1
|
Kumar R, Kumari R, Verma A, Gupta ID. Association analysis of HSP90AA1 polymorphism with thermotolerance in tropically adapted Indian crossbred cattle. Trop Anim Health Prod 2024; 56:230. [PMID: 39096401 DOI: 10.1007/s11250-024-04055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/20/2024] [Indexed: 08/05/2024]
Abstract
Raising cattle is a lucrative business that operates globally but is confronted by many obstacles, such as thermal stress, which results in substantial monetary losses. A vital role of heat shock proteins (HSPs) is to protect cells from cellular damage. HSP90 is a highly prevalent, extremely adaptable gene linked to physiological resilience in thermal stress. This study aimed to find genetic polymorphisms of the HSP90AA1 gene in Karan Fries cattle and explore their relationship to thermal tolerance and production traits. One SNP (g.3292 A > C) was found in the Intron 8 and three SNPs loci (g.4776 A > G, g.5218T > C and g.5224 A > C) were found in the exon 11 of 100 multiparous Karan Fries cattle. The association study demonstrated that the SNP1-g.3292 A > C was significantly (P < 0.01) linked to the variables respiratory rate (RR), heat tolerance coefficient (HTC) and total milk yield (TMY (kg)) attributes. There was no significant correlation identified between any of the other SNP sites (SNP2-g.4776 A > G; SNP3-g.5218T > C; SNP4-g.5224 A > C) with the heat tolerance and production attributes in Karan Fries cattle. Haploview 4.2 and SHEsis software programs were used to analyse pair linkage disequilibrium and construct haplotypes for HSP90AA1. Association studies indicated that the Hap3 (CATA) was beneficial for heat tolerance breeding in Karan Fries cattle. In conclusion, genetic polymorphisms and haplotypes in the HSP90AA1 were associated with thermal endurance attributes. This relationship can be utilized as a beneficial SNP or Hap marker for genetic heat resistance selection in cow breeding platforms.
Collapse
Affiliation(s)
- Rakesh Kumar
- ICAR-Research Complex for Eastern Region, Patna, Bihar, 800014, India.
| | - Ragini Kumari
- Animal and Fisheries Resource Department, Govt. of Bihar, Saran, Chapra, Bihar, 841301, India
| | - Archana Verma
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| | - Ishwar Dayal Gupta
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
2
|
Sajjanar B, Aalam MT, Khan O, Dhara SK, Ghosh J, Gandham RK, Gupta PK, Chaudhuri P, Dutt T, Singh G, Mishra BP. Genome-wide DNA methylation profiles regulate distinct heat stress response in zebu (Bos indicus) and crossbred (Bos indicus × Bos taurus) cattle. Cell Stress Chaperones 2024; 29:603-614. [PMID: 38936463 PMCID: PMC11264184 DOI: 10.1016/j.cstres.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Epigenetic variations result from long-term adaptation to environmental factors. The Bos indicus (zebu) adapted to tropical conditions, whereas Bos taurus adapted to temperate conditions; hence native zebu cattle and its crossbred (B indicus × B taurus) show differences in responses to heat stress. The present study evaluated genome-wide DNA methylation profiles of these two breeds of cattle that may explain distinct heat stress responses. Physiological responses to heat stress and estimated values of Iberia heat tolerance coefficient and Benezra's coefficient of adaptability revealed better relative thermotolerance of Hariana compared to the Vrindavani cattle. Genome-wide DNA methylation patterns were different for Hariana and Vrindavani cattle. The comparison between breeds indicated the presence of 4599 significant differentially methylated CpGs with 756 hypermethylated and 3845 hypomethylated in Hariana compared to the Vrindavani cattle. Further, we found 79 genes that showed both differential methylation and differential expression that are involved in cellular stress response functions. Differential methylations in the microRNA coding sequences also revealed their functions in heat stress responses. Taken together, epigenetic differences represent the potential regulation of long-term adaptation of Hariana (B indicus) cattle to the tropical environment and relative thermotolerance.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; ICAR-Indian Veterinary Research Institute, Bengaluru Campus, Bengaluru, Karnataka, India.
| | - Mohd Tanzeel Aalam
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Owais Khan
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sujoy K Dhara
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyotirmoy Ghosh
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, India
| | - Ravi Kumar Gandham
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Praveen K Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Pallab Chaudhuri
- ICAR-Indian Veterinary Research Institute, Bengaluru Campus, Bengaluru, Karnataka, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Gyanendra Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | | |
Collapse
|
3
|
Wen J, Cheng J, Wang L, Li C, Zou Y, Wu J, Liu J. Dynamic molecular choreography induced by acute heat exposure in human males: a longitudinal multi-omics profiling study. Front Public Health 2024; 12:1384544. [PMID: 38813424 PMCID: PMC11135052 DOI: 10.3389/fpubh.2024.1384544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Extreme heat events caused by occupational exposure and heat waves are becoming more common. However, the molecular changes underlying the response to heat exposure in humans remain to be elucidated. Methods This study used longitudinal multi-omics profiling to assess the impact of acute heat exposure (50°C for 30 min) in 24 subjects from a mine rescue team. Intravenous blood samples were collected before acute heat exposure (baseline) and at 5 min, 30 min, 1 h, and 24 h after acute heat exposure (recovery). In-depth multi-omics profiling was performed on each sample, including plasma proteomics (untargeted) and metabolomics (untargeted). Results After data curation and annotation, the final dataset contained 2,473 analytes, including 478 proteins and 1995 metabolites. Time-series analysis unveiled an orchestrated molecular choreography of changes involving the immune response, coagulation, acid-base balance, oxidative stress, cytoskeleton, and energy metabolism. Further analysis through protein-protein interactions and network analysis revealed potential regulators of acute heat exposure. Moreover, novel blood-based analytes that predicted change in cardiopulmonary function after acute heat exposure were identified. Conclusion This study provided a comprehensive investigation of the dynamic molecular changes that underlie the complex physiological processes that occur in human males who undergo heat exposure. Our findings will help health impact assessment of extreme high temperature and inspire future mechanistic and clinical studies.
Collapse
Affiliation(s)
- Jirui Wen
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
- Jinping Deep Underground Frontier Science and Dark Matter Key Laboratory of Sichuan Province, Liangshan, China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, China
| | - Juan Cheng
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
| | - Ling Wang
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
- Jinping Deep Underground Frontier Science and Dark Matter Key Laboratory of Sichuan Province, Liangshan, China
| | - Can Li
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
| | - Yuhao Zou
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
| | - Jiang Wu
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
- Jinping Deep Underground Frontier Science and Dark Matter Key Laboratory of Sichuan Province, Liangshan, China
- Med-X Center for Manufacturing, Sichuan University, Chengdu, China
| | - Jifeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Deep Underground Space Medical Center, West China Hospital, Sichuan University, Guoxuexiang, Chengdu, China
- Jinping Deep Underground Frontier Science and Dark Matter Key Laboratory of Sichuan Province, Liangshan, China
| |
Collapse
|
4
|
Gujar G, Tiwari M, Yadav N, Monika D. Heat stress adaptation in cows - Physiological responses and underlying molecular mechanisms. J Therm Biol 2023; 118:103740. [PMID: 37976864 DOI: 10.1016/j.jtherbio.2023.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Heat stress is a key abiotic stressor for dairy production in the tropics which is further compounded by the ongoing climate change. Heat stress not only adversely impacts the production and welfare of dairy cows but severely impacts the economics of dairying due to production losses and increased cost of rearing. Over the years, selection has ensured development of high producing breeds, however, the thermotolerance ability of animals has been largely overlooked. In the past decade, the ill effects of climate change have made it pertinent to rethink the selection strategies to opt for climate resilient breeds, to ensure optimum production and reproduction. This has led to renewed interest in evaluation of the impacts of heat stress on cows and the underlying mechanisms that results in their acclimatization and adaptation to varied thermal ambience. The understanding of heat stress and associated responses at various level of animal is crucial to device amelioration strategies to secure optimum production and welfare of cows. With this review, an effort has been made to provide an overview on temperature humidity index as an important indicator of heat stress, general effect of heat stress in dairy cows, and impact of heat stress and subsequent response at physiological, haematological, molecular and genetic level of dairy cows.
Collapse
Affiliation(s)
- Gayatri Gujar
- Livestock Production Management, Bikaner, Rajasthan, 334001, India.
| | - Manish Tiwari
- Animal Biotechnology, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nistha Yadav
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Science, Bikaner, Rajasthan, 334001, India
| | - Dr Monika
- Veterinary Parasitology, Jaipur, Rajasthan, 302012, India
| |
Collapse
|
5
|
Sajjanar B, Aalam MT, Khan O, Tanuj GN, Sahoo AP, Manjunathareddy GB, Gandham RK, Dhara SK, Gupta PK, Mishra BP, Dutt T, Singh G. Genome-wide expression analysis reveals different heat shock responses in indigenous (Bos indicus) and crossbred (Bos indicus X Bos taurus) cattle. Genes Environ 2023; 45:17. [PMID: 37127630 PMCID: PMC10152620 DOI: 10.1186/s41021-023-00271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
Environmental heat stress in dairy cattle leads to poor health, reduced milk production and decreased reproductive efficiency. Multiple genes interact and coordinate the response to overcome the impact of heat stress. The present study identified heat shock regulated genes in the peripheral blood mononuclear cells (PBMC). Genome-wide expression patterns for cellular stress response were compared between two genetically distinct groups of cattle viz., Hariana (B. indicus) and Vrindavani (B. indicus X B. taurus). In addition to major heat shock response genes, oxidative stress and immune response genes were also found to be affected by heat stress. Heat shock proteins such as HSPH1, HSPB8, FKB4, DNAJ4 and SERPINH1 were up-regulated at higher fold change in Vrindavani compared to Hariana cattle. The oxidative stress response genes (HMOX1, BNIP3, RHOB and VEGFA) and immune response genes (FSOB, GADD45B and JUN) were up-regulated in Vrindavani whereas the same were down-regulated in Hariana cattle. The enrichment analysis of dysregulated genes revealed the biological functions and signaling pathways that were affected by heat stress. Overall, these results show distinct cellular responses to heat stress in two different genetic groups of cattle. This also highlight the long-term adaptation of B. indicus (Hariana) to tropical climate as compared to the crossbred (Vrindavani) with mixed genetic makeup (B. indicus X B. taurus).
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Mohd Tanzeel Aalam
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Owais Khan
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Gunturu Narasimha Tanuj
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Aditya Prasad Sahoo
- ICAR- Directorate of Foot and Mouth Disease, Bhubaneswar, 752050, Odisha, India
| | | | - Ravi Kumar Gandham
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Sujoy K Dhara
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Praveen K Gupta
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Bishnu Prasad Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Triveni Dutt
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Gyanendra Singh
- Physiology and Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| |
Collapse
|
6
|
Kumar R, Gupta ID, Verma A, Singh S, Kumari R, Verma N. Genetic polymorphism in HSPB6 gene and their association with heat tolerance traits in Indian Karan Fries ( Bos taurus x Bos indicus) cattle. Anim Biotechnol 2022; 33:1416-1427. [PMID: 33781169 DOI: 10.1080/10495398.2021.1899939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) act as a chaperone activity ensuring the folding, unfolding, and refolding of denatured proteins, which help in a protective role during thermal stress in dairy cattle. This study aimed to detect genetic variations of the HSPB6 gene and to determine their association with heat tolerance traits in Karan Fries cattle. Five single nucleotide polymorphisms (SNPs) (SNP 1-5) were reported in the Karan Fries cattle, which included three transitions viz. SNP1-g.161G > A, SNP2-g.436G > A, and SNP4-g.2152A > G and two transversions viz. SNP3-g.1743C > G, SNP5-g.2417A > T. The association analysis revealed that the three SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G were significantly (p < 0.01) associated with the respiration rate (RR) and rectal temperature (RT) (°C) traits. Furthermore, in the case of heat tolerance coefficient (HTC) trait was found significantly associated (p < 0.01) with SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G. The Hap 4 (GACAT) was found to more adaptable than cattle of other haplotypes as reflected by lower values of RR, RT and HTC. This study provides the first association analyses between the SNPs and haplotypes of HSPB6 gene and heat tolerance traits in Karan Fries cattle, which could be used as effective SNP markers in genetic selection for heat tolerance in cattle breeding program.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Animal and Fishery Sciences, ICAR-Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Ishwar Dayal Gupta
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Sohanvir Singh
- Division of Dairy Cattle Physiology, ICAR-National Dairy Research Institute, Karnal, India
| | - Ragini Kumari
- Block Animal Husbandry Officer, Ekangarsarai, Nalanda, India
| | - Nishant Verma
- Department of Animal Genetics and Breeding, Dr. G. C. Negi College of Veterinary and Animal Sciences, Palampur, India
| |
Collapse
|
7
|
KUMAR RAKESH, GUPTA ISHWARDAYAL, VERMA ARCHANA, KUMARI RAGINI, VERMA NISHANT, DEB RAJIB, DAS RAMENDRA, CHAUDHARI MV. Genetic polymorphism in HSPB6 gene and their association with heat tolerance in Sahiwal cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i11.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heat shock proteins (HSPs) are known to modulate cellular response during summer stress in dairy cattle. Among different classes of HSPs, heat shock protein 20 (HSPB6) is a member of the small HSP family protein, the role of which has not been fully characterized in the context of heat stress in cattle. This study identified single nucleotide polymorphisms (SNPs) in the HSPB6 gene in Sahiwal cattle and their associations with heat tolerance traits (RR, RT and HTC). Three SNPs (SNP 1-3) were reported, which included two transitions, viz. SNP1-g.436G>A (Intron 1) and SNP2-g.2152A>G (3′-UTR) and one transversion, viz. SNP3-g.2417A>T (3′-UTR). The association analysis revealed that SNPs loci, viz. SNP1-g.436G>A and SNP2-g.2152A>G were significantly associated with heat tolerance traits. The GG genotype of SNP2-g.2152A>G was significantly associated with heat tolerance traits in Sahiwal cattle. The association analysis of four available haplotypes, viz. Hap1 (GGA), Hap2 (AAA), Hap3 (GAA), and Hap4 (AAT) of HSPB6 gene with heat tolerance traits did not differ significantly with any haplotype in Sahiwal cattle. This study provides the first association analyses between the SNPs of HSPB6 gene and heat tolerance traits in Sahiwal cattle, which could be used as effective SNP markers in genetic selection for heat tolerance in cattle breeding programs.
Collapse
|
8
|
Zamorano-Algandar R, Sánchez-Castro MA, Hernández-Cordero AI, Enns RM, Speidel SE, Thomas MG, Medrano JF, Rincón G, Leyva-Corona JC, Luna-Nevárez G, Reyna-Granados JR, Luna-Nevárez P. Molecular marker prediction for days open and pregnancy rate in Holstein cows managed in a warm climate. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Onasanya GO, Msalya GM, Thiruvenkadan AK, Sreekumar C, Tirumurugaan GK, Fafiolu AO, Adeleke MA, Yakubu A, Ikeobi CON, Okpeku M. Heterozygous Single-Nucleotide Polymorphism Genotypes at Heat Shock Protein 70 Gene Potentially Influence Thermo-Tolerance Among Four Zebu Breeds of Nigeria. Front Genet 2021; 12:642213. [PMID: 33912217 PMCID: PMC8075048 DOI: 10.3389/fgene.2021.642213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Genetic variants at heat shock protein 70 gene and their influence on heat stress (HS) tolerance were studied among selected Nigeria zebu, namely, 25 White Fulani (WF), 21 Sokoto Gudali (SG), 21 Red Bororo (RB), and 23 Ambala (AM). Detection of single nucleotide polymorphism (SNP) followed by determination of genotype and genotypic frequency was made among the selected breeds. The heat tolerance coefficient (HTC) was determined from thermo-related parameters including body temperature, rectal temperature, and respiratory rate. Thermo-Tolerance was evaluated through the SNP-thermo-parameter relationship. Statistical analyses were done using the GLM procedure in SAS. A quantitative real-time/high-resolution melting-based assay detected twelve genetic variants. Five of these were common and shared across all breeds of cattle. Of the remaining seven variants, three were specifically identified in AM, two in SG, and two in RB. Also, SNPs were evaluated and four unique SNPs (C151T, C146T, G90A, and C219A) were identified. Heterozygous animals had lower HTC suggesting their potential to withstand HS than homozygous counterparts. The WF and RB animals had significantly lower values for all parameters (BT, RT, RR, and HTC) compared to AM and SG breeds. Thermo-related parameters were significantly different (P < 0.001), and it is recommended that screening of SNPs in zebu is needed to enable selection for improved thermo-tolerance.
Collapse
Affiliation(s)
- Gbolabo Olaitan Onasanya
- Department of Animal Science, Federal University Dutse, Dutse, Nigeria
- Department of Animal Breeding and Genetics, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria
- Mecheri Sheep Research Station Pottaneri, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
- Biotechnology Laboratory, Post Graduate Research Institute in Animal Sciences, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - George Mutani Msalya
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Chirukandoth Sreekumar
- Biotechnology Laboratory, Post Graduate Research Institute in Animal Sciences, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Adeboye O. Fafiolu
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Abeokuta, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Abdulmojeed Yakubu
- Department of Animal Science, Faculty of Agriculture, Nasarawa State University, Keffi, Nigeria
| | | | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Onasanya GO, Msalya GM, Thiruvenkadan AK, Sreekumar C, Tirumurugaan GK, Sanni TM, Decampos JS, Amusan SA, Olowofeso O, Fafiolu AO, Okpeku M, Yakubu A, Ikeobi CO. Single nucleotide polymorphisms at heat shock protein 90 gene and their association with thermo-tolerance potential in selected indigenous Nigerian cattle. Trop Anim Health Prod 2020; 52:1961-1970. [PMID: 31981054 DOI: 10.1007/s11250-020-02222-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/17/2020] [Indexed: 11/24/2022]
Abstract
Heat shock protein (HSP) 90 gene provides protection and adaptation to thermal assault and certain polymorphisms have been associated to heat tolerance in humans and animals. Single nucleotide polymorphisms (SNPs) of HSP 90 gene were used to evaluate the scientific basis of heat tolerance in four zebu breeds of Nigeria. The DNA was extracted from skin tissue of 90 adult bulls representing White Fulani (WF), Sokoto Gudali (SG), Red Bororo (RB), and Ambala (AM). The SNPs were determined in DNAs using PCR, sequencing, and visualization and bio-editing by chromatogram in SeqMan Ngen tool. Subsequently, respective genotypes were constructed and genotypic and allelic frequencies were computed. Also, body parameters related to heat stress (HS) including body temperature (BT), rectal temperature (RT), and respiratory rates (RR) were taken for each animal before biological sampling and heat tolerance coefficient (HTC) was calculated. We detected four SNPs distinct/specific for each breed as follows: change from thymine (T) to guanine (G) at position 116 (T116G) in RB, G to cytosine (C) at 220 (G220C) in SG, G to adenine (A) at two positions, 346 (G346A) and 390 (G390A) in AM and WF, respectively. Heterozygous SNPs showed significantly lower values (P < 0.0001) for BT, RT, RR, and HTC than homozygous genotypes at all positions. We hypothesize that animals with heterozygous SNPs in exon 3 of HSP 90 may be tolerant to HS. These SNPs can be used as bio-markers for screening large populations of cattle for tolerance to hot tropical conditions in Nigeria and other sub-humid places.
Collapse
Affiliation(s)
- Gbolabo O Onasanya
- Department of Animal Science, Federal University Dutse, Dutse, Nigeria
- Deparment of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
- Mecheri Sheep Research Station, Pottaneri, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
- Biotechnology Center, Postgraduate Research Institute in Animal Sciences, Kattupakkum, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - George M Msalya
- Mecheri Sheep Research Station, Pottaneri, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India.
- Department of Animal, Aquaculture and Range Sciences (DAARS), Sokoine University of Agriculture (SUA), PO Box 3004, Morogoro, Tanzania.
| | - Aranganoor K Thiruvenkadan
- Mecheri Sheep Research Station, Pottaneri, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Chirukandoth Sreekumar
- Biotechnology Center, Postgraduate Research Institute in Animal Sciences, Kattupakkum, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Gopalan K Tirumurugaan
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Timothy M Sanni
- Deparment of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - John S Decampos
- Department of Animal Production, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Samuel A Amusan
- Department of Animal production, Federal College of Animal Health and Production Technology, Moor Plantation, Ibadan, Nigeria
| | - Olajide Olowofeso
- Deparment of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adeboye O Fafiolu
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Moses Okpeku
- Department of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westvile Campus, Durban, South Africa
| | - Abdulmojeed Yakubu
- Department of Animal Science, Faculty of Agriculture, Nasarawa State University, Keffi, Shabu-Lafia Campus, Lafia, Nigeria
| | - Christian O Ikeobi
- Deparment of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
11
|
Moreira GCM, Poleti MD, Pértille F, Boschiero C, Cesar ASM, Godoy TF, Ledur MC, Reecy JM, Garrick DJ, Coutinho LL. Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet 2019; 20:83. [PMID: 31694549 PMCID: PMC6836328 DOI: 10.1186/s12863-019-0783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Feed efficiency and growth rate have been targets for selection to improve chicken production. The incorporation of genomic tools may help to accelerate selection. We genotyped 529 individuals using a high-density SNP chip (600 K, Affymetrix®) to estimate genomic heritability of performance traits and to identify genomic regions and their positional candidate genes associated with performance traits in a Brazilian F2 Chicken Resource population. Regions exhibiting selection signatures and a SNP dataset from resequencing were integrated with the genomic regions identified using the chip to refine the list of positional candidate genes and identify potential causative mutations. RESULTS Feed intake (FI), feed conversion ratio (FC), feed efficiency (FE) and weight gain (WG) exhibited low genomic heritability values (i.e. from 0.0002 to 0.13), while body weight at hatch (BW1), 35 days-of-age (BW35), and 41 days-of-age (BW41) exhibited high genomic heritability values (i.e. from 0.60 to 0.73) in this F2 population. Twenty unique 1-Mb genomic windows were associated with BW1, BW35 or BW41, located on GGA1-4, 6-7, 10, 14, 24, 27 and 28. Thirty-eight positional candidate genes were identified within these windows, and three of them overlapped with selection signature regions. Thirteen predicted deleterious and three high impact sequence SNPs in these QTL regions were annotated in 11 positional candidate genes related to osteogenesis, skeletal muscle development, growth, energy metabolism and lipid metabolism, which may be associated with body weight in chickens. CONCLUSIONS The use of a high-density SNP array to identify QTL which were integrated with whole genome sequence signatures of selection allowed the identification of candidate genes and candidate causal variants. One novel QTL was detected providing additional information to understand the genetic architecture of body weight traits. We identified QTL for body weight traits, which were also associated with fatness in the same population. Our findings form a basis for further functional studies to elucidate the role of specific genes in regulating body weight and fat deposition in chickens, generating useful information for poultry breeding programs.
Collapse
Affiliation(s)
| | - Mirele Daiana Poleti
- University of São Paulo (USP) / College of Animal Science and Food Engineering (FZEA), Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | - Clarissa Boschiero
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | - Thaís Fernanda Godoy
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| | | | - James M. Reecy
- Department of Animal Science, Iowa State University (ISU), Ames, Iowa, USA
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, New Zealand
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo, Piracicaba, SP 13418-900 Brazil
| |
Collapse
|
12
|
Rashamol VP, Sejian V, Pragna P, Lees AM, Bagath M, Krishnan G, Gaughan JB. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1265-1281. [PMID: 31129758 DOI: 10.1007/s00484-019-01735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Livestock industries have an important role in ensuring global food security. This review discusses the importance of quantifying the heat stress response of ruminants, with an emphasis on identifying thermo-tolerant breeds. There are numerous heat stress prediction models that have attempted to quantify the response of ruminant livestock to hot climatic conditions. This review highlights the importance of investigating prediction models beyond the temperature-humidity index (THI). Furthermore, this review highlights the importance of incorporating other climatic variables when developing prediction indices to ensure the accurate prediction of heat stress in ruminants. Prediction models, particularly the heat load index (HLI) were developed to overcome the limitations of the THI by incorporating ambient temperature (AT), relative humidity (RH), solar radiation (SR) and wind speed (WS). Furthermore refinements to existing prediction models have been undertaken to account for the interactions between climatic variables and physiological traits of livestock. Specifically, studies have investigated the relationships between coat characteristics, respiration rate (RR), body temperature (BT), sweating rate, vasodilation, body weight (BW), body condition score (BCS), fatness and feed intake with climatic conditions. While advancements in prediction models have been occurring, there has also been substantial advancement in the methodologies used to quantify animal responses to heat stress. The most recent development in this field is the application of radio frequency identification (RFID) technology to record animal behaviour and various physiological responses. Rumen temperature measurements using rumen boluses and skin temperature recording using infrared thermography (IRT) are making inroads to redefine the quantification of the heat stress response of ruminants. Further, this review describes several advanced biotechnological tools that can be used to identify climate resilient breeds of ruminant livestock.
Collapse
Affiliation(s)
- V P Rashamol
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - V Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India.
- Animal Physiology Division, National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, 560030, India.
| | - P Pragna
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
- Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - A M Lees
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Armidale, New South Wales, 2350, Australia
| | - M Bagath
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - G Krishnan
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, Karnataka, 560030, India
| | - J B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, 4343, Australia
| |
Collapse
|
13
|
Rosse IC, Assis JG, Oliveira FS, Leite LR, Araujo F, Zerlotini A, Volpini A, Dominitini AJ, Lopes BC, Arbex WA, Machado MA, Peixoto MGCD, Verneque RS, Martins MF, Coimbra RS, Silva MVGB, Oliveira G, Carvalho MRS. Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm Genome 2016; 28:66-80. [PMID: 27853861 DOI: 10.1007/s00335-016-9670-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023]
Abstract
In bovines, artificial selection has produced a large number of breeds which differ in production, environmental adaptation, and health characteristics. To investigate the genetic basis of these phenotypical differences, several bovine breeds have been sequenced. Millions of new SNVs were described at every new breed sequenced, suggesting that every breed should be sequenced. Guzerat or Guzerá is an indicine breed resistant to drought and parasites that has been the base for some important breeds such as Brahman. Here, we describe the sequence of the Guzerá genome and the in silico functional analyses of intragenic breed-specific variations. Mate-paired libraries were generated using the ABI SOLiD system. Sequences were mapped to the Bos taurus reference genome (UMD 3.1) and 87% of the reference genome was covered at a 26X. Among the variants identified, 2,676,067 SNVs and 463,158 INDELs were homozygous, not found in any database searched, and may represent true differences between Guzerá and B. taurus. Functional analyses investigated with the NGS-SNP package focused on 1069 new, non-synonymous SNVs, splice-site variants (including acceptor and donor sites, and the conserved regions at both intron borders, referred to here as splice regions) and coding INDELs (NS/SS/I). These NS/SS/I map to 935 genes belonging to cell communication, environmental adaptation, signal transduction, sensory, and immune systems pathways. These pathways have been involved in phenotypes related to health, adaptation to the environment and behavior, and particularly, disease resistance and heat tolerance. Indeed, 105 of these genes are known QTLs for milk, meat and carcass, production, reproduction, and health traits. Therefore, in addition to describing new genetic variants, our approach provided groundwork for unraveling key candidate genes and mutations.
Collapse
Affiliation(s)
- Izinara C Rosse
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil
| | - Juliana G Assis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.,Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Francislon S Oliveira
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.,Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Laura R Leite
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.,Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Flávio Araujo
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Angela Volpini
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Anderson J Dominitini
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | - Roney S Coimbra
- Neurogenômica, Centro de Pesquisa René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Guilherme Oliveira
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.,Vale Technology Institute, Belém, PA, Brazil
| | - Maria Raquel S Carvalho
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31901-207, Brazil.
| |
Collapse
|
14
|
Lalrengpuii S, I DG, Archana V, Ramendra D, M VC. Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajbr2015.0837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Kumar R, Gupta ID, Verma A, Verma N, Vineeth MR. Genetic polymorphisms within exon 3 of heat shock protein 90AA1 gene and its association with heat tolerance traits in Sahiwal cows. Vet World 2015; 8:932-6. [PMID: 27047179 PMCID: PMC4774691 DOI: 10.14202/vetworld.2015.932-936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/24/2015] [Accepted: 07/02/2015] [Indexed: 01/06/2023] Open
Abstract
AIM The present study was undertaken to identify novel single nucleotide polymorphism (SNP) in Exon 3 of HSP90AA1 gene and to analyze their association with respiration rate (RR) and rectal temperature (RT) in Sahiwal cows. MATERIALS AND METHODS The present study was carried out in Sahiwal cows (n=100) with the objectives to identify novel SNP in exon 3 of HSP90AA1 gene and to explore the association with heat tolerance traits. CLUSTAL-W multiple sequence analysis was used to identify novel SNPs in exon 3 of HSP90AA1 gene in Sahiwal cows. Gene and genotype frequencies of different genotypes were estimated by standard procedure POPGENE version 1.32 (University of Alberta, Canada). The significant effect of SNP variants on physiological parameters, e.g. RR and RT were analyzed using the General Linear model procedure of SAS Version 9.2. RESULTS The polymerase chain reaction product with the amplicon size of 450 bp was successfully amplified, covering exon 3 region of HSP90AA1 gene in Sahiwal cows. On the basis of comparative sequence analysis of Sahiwal samples (n=100), transitional mutations were detected at locus A1209G as compared to Bos taurus (NCBI GenBank AC_000178.1). After chromatogram analysis, three genotypes AA, AG, and GG with respective frequencies of 0.23, 0.50, and 0.27 ascertained. RR and RT were recorded once during probable extreme hours in winter, spring, and summer seasons. It was revealed that significant difference (p<0.01) among genetic variants of HSP90AA1 gene with heat tolerance trait was found in Sahiwal cattle. The homozygotic animals with AA genotype had lower heat tolerance coefficient (HTC) (1.78±0.04(a)), as compared to both AG and GG genotypes (1.85±0.03(b) and 1.91±0.02(c)), respectively. The gene and genotype frequencies for the locus A1209G were ascertained. CONCLUSIONS Novel SNP was found at the A1209G position showed all possible three genotypes (homozygous and heterozygous). Temperature humidity index has a highly significant association with RR, RT, and HTC in all the seasons. Perusal of results across different seasons showed the significant (p<0.01) difference in RR, RT, and HTC among winter, spring, and summer seasons. Genetic association with heat tolerance traits reveals their importance as a potential genetic marker for heat tolerance traits in Sahiwal cows.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - I. D. Gupta
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - Nishant Verma
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| | - M. R. Vineeth
- Division of Dairy Cattle Breeding, Indian Council of Agricultural Research-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|