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
DiNardo C, Lachowiez C. Acute Myeloid Leukemia: from Mutation Profiling to Treatment Decisions. Curr Hematol Malig Rep 2019; 14:386-394. [DOI: 10.1007/s11899-019-00535-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Chronic Myelomonocytic Leukemia With Fibrosis Is a Distinct Disease Subset With Myeloproliferative Features and Frequent JAK2 p.V617F Mutations. Am J Surg Pathol 2019; 42:799-806. [PMID: 29596070 DOI: 10.1097/pas.0000000000001058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A subset of patients with chronic myelomonocytic leukemia (CMML) presents with significance myelofibrosis. In myelodysplastic syndromes, significant myelofibrosis has been associated with adverse outcomes and p53 dysregulation. However, in CMML the clinical and molecular correlates of significant myelofibrosis at presentation remain poorly understood. From a cohort of 651 CMML patients, we identified retrospectively 20 (3.1%) cases with moderate to severe reticulin fibrosis (CMML-F) detected at diagnosis, and we compared them to CMML patients without fibrosis (n=631) seen during the same period. Patients with CMML-F had a median age of 69.8 years (range, 24.8 to 91.2 y) and most (13; 65%) were men. Patients with CMML-F differed significantly from other CMML patients across the following parameters: white blood count, absolute monocyte count, serum lactate dehydrogenase level, splenomegaly, and bone marrow blast percentage. Notably, the frequency of JAK2 p.V617F mutation was higher in CMML-F patients compared with other CMML patients (P<0.001). Most CMML-F patients (12/20; 60%) had myeloproliferative CMML. Dysregulation of p53 was uncommon in CMML-F. CMML-F patients tended to have a shorter median overall survival compared with other CMML patients (P=0.079). Multivariate analysis using the Cox proportional hazards model showed an independent association between CMML-F and overall survival (P=0.047). In summary, unlike typical CMML, CMML-F is commonly associated with JAK2 p.V617F. The high frequency of myeloproliferative features and JAK2 p.V617F mutation, and the low frequency of p53 dysregulation, suggest that fibrosis in the context of CMML has a different pathogenesis from that previously reported in myelodysplastic syndrome.
Collapse
|
39
|
Gil-Perez A, Montalban-Bravo G. Management of myelodysplastic syndromes after failure of response to hypomethylating agents. Ther Adv Hematol 2019; 10:2040620719847059. [PMID: 31156799 PMCID: PMC6515843 DOI: 10.1177/2040620719847059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Hypomethylating agents (HMAs) are the standard of care for patients with myelodysplastic syndrome (MDS). However, only around 50% of patients respond to these agents, and responses tend to be transient, with loss of response frequently happening within 2 years and being associated with very poor prognosis and limited therapeutic options. Identification of patients who will respond to HMAs is challenging. Mechanisms underlying resistance to HMAs are not clear yet. Recently, absence of response has been associated with increased cell-cycle quiescence among the hematopoietic progenitor cells. There are no standard-of-care options for patients after HMA failure. However, the increasing knowledge of MDS pathogenesis has led to the development of new potential therapies, including HMAs with longer half-life and exposure, inhibition of the antiapoptotic BCL2 protein with venetoclax or inhibition of immune-checkpoint regulatory proteins such as PD-1 or CTLA-4, innate immunity and targeting of CD33/CD3 with multiple monoclonal antibodies. In addition, multiple targeted agents are opening opportunities to treat subgroups of patients whose disease harbors mutations in TP53, IDH, FLT3, and genes involved in splicing machinery. Newer formulations of intensive chemotherapy and its different combinations may be considered a valid option in selected patients after HMA failure. Finally, decision making at the time of failure of response to HMAs should be personalized, taking into account that allogenic stem-cell transplantation remains the only therapeutic approach with curative potential in these patients. In the current review, we will focus on all the above aspects.
Collapse
Affiliation(s)
| | - Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77015, USA
| |
Collapse
|
40
|
Huang HJ, Shi ZX, Li B, Qin TJ, Xu ZF, Zhang HL, Fang LW, Hu NB, Pan LJ, Qu SQ, Liu D, Cai YN, Zhang YD, Xiao ZJ. [Clinical implications and prognostic value of TP53 gene mutation and deletion in patients with myelodysplastic syndromes]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:215-221. [PMID: 30929389 PMCID: PMC7342541 DOI: 10.3760/cma.j.issn.0253-2727.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
目的 探讨伴TP53基因异常骨髓增生异常综合征(MDS)患者的临床特征及预后。 方法 回顾性分析2009年10月至2017年12月中国医学科学院血液病医院新诊断的584例原发性MDS患者临床资料,采用包含112个血液肿瘤相关基因的靶向测序技术进行突变分析,并采用间期荧光原位杂交(FISH)技术检测TP53基因缺失。分析TP53基因突变和(或)缺失与临床特征之间的关系及其对患者总生存(OS)的影响。 结果 42例(7.2%)伴TP53基因异常,其中单纯基因突变31例(5.3%),单纯基因缺失8例(1.4%),同时伴有突变和缺失3例(0.5%)。34例伴TP53基因突变患者中共检测到37个TP53突变,其中35个位于DNA结合结构域(第5~8号外显子),1个位于第10号外显子,1个为剪切位点突变。伴TP53基因异常组的平均基因突变数目(2.52个)显著高于无异常组(1.96个)(z=−2.418,P=0.016)。伴TP53基因异常患者的中位年龄[60(21~78)岁]高于无异常患者[52(14~83)岁](z=−2.188,P=0.029);伴TP53基因异常组中复杂核型比例、IPSS较高危组(中危-2及高危)比例显著高于无异常组(P值均<0.001)。伴TP53基因异常组的中位OS期[13(95%CI 7.57~18.43)个月]较无异常组(未达到)显著缩短(χ2=12.342,P<0.001),但多因素模型纳入复杂核型进行校正后,TP53突变不再是独立预后因素。 结论 伴TP53基因异常MDS患者中基因突变较基因缺失常见,突变位点主要分布于DNA结合结构域。TP53基因异常与复杂核型相关,且常与多个基因突变相伴出现。在多因素模型纳入复杂核型校正后,TP53基因异常则不再是独立的预后因素。
Collapse
Affiliation(s)
- H J Huang
- Institute of Hematology and Blood Diseases Hospital CAMS & PUMC, The State Key Laboratory of Experimental Hematology, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Next Generation Sequencing in AML-On the Way to Becoming a New Standard for Treatment Initiation and/or Modulation? Cancers (Basel) 2019; 11:cancers11020252. [PMID: 30795628 PMCID: PMC6406956 DOI: 10.3390/cancers11020252] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disease caused by genetic abberations occurring predominantly in the elderly. Next generation sequencing (NGS) analysis has led to a deeper genetic understanding of the pathogenesis and the role of recently discovered genetic precursor lesions (clonal hematopoiesis of indeterminate/oncogenic potential (CHIP/CHOP)) in the evolution of AML. These advances are reflected by the inclusion of certain mutations in the updated World Health Organization (WHO) 2016 classification and current treatment guidelines by the European Leukemia Net (ELN) and National Comprehensive Cancer Network (NCCN) and results of mutational testing are already influencing the choice and timing of (targeted) treatment. Genetic profiling and stratification of patients into molecularly defined subgroups are expected to gain ever more weight in daily clinical practice. Our aim is to provide a concise summary of current evidence regarding the relevance of NGS for the diagnosis, risk stratification, treatment planning and response assessment in AML, including minimal residual disease (MRD) guided approaches. We also summarize recently approved drugs targeting genetically defined patient populations with risk adapted- and individualized treatment strategies.
Collapse
|
42
|
Lee JH, List A, Sallman DA. Molecular pathogenesis of myelodysplastic syndromes with deletion 5q. Eur J Haematol 2019; 102:203-209. [PMID: 30578738 DOI: 10.1111/ejh.13207] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
The molecular pathogenesis of deletion 5q (del(5q)) myelodysplastic syndrome (MDS) has recently been realized as a result of major advances in our understanding of the mechanisms responsible for clinical phenotype. Identification of commonly deleted genes such as RPS14, miRNA-145, HSPA9, CD78, and CSNK1a1 have elucidated the precise biological changes responsible for the anemia, leukopenia, and thrombocytosis that characterizes del(5q) MDS and highlighted the importance of allelic haploinsufficiency in the hematological phenotype. Recent elegant investigations have also identified a critical role of innate immune signaling in del(5q) pathogenesis. TP53 and Wnt/β-catenin pathways have also been found to be involved in clonal expansion and progression of the disease as well as resistance and poor outcomes to available therapy. Understanding the molecular pathogenesis of the disease has provided a critical foundation in identifying the biological targets of lenalidomide in del(5q) MDS, which has led to the development of novel therapeutic agents in hematologic malignancies as well as potential alternative targets to exploit in patients who have failed lenalidomide treatment.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Alan List
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - David A Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
43
|
Fuchs O. Treatment of Lymphoid and Myeloid Malignancies by Immunomodulatory Drugs. Cardiovasc Hematol Disord Drug Targets 2019; 19:51-78. [PMID: 29788898 DOI: 10.2174/1871529x18666180522073855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Thalidomide and its derivatives (lenalidomide, pomalidomide, avadomide, iberdomide hydrochoride, CC-885 and CC-90009) form the family of immunomodulatory drugs (IMiDs). Lenalidomide (CC5013, Revlimid®) was approved by the US FDA and the EMA for the treatment of multiple myeloma (MM) patients, low or intermediate-1 risk transfusion-dependent myelodysplastic syndrome (MDS) with chromosome 5q deletion [del(5q)] and relapsed and/or refractory mantle cell lymphoma following bortezomib. Lenalidomide has also been studied in clinical trials and has shown promising activity in chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). Lenalidomide has anti-inflammatory effects and inhibits angiogenesis. Pomalidomide (CC4047, Imnovid® [EU], Pomalyst® [USA]) was approved for advanced MM insensitive to bortezomib and lenalidomide. Other IMiDs are in phases 1 and 2 of clinical trials. Cereblon (CRBN) seems to have an important role in IMiDs action in both lymphoid and myeloid hematological malignancies. Cereblon acts as the substrate receptor of a cullin-4 really interesting new gene (RING) E3 ubiquitin ligase CRL4CRBN. This E3 ubiquitin ligase in the absence of lenalidomide ubiquitinates CRBN itself and the other components of CRL4CRBN complex. Presence of lenalidomide changes specificity of CRL4CRBN which ubiquitinates two transcription factors, IKZF1 (Ikaros) and IKZF3 (Aiolos), and casein kinase 1α (CK1α) and marks them for degradation in proteasomes. Both these transcription factors (IKZF1 and IKZF3) stimulate proliferation of MM cells and inhibit T cells. Low CRBN level was connected with insensitivity of MM cells to lenalidomide. Lenalidomide decreases expression of protein argonaute-2, which binds to cereblon. Argonaute-2 seems to be an important drug target against IMiDs resistance in MM cells. Lenalidomide decreases also basigin and monocarboxylate transporter 1 in MM cells. MM cells with low expression of Ikaros, Aiolos and basigin are more sensitive to lenalidomide treatment. The CK1α gene (CSNK1A1) is located on 5q32 in commonly deleted region (CDR) in del(5q) MDS. Inhibition of CK1α sensitizes del(5q) MDS cells to lenalidomide. CK1α mediates also survival of malignant plasma cells in MM. Though, inhibition of CK1α is a potential novel therapy not only in del(5q) MDS but also in MM. High level of full length CRBN mRNA in mononuclear cells of bone marrow and of peripheral blood seems to be necessary for successful therapy of del(5q) MDS with lenalidomide. While transfusion independence (TI) after lenalidomide treatment is more than 60% in MDS patients with del(5q), only 25% TI and substantially shorter duration of response with occurrence of neutropenia and thrombocytopenia were achieved in lower risk MDS patients with normal karyotype treated with lenalidomide. Shortage of the biomarkers for lenalidomide response in these MDS patients is the main problem up to now.
Collapse
Affiliation(s)
- Ota Fuchs
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
44
|
Abstract
TP53 mutated acute myeloid leukemia (AML) responds poorly to chemotherapy and has a short overall survival rate with a median of 5-9 months. Poor outcomes in TP53 mutated AML following chemotherapy have been observed and treatment options remain limited, although the presence of TP53 mutations alone should not be a barrier to therapy. Decitabine is emerging as an alternative treatment option for patients with TP53 mutated AML, although the agent has not been associated with deep molecular remissions and requires additional consolidation. The clinical and genomic characteristics of TP53 mutated AML are reviewed in this paper.
Collapse
Affiliation(s)
- John S Welch
- Department of Internal Medicine, Washington University, 660 Euclid Ave, Box 8007, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Kuykendall A, Duployez N, Boissel N, Lancet JE, Welch JS. Acute Myeloid Leukemia: The Good, the Bad, and the Ugly. Am Soc Clin Oncol Educ Book 2018; 38:555-573. [PMID: 30231330 DOI: 10.1200/edbk_199519] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acute myeloid leukemia (AML) was initially subdivided according to morphology (the French-American-British system), which proved helpful in pathologic categorization. Subsequently, clinical and genomic factors were found to correlate with response to chemotherapy and with overall survival. These included a history of antecedent hematologic disease, a history of chemotherapy or radiation therapy, the presence of various recurrent cytogenetic abnormalities, and, more recently, the presence of specific point mutations. This article reviews the biology and responses of one AML subgroup with consistent response and good outcomes following chemotherapy (core-binding factor leukemia), and two subgroups with persistently bad, and even ugly, outcomes (secondary AML and TP53-mutated AML).
Collapse
MESH Headings
- Alleles
- Biomarkers, Tumor
- Chromosome Aberrations
- Combined Modality Therapy
- Core Binding Factors/genetics
- Core Binding Factors/metabolism
- Gene Frequency
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/mortality
- Mutation
- Neoplasm, Residual/diagnosis
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/epidemiology
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/therapy
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Andrew Kuykendall
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - Nicolas Duployez
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - Nicolas Boissel
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - Jeffrey E Lancet
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| | - John S Welch
- From the Moffitt Cancer Center, Tampa, FL; CHU Lille, INSERM, Laboratory of Hematology, University of Lille, Lille, France; Hematology Department, Saint-Louis Hospital, Paris Diderot University, Paris, France; Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
46
|
p53-Autophagy-Metastasis Link. Cancers (Basel) 2018; 10:cancers10050148. [PMID: 29783720 PMCID: PMC5977121 DOI: 10.3390/cancers10050148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
The tumor suppressor p53 as the “guardian of the genome” plays an essential role in numerous signaling pathways that control the cell cycle, cell death and in maintaining the integrity of the human genome. p53, depending on the intracellular localization, contributes to the regulation of various cell death pathways, including apoptosis, autophagy and necroptosis. Accumulated evidence suggests that this function of p53 is closely involved in the process of cancer development. Here, present knowledge concerning a p53-autophagy-metastasis link, as well as therapeutic approaches that influence this link, are discussed.
Collapse
|
47
|
Prognostic factors influencing survival after allogeneic transplantation for AML/MDS patients with TP53 mutations. Blood 2018; 131:2989-2992. [PMID: 29769261 DOI: 10.1182/blood-2018-02-832360] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Yamauchi T, Masuda T, Canver MC, Seiler M, Semba Y, Shboul M, Al-Raqad M, Maeda M, Schoonenberg VAC, Cole MA, Macias-Trevino C, Ishikawa Y, Yao Q, Nakano M, Arai F, Orkin SH, Reversade B, Buonamici S, Pinello L, Akashi K, Bauer DE, Maeda T. Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell 2018; 33:386-400.e5. [PMID: 29478914 PMCID: PMC5849534 DOI: 10.1016/j.ccell.2018.01.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/23/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022]
Abstract
To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.
Collapse
Affiliation(s)
- Takuji Yamauchi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan; Department of Stem Cell Biology and Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Matthew C Canver
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Mohammad Shboul
- Institute of Medical Biology, A∗STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Mohammed Al-Raqad
- Institute of Medical Biology, A∗STAR, 8A Biomedical Grove, Singapore 138648, Singapore; Al-Balqa Applied University, Faculty of Science, Al-Salt, Salt 19117, Jordan
| | - Manami Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivien A C Schoonenberg
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mitchel A Cole
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Claudio Macias-Trevino
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yuichi Ishikawa
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qiuming Yao
- Department of Pathology & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michitaka Nakano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Bruno Reversade
- Institute of Medical Biology, A∗STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | | | - Luca Pinello
- Department of Pathology & Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Takahiro Maeda
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan.
| |
Collapse
|
49
|
Goulard M, Dosquet C, Chomienne C. [Towards a personalized pretransplantation conditioning in patients with myelodysplastic syndromes]. Med Sci (Paris) 2018; 34:9-11. [PMID: 29384085 DOI: 10.1051/medsci/20183401002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marie Goulard
- Inserm UMR-S-1131, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Christine Dosquet
- Inserm UMR-S-1131, 1, avenue Claude Vellefaux, 75010 Paris, France - APHP, Hôpital Saint-Louis, unité de biologie cellulaire, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Christine Chomienne
- Inserm UMR-S-1131, 1, avenue Claude Vellefaux, 75010 Paris, France - APHP, Hôpital Saint-Louis, unité de biologie cellulaire, 1, avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
50
|
Huang R, Liao X, Li Q. Identification of key pathways and genes in TP53 mutation acute myeloid leukemia: evidence from bioinformatics analysis. Onco Targets Ther 2017; 11:163-173. [PMID: 29343974 PMCID: PMC5749383 DOI: 10.2147/ott.s156003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor protein p53 (TP53) mutations are not only a risk factor in acute myeloid leukemia (AML) but also a potential biomarker for individualized treatment options. This study aimed to investigate potential pathways and genes associated with TP53 mutations in adult de novo AML. Methods An RNA sequencing dataset of adult de novo AML was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified by edgeR of the R platform. Key pathways and genes were identified using the following bioinformatics tools: gene set enrichment analysis (GSEA), gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Search Tool for the Retrieval of Interacting Genes/Proteins, and Molecular Complex Detection. Results GSEA suggested that TP53 mutations were significantly associated with cell differentiation, proliferation, cell adhesion biological processes, and MAPK pathway. In total, 1,287 genes were identified as DEGs. GO and KEGG analysis suggested that upregulation of DEGs was significantly enriched in categories associated with cell adhesion biological processes, Ras-associated protein 1, PI3K-Akt pathway, and cell adhesion molecules. The top ten genes ranked by degree, CDH1, BMP2, KDR, LEP, CASR, ITGA2B, APOE, MNX1, NMU, and TRH, were identified as hub genes from the protein-protein interaction network. Survival analysis suggested that patients with TP53 mutations had a significantly increased risk of death, while the mRNA expression level in patients with TP53 mutation was similar to those carrying TP53 wild type. Conclusion Our findings have indicated that multiple genes and pathways may play a crucial role in TP53 mutation AML, offering candidate targets and strategies for TP53 mutation AML individualized treatment.
Collapse
Affiliation(s)
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|