1
|
Riou S, Rungaldier S, Mahlich J. Identification of Adjustment Variables in Indirect Comparisons: A Rapid Review of CAR-T Therapies for Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2025; 17:1335. [PMID: 40282511 PMCID: PMC12025827 DOI: 10.3390/cancers17081335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Chimeric antigen receptor T-cell (CAR-T) therapies have been approved by the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of diffuse large B-cell lymphoma (DLBCL), primarily based on single-arm trials or indirect comparisons with stem cell transplantation. However, no direct head-to-head comparisons of CAR-T therapies have been conducted, largely due to their high cost. To assess their true value, indirect treatment comparisons (ITCs) are essential. These comparisons, however, are prone to confounding biases, which necessitate careful adjustments through the identification and measurement of relevant variables. Materials and Methods: This study aims to identify the variables used for adjustment in ITCs of CAR-T therapies for DLBCL and examine the methodologies employed to select them. A rapid literature review was conducted in PubMed in September 2023, focusing on ITCs involving CAR-T therapies for DLBCL. The search was based on keywords categorized into three groups: techniques (ITCs and related terms), drugs (CAR-T therapies), and indication (DLBCL). Results: The rapid literature review identified 21 articles, of which 11 were selected for analysis. Exclusions were made for articles that did not identify confounders, were letters to editors, or addressed conditions other than DLBCL. Among the 11 selected publications, 10 did not clearly specify the methodology used to identify adjustment variables. A total of 25 potential confounders were identified across the studies, with substantial variability in the set of variables used, reflecting a lack of standardization in confounder selection. Commonly identified confounders included the number of prior treatment lines and Eastern Cooperative Oncology Group Performance Status (ECOG PS), although their inclusion as adjustment variables in ITCs was inconsistent, often due to missing data. Conclusions: While the identified confounders are clinically relevant, the methodologies for selecting them remain unclear, resulting in significant variability across studies. Additionally, key variables commonly considered in health technology assessments (HTAs), such as age, sex, and disease severity, were inconsistently incorporated into ITCs. To improve the reliability and consistency of ITC outcomes, there is a pressing need for standardized methodologies for identifying and adjusting for confounders.
Collapse
Affiliation(s)
- Sybille Riou
- Miltenyi Biomedicine, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Stefanie Rungaldier
- Miltenyi Biomedicine, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Jörg Mahlich
- Miltenyi Biomedicine, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
- Düsseldorf Institute for Competition Economics (DICE), Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Grady CB, Li Y, Maude SL, Hexner EO, Frey NV, Porter DL, Hwang WT. Inconsistent Reporting and Definitions of Time-to-Event Endpoints in CAR T Clinical Trials: A Review. Transplant Cell Ther 2025; 31:271.e1-271.e13. [PMID: 39603418 PMCID: PMC11957941 DOI: 10.1016/j.jtct.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Clinical trials evaluating chimeric antigen receptor T-cell therapy (CAR T) commonly report time-to-event (TTE) endpoints. However, definitions are not necessarily comparable across studies and variability can lead to misinterpretation of results or inappropriate comparisons across products and studies. Amid the rapidly increasing number of published CAR T trials-many of which were used for regulatory approval-this study aims to summarize the variation in the use and reporting of TTE endpoints in CAR T trials. We include CAR T trials published January 2008 to January 2023 on PubMed that reported at least one of these TTE endpoints: overall survival (OS), progression-free survival (PFS), duration of response/remission (DOR), disease-free survival, event-free survival (EFS), relapse-free survival (RFS), time to relapse, time to progression, or time to treatment failure. We abstracted and summarized endpoint definitions, including the time origin, events, competing events, and censoring. We assessed the completeness of endpoint reporting, overall and by subgroups such as study phase, publication year, and the journal's impact factor. We included 116 publications in the analysis. The most frequently reported TTEs were OS (83%,), PFS (56%), DOR (55%), and EFS (23%). Complete reporting of endpoints was poor overall: 32%, 24%, 25%, and 56% for OS, PFS, DOR, and EFS respectively. Complete reporting was lower in articles published before 2018, in lower impact factor journals, and in phase I trials. There was also a large variability in TTE definitions among those reported. For example, among 64 studies reporting DOR, 48% used the date of response as the time origin while 20% used the date of infusion, and 31% did not report a time origin. There is substantial heterogeneity and incompleteness of TTE endpoint definitions in CAR T trials that could impact the interpretation of the study results. Improving TTE reporting, by stating the time origin, event(s) of interest, competing event(s) if any, and censoring, is required to ensure valid assessment of clinical benefit and cross-trial comparison.
Collapse
Affiliation(s)
- Connor B Grady
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shannon L Maude
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth O Hexner
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine and the Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noelle V Frey
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine and the Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Porter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine and the Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Wallace DS, Loh KP, Casulo C. How I treat older patients with relapsed/refractory diffuse large B-cell lymphoma. Blood 2025; 145:277-289. [PMID: 39356892 DOI: 10.1182/blood.2024024788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Diffuse large B-cell lymphoma (DLBCL) is an aggressive, yet curable, malignancy, but older patients are at higher risk of relapsed disease because they may not be eligible for full-intensity frontline chemoimmunotherapy or have comorbidities that limit standard treatments. Recent years have brought more treatment options than ever for this patient population, but it remains challenging to determine which can be safely and effectively offered to older patients. Formal determinations of fitness including geriatric assessments remain critical, but there is less guidance on how to best use this tool in the relapsed setting. Chimeric antigen receptor T-cell therapy is accessible to older patients, provided they can be supported through the intensive road to this treatment. If relapse occurs despite this or alternative therapies are preferred, many novel therapeutic options and combinations exist with some potential modifications for older adults, such as bispecific antibodies, tafasitamab and lenalidomide, polatuzumab-containing regimens, or loncastuximab tesirine. This article provides a summary of our approach to the management of this diverse population of older patients with relapsed or refractory DLBCL.
Collapse
Affiliation(s)
- Danielle S Wallace
- Division of Hematology/Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Kah Poh Loh
- Division of Hematology/Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Carla Casulo
- Division of Hematology/Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
4
|
Saleh K, Khalife N, Arbab A, Khoury R, Chahine C, Ibrahim R, Tikriti Z, Masri N, Hachem M, Le Cesne A. Updates on Chimeric Antigen Receptor T-Cells in Large B-Cell Lymphoma. Biomedicines 2024; 12:2810. [PMID: 39767716 PMCID: PMC11674015 DOI: 10.3390/biomedicines12122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
CD19-targeting chimeric antigen receptor (CAR) T-cells have changed the treatment paradigm of patients with large B-cell lymphoma (LBCL). Three CAR T-cells were approved by the Food and Drug Administration (FDA) for patients with relapsed and/or refractory (R/R) LBCL in the third-line setting: tisagenlecleucel (tisa-cel), axicabtagene ciloleucel (axi-cel), and lisocabtagene maraleucel (liso-cel), with an ORR ranging from 58% to 82%. More recently, axi-cel and liso-cel were approved as second-line treatments for patients with R/R disease up to 12 months after the completion of first-line chemo-immunotherapy. The safety profile was acceptable with cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome being the two most frequent acute adverse events. Potential long-term toxicities of CD19-targeting CAR T-cells have also been described. Overall, 30% to 40% of patients are cured with a single infusion of CAR T-cells. However, 60% to 70% of patients relapse after being treated with CAR T-cells and have a dismal prognosis. The advent of bispecific antibodies (BsAb) offers an additional treatment modality for patients with R/R LBCL. The aim of this review is to describe the clinical efficacy of the three CAR T-cells, as well as their safety profile. We also compare these three CAR T-cells in terms of their efficacy and safety profile as well as evaluating the place of CAR T-cells and BsAb in the treatment arsenal of patients with R/R LBCL.
Collapse
Affiliation(s)
- Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Nadine Khalife
- Department of Head and Neck, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Ahmadreza Arbab
- Department of Biopathology, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Zamzam Tikriti
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Nohad Masri
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Mohamad Hachem
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (R.K.); (C.C.); (R.I.); (Z.T.); (N.M.); (M.H.); (A.L.C.)
| |
Collapse
|
5
|
Iyengar V, Hamlin P, Torka P. SOHO State of the Art Updates and Next Questions | Diffuse Large B-Cell Lymphoma in Older Adults: A Comprehensive Review. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)02405-4. [PMID: 39613700 DOI: 10.1016/j.clml.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 12/01/2024]
Abstract
Older adults (OA) with DLBCL are a heterogenous population with suboptimal outcomes. In this review, we identify and address the unique challenges encountered in the care of OA with DLBCL. We elaborate on the role and limitations of current geriatric assessment (GA) tools and ways to incorporate fitness in therapeutic decision making. We suggest best practices to implement GA in routine practice and clinical trials. The most widely used tool is simplified GA (sGA) which categorizes patients into fit, unfit and frail groups. Patients who are fit benefit from full dose/curative approach, whereas consideration should be made to reduce the intensity of chemotherapy for unfit patients. Frail patients with DLBCL are a major unmet need without any satisfactory treatment options. Ongoing investigations combining novel therapies into chemotherapy-free regimens are underway with promising early results. In the relapsed/refractory (R/R) setting, anti-CD19 CAR-T cell therapy (CART) is now the standard of care for primary refractory disease or relapse within 12 months of completing therapy. Autologous stem cell transplant is still a consideration for fit OA with relapse >12 months after completing therapy. The recent approval of bispecific antibodies is a welcome advance that will greatly benefit OA not eligible for CART. Other regimens available for patients ineligible for CART or for those who experience progression post-CART include polatuzumab-rituximab±bendamustine, tafasitamab-lenalidomide, loncastuximab or chemotherapy-based approaches such as rituximab-gemcitabine-oxaliplatin. We discuss the changing paradigm in R/R DLBCL and spotlight emerging data from recent congresses that can improve outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Varun Iyengar
- Beth Israel Deaconess Medical Center, Boston, MA; Memorial Sloan Kettering Cancer Center, New York City, NY
| | - Paul Hamlin
- Memorial Sloan Kettering Cancer Center, New York City, NY
| | - Pallawi Torka
- Memorial Sloan Kettering Cancer Center, New York City, NY.
| |
Collapse
|
6
|
Oluwole OO, Neelapu SS, Ray MD, Limbrick-Oldfield EH, Wade SW, Kanters S, Patel AR, Locke FL. Network meta-analysis of CAR T-Cell therapy for the treatment of 3L+ R/R LBCL after using published comparative studies. Expert Rev Anticancer Ther 2024; 24:457-465. [PMID: 38646700 DOI: 10.1080/14737140.2024.2343801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Studies have compared chimeric antigen receptor (CAR) T-cell therapies and salvage chemotherapy in relapsed/refractory large B-cell lymphoma (LBCL) patients, but further evidence of their relative effectiveness is warranted. METHODS Our systematic review identified studies comparing efficacy and safety outcomes of axicabtagene ciloleucel (axi-cel), lisocabtagene maraleucel (liso-cel) and tisagenlecleucel (tisa-cel) trials to salvage chemotherapy cohorts in LBCL patients with ≥2 prior lines of treatment; and an extended evidence network included indirect comparisons comparing CAR T-cell therapies. We conducted network meta-analyzes using Bayesian hierarchical modeling. RESULTS Three studies comparing ZUMA-1 (axi-cel), TRANSCEND (liso-cel) and JULIET (tisa-cel) trials to salvage chemotherapy within the SCHOLAR-1 cohort were identified. Axi-cel (odds ratio [OR]:5.63; 95% credible interval [CrI]:2.66-12.42) and liso-cel (OR:4.26; 95%CrI:2.33-7.93) showed a significant increased overall response rate compared to tisa-cel, but not to one-another. Axi-cel demonstrated significant improvements in overall survival relative to liso-cel (hazard ratio [HR]:0.54; 95%CrI:0.37-0.79) and tisa-cel (HR:0.47; 95%CrI:0.26-0.88). Higher rates of grade ≥3 neurological events were observed with axi-cel than with tisa-cel and liso-cel. CONCLUSIONS We highlight important differences in clinical outcomes between CAR T-cell therapies. Axi-cel demonstrated improved overall survival compared to tisa-cel and liso-cel, and both axi-cel and liso-cel showed higher response rates compared to tisa-cel.
Collapse
MESH Headings
- Humans
- Bayes Theorem
- Biological Products
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Network Meta-Analysis
- Receptors, Antigen, T-Cell
- Receptors, Chimeric Antigen/immunology
- Salvage Therapy/methods
Collapse
Affiliation(s)
- Olalekan O Oluwole
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sattva S Neelapu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sally W Wade
- Wade Outcomes Research & Consulting, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
7
|
Tsutsué S, Makita S, Asou H, Matsuda H, Yamaura R, Taylor TD. Cost-effectiveness analysis 3L of axicabtagene ciloleucel vs tisagenlecleucel and lisocabtagene maraleucel in Japan. Future Oncol 2024; 20:1333-1349. [PMID: 38597742 PMCID: PMC11321402 DOI: 10.2217/fon-2023-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: Cost-effectiveness analysis (CEA) was performed to compare axicabtagene ciloleucel (axi-cel) with tisagenlecleucel (tisa-cel) and lisocabtagene (liso-cel) for treatment of relapsed or refractory large B-cell lymphoma in adult patients after ≥2 lines of therapy in Japan. Materials & methods: Cost-effectiveness analysis was conducted using the partition survival mixture cure model based on the ZUMA-1 trial and adjusted to the JULIET and TRANSCEND trials using matching-adjusted indirect comparisons. Results & conclusion: Axi-cel was associated with greater incremental life years (3.13 and 2.85) and incremental quality-adjusted life-years (2.65 and 2.24), thus generated lower incremental direct medical costs (-$976.29 [-¥137,657] and -$242.00 [-¥34,122]), compared with tisa-cel and liso-cel. Axi-cel was cost-effective option compared with tisa-cel and liso-cel from a Japanese payer's perspective.
Collapse
MESH Headings
- Humans
- Cost-Benefit Analysis
- Japan/epidemiology
- Quality-Adjusted Life Years
- Male
- Female
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/economics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Antigens, CD19/economics
- Antigens, CD19/immunology
- Antigens, CD19/therapeutic use
- Receptors, Antigen, T-Cell/therapeutic use
- Immunotherapy, Adoptive/economics
- Immunotherapy, Adoptive/methods
- Middle Aged
- Adult
- Cancer Vaccines/economics
- Cancer Vaccines/administration & dosage
- Aged
- Biological Products/economics
- Biological Products/therapeutic use
- Cost-Effectiveness Analysis
Collapse
Affiliation(s)
- Saaya Tsutsué
- Gilead Sciences Japan,1-9-2 Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan
| | - Shinichi Makita
- National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroya Asou
- Gilead Sciences Japan,1-9-2 Marunouchi, Chiyoda-ku, Tokyo, 100-6616, Japan
| | - Hiroyuki Matsuda
- IQVIA Solutions, Japan, 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| | - Reiko Yamaura
- IQVIA Solutions, Japan, 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| | - Todd D Taylor
- IQVIA Solutions, Japan, 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| |
Collapse
|
8
|
Rejeski K, Jain MD, Smith EL. Mechanisms of Resistance and Treatment of Relapse after CAR T-cell Therapy for Large B-cell Lymphoma and Multiple Myeloma. Transplant Cell Ther 2023; 29:418-428. [PMID: 37076102 PMCID: PMC10330792 DOI: 10.1016/j.jtct.2023.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy (CAR-T) has altered the treatment landscape for relapsed/refractory B cell malignancies and multiple myeloma, only a minority of patients attain long-term disease remission. The underlying reasons for CAR-T resistance are multifaceted and can be broadly divided into host-related, tumor-intrinsic, microenvironmental and macroenvironmental, and CAR-T-related factors. Emerging host-related determinants of response to CAR-T relate to gut microbiome composition, intact hematopoietic function, body composition, and physical reserve. Emerging tumor-intrinsic resistance mechanisms include complex genomic alterations and mutations to immunomodulatory genes. Furthermore, the extent of systemic inflammation prior to CAR-T is a potent biomarker of response and reflects a proinflammatory tumor micromilieu characterized by infiltration of myeloid-derived suppressor cells and regulatory T cell populations. The tumor and its surrounding micromilieu also can shape the response of the host to CAR-T infusion and the subsequent expansion and persistence of CAR T cells, a prerequisite for efficient eradication of tumor cells. Here, focusing on both large B cell lymphoma and multiple myeloma, we review resistance mechanisms, explore therapeutic avenues to overcome resistance to CAR-T, and discuss the management of patients who relapse after CAR-T.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
9
|
Mucha SR, Rajendram P. Management and Prevention of Cellular-Therapy-Related Toxicity: Early and Late Complications. Curr Oncol 2023; 30:5003-5023. [PMID: 37232836 DOI: 10.3390/curroncol30050378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Chimeric Antigen Receptor T (CAR-T) cell therapy has dramatically changed prognosis and treatment of relapsed and refractory hematologic malignancies. Currently the 6 FDA approved products target various surface antigens. While CAR-T therapy achieves good response, life-threatening toxicities have been reported. Mechanistically, can be divided into two categories: (1) toxicities related to T-cell activation and release of high levels of cytokines: or (2) toxicities resulting from interaction between CAR and CAR targeted antigen expressed on non-malignant cells (i.e., on-target, off-tumor effects). Variations in conditioning therapies, co-stimulatory domains, CAR T-cell dose and anti-cytokine administration, pose a challenge in distinguishing cytokine mediated related toxicities from on-target, off-tumor toxicities. Timing, frequency, severity, as well as optimal management of CAR T-cell-related toxicities vary significantly between products and are likely to change as newer therapies become available. Currently the FDA approved CARs are targeted towards the B-cell malignancies however the future holds promise of expanding the target to solid tumor malignancies. Further highlighting the importance of early recognition and intervention for early and late onset CAR-T related toxicity. This contemporary review aims to describe presentation, grading and management of commonly encountered toxicities, short- and long-term complications, discuss preventive strategies and resource utilization.
Collapse
Affiliation(s)
- Simon R Mucha
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Prabalini Rajendram
- Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|