1
|
Yan B, Belke D, Gui Y, Chen YX, Jiang ZS, Zheng XL. Pharmacological inhibition of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) induces ferroptosis in vascular smooth muscle cells. Cell Death Discov 2023; 9:456. [PMID: 38097554 PMCID: PMC10721807 DOI: 10.1038/s41420-023-01748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
2
|
Jiang YQ, Yang XY, Duan DQ, Zhang YY, Li NS, Tang LJ, Peng J, Luo XJ. Inhibition of MALT1 reduces ferroptosis in rat hearts following ischemia/reperfusion via enhancing the Nrf2/SLC7A11 pathway. Eur J Pharmacol 2023; 950:175774. [PMID: 37146710 DOI: 10.1016/j.ejphar.2023.175774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
The dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and/or solute carrier family 7 member 11 (SLC7A11) is believed to contribute to ferroptosis in the hearts suffered ischemia/reperfusion (I/R), but the mechanisms behind the dysregulation of them are not fully elucidated. Mucosa associated lymphoid tissue lymphoma translocation gene 1 (MALT1) can function as a paracaspase to cleave specified substrates and it is predicted to interact with Nrf2. This study aims to explore whether targeting MALT1 can reduce I/R-induced ferroptosis via enhancing the Nrf2/SLC7A11 pathway. The SD rat hearts were subjected to 1h-ischemia plus 3h-reperfusion to establish the I/R injury model, which showed myocardial injuries (increase in infarct size and creatine kinase release) and up-regulation of MALT1 while downregulation of Nrf2 and SLC7A11 concomitant with the increased ferroptosis, reflecting by an increase in glutathione peroxidase 4 (GPX4) level while decreases in the levels of acyl-CoA synthetase long chain family member 4 (ACSL4), total iron, Fe2+ and lipid peroxidation (LPO); these phenomena were reversed in the presence of MI-2, a specific inhibitor of MALT1. Consistently, similar results were achieved in the cultured cardiomyocytes subjected to 8h-hypoxia plus 12h-reoxygenation. Furthermore, micafungin, an antifungal drug, could also exert beneficial effect on mitigating myocardial I/R injury via inhibition of MALT1. Based on these observations, we concluded that inhibition of MALT1 can reduce I/R-induced myocardial ferroptosis through enhancing the Nrf2/SLC7A11 pathway; and MALT1 might be used as a potential target to seek novel or existing drugs (such as micafungin) for treating myocardial infarction.
Collapse
Affiliation(s)
- Ya-Qian Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| | - Xiao-Yan Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Dan-Qing Duan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Jing Tang
- Department of Pharmacy, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
3
|
O'Neill TJ, Tofaute MJ, Krappmann D. Function and targeting of MALT1 paracaspase in cancer. Cancer Treat Rev 2023; 117:102568. [PMID: 37126937 DOI: 10.1016/j.ctrv.2023.102568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
4
|
Mempel TR, Krappmann D. Combining precision oncology and immunotherapy by targeting the MALT1 protease. J Immunother Cancer 2022; 10:e005442. [PMID: 36270731 PMCID: PMC9594517 DOI: 10.1136/jitc-2022-005442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
An innovative strategy for cancer therapy is to combine the inhibition of cancer cell-intrinsic oncogenic signaling with cancer cell-extrinsic immunological activation of the tumor microenvironment (TME). In general, such approaches will focus on two or more distinct molecular targets in the malignant cells and in cells of the surrounding TME. In contrast, the protease Mucosa-associated lymphoid tissue protein 1 (MALT1) represents a candidate to enable such a dual approach by engaging only a single target. Originally identified and now in clinical trials as a lymphoma drug target based on its role in the survival and proliferation of malignant lymphomas addicted to chronic B cell receptor signaling, MALT1 proteolytic activity has recently gained additional attention through reports describing its tumor-promoting roles in several types of non-hematological solid cancer, such as breast cancer and glioblastoma. Besides cancer cells, regulatory T (Treg) cells in the TME are particularly dependent on MALT1 to sustain their immune-suppressive functions, and MALT1 inhibition can selectively reprogram tumor-infiltrating Treg cells into Foxp3-expressing proinflammatory antitumor effector cells. Thereby, MALT1 inhibition induces local inflammation in the TME and synergizes with anti-PD-1 checkpoint blockade to induce antitumor immunity and facilitate tumor control or rejection. This new concept of boosting tumor immunotherapy in solid cancer by MALT1 precision targeting in the TME has now entered clinical evaluation. The dual effects of MALT1 inhibitors on cancer cells and immune cells therefore offer a unique opportunity for combining precision oncology and immunotherapy to simultaneously impair cancer cell growth and neutralize immunosuppression in the TME. Further, MALT1 targeting may provide a proof of concept that modulation of Treg cell function in the TME represents a feasible strategy to augment the efficacy of cancer immunotherapy. Here, we review the role of MALT1 protease in physiological and oncogenic signaling, summarize the landscape of tumor indications for which MALT1 is emerging as a therapeutic target, and consider strategies to increase the chances for safe and successful use of MALT1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
5
|
|