1
|
Development of Novel Heparin/Protamine Nanoparticles Useful for Delivery of Exogenous Proteins In Vitro and In Vivo. NANOMATERIALS 2020; 10:nano10081584. [PMID: 32806578 PMCID: PMC7466629 DOI: 10.3390/nano10081584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
We previously reported that heparin/protamine particles (LHPPs) produced as nanoparticles through simple mixing of raw materials exhibit sustained protein release and can be retained in cells. In the present study, we modified LHPPs without employing any organic synthetic approach. The resulting LHPPs were re-named as improved LHPPs (i-LHPPs) and have the ability to retain cell-penetrating peptides (GRKKRRQRRRPPQ) based on electrostatic interactions. We examined whether i-LHPPs can introduce exogenous proteins (i.e., lacZ protein encoding bacterial β-galactosidase) into cultured cells in vitro, or into murine hepatocytes in vivo through intravenous injection to anesthetized mice. We found an accumulation of the transferred protein in both in vitro cultured cells and in vivo hepatocytes. To the best of our knowledge, reports of successful in vivo delivery to hepatocytes are rare. The i-LHPP-based protein delivery technique will be useful for in vivo functional genetic modification of mouse hepatocytes using Cas9 protein-mediated genome editing targeting specific genes, leading to the creation of hepatic disease animal models for research that aims to treat liver diseases.
Collapse
|
2
|
Hydrodynamics-Based Transplacental Delivery as a Useful Noninvasive Tool for Manipulating Fetal Genome. Cells 2020; 9:cells9071744. [PMID: 32708213 PMCID: PMC7409276 DOI: 10.3390/cells9071744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 11/17/2022] Open
Abstract
We previously demonstrated that the injection of pregnant wild-type female mice (carrying enhanced green fluorescent protein (EGFP)-expressing transgenic fetuses) at embryonic day (E) 12.5 with an all-in-one plasmid conferring the expression of both Cas9 and guide RNA (targeted to the EGFP cDNA) complexed with the gene delivery reagent, resulted in some fetuses exhibiting reduced fluorescence in their hearts and gene insertion/deletion (indel) mutations. In this study, we examined whether the endogenous myosin heavy-chain α (MHCα) gene can be successfully genome-edited by this method in the absence of a gene delivery reagent with potential fetal toxicity. For this, we employed a hydrodynamics-based gene delivery (HGD) system with the aim of ensuring fetal gene delivery rates and biosafety. We also investigated which embryonic stages are suitable for the induction of genome editing in fetuses. Of the three pregnant females injected at E9.5, one had mutated fetuses: all examined fetuses carried exogenous plasmid DNA, and four of 10 (40%) exhibited mosaic indel mutations in MHCα. Gene delivery to fetuses at E12.5 and E15.5 did not cause mutations. Thus, the HGD-based transplacental delivery of a genome editing vector may be able to manipulate the fetal genomes of E9.5 fetuses.
Collapse
|
3
|
piggyBac-Based Non-Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics 2020; 12:pharmaceutics12030277. [PMID: 32204422 PMCID: PMC7151002 DOI: 10.3390/pharmaceutics12030277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
In vivo gene delivery involves direct injection of nucleic acids (NAs) into tissues, organs, or tail-veins. It has been recognized as a useful tool for evaluating the function of a gene of interest (GOI), creating models for human disease and basic research targeting gene therapy. Cargo frequently used for gene delivery are largely divided into viral and non-viral vectors. Viral vectors have strong infectious activity and do not require the use of instruments or reagents helpful for gene delivery but bear immunological and tumorigenic problems. In contrast, non-viral vectors strictly require instruments (i.e., electroporator) or reagents (i.e., liposomes) for enhanced uptake of NAs by cells and are often accompanied by weak transfection activity, with less immunological and tumorigenic problems. Chromosomal integration of GOI-bearing transgenes would be ideal for achieving long-term expression of GOI. piggyBac (PB), one of three transposons (PB, Sleeping Beauty (SB), and Tol2) found thus far, has been used for efficient transfection of GOI in various mammalian cells in vitro and in vivo. In this review, we outline recent achievements of PB-based production of genetically modified animals and organs and will provide some experimental concepts using this system.
Collapse
|
4
|
Suzuki T, Wakao Y, Goda T, Kamiya H. Conventional plasmid DNAs with a CpG-containing backbone achieve durable transgene expression in mouse liver. J Gene Med 2020; 22:e3138. [PMID: 31696985 DOI: 10.1002/jgm.3138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Durable transgene expression from plasmid DNAs is the key to gene therapy with non-viral vectors. A comparison of the durability of transgene expression from plasmid DNAs with the CpG-free and -containing backbones is important. METHODS We constructed plasmid DNAs with the CpG-containing backbone, various transcription regulatory sequences with and without CpG, and the gene encoding Gaussia princeps luciferase, which is apparently non-immunogenic. The tail vein hydrodynamics-based method was used for plasmid injection into mice, and the luciferase activity in serum was tracked for 28 days. RESULTS The plasmid DNAs containing the albumin promoter [with or without the cytomegalovirus (CMV) enhancer] and the elongation factor (EF)1α promoter plus the CMV enhancer exhibited long-term luciferase expression. The expression from the plasmid DNA containing the albumin promoter without the CMV enhancer was maintained for at least 24 weeks and was similar to that from the corresponding CpG-free plasmid DNA. CONCLUSIONS The results obtained in the present study suggest that special sequences/systems are unnecessary for durable transgene expression from plasmid DNAs when the proper transcription regulatory sequences are used.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Wakao
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuya Goda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Nakamura S, Watanabe S, Ando N, Ishihara M, Sato M. Transplacental Gene Delivery (TPGD) as a Noninvasive Tool for Fetal Gene Manipulation in Mice. Int J Mol Sci 2019; 20:ijms20235926. [PMID: 31775372 PMCID: PMC6928727 DOI: 10.3390/ijms20235926] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Transplacental gene delivery (TPGD) is a technique for delivering nucleic acids to fetal tissues via tail-vein injections in pregnant mice. After transplacental transport, administered nucleic acids enter fetal circulation and are distributed among fetal tissues. TPGD was established in 1995 by Tsukamoto et al., and its mechanisms, and potential applications have been further characterized since. Recently, discoveries of sequence specific nucleases, such as zinc-finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9), have revolutionized genome editing. In 2019, we demonstrated that intravenous injection of plasmid DNA containing CRISPR/Cas9 produced indels in fetal myocardial cells, which are comparatively amenable to transfection with exogenous DNA. In the future, this unique technique will allow manipulation of fetal cell functions in basic studies of fetal gene therapy. In this review, we describe developments of TPGD and discuss their applications to the manipulation of fetal cells.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
- Correspondence: ; Tel.: +81-4-2995-1211
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan;
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan; (N.A.); (M.I.)
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| |
Collapse
|
6
|
Nakamura S, Ishihara M, Ando N, Watanabe S, Sakurai T, Sato M. Transplacental delivery of genome editing components causes mutations in embryonic cardiomyocytes of mid-gestational murine fetuses. IUBMB Life 2019; 71:835-844. [PMID: 30635953 DOI: 10.1002/iub.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
Genome editing, as exemplified by CRISPR/Cas9, is now recognized as a powerful tool for the engineering of endogenous target genes. It employs only two components, namely, Cas9 in the form of DNA, mRNA, or protein; and guide RNA (gRNA), which is specific to a target gene. When these components are transferred to cells, they create insertion/deletion mutations (indels) within a target gene. Therefore, when fetuses within the uteri of pregnant murine females are exposed to these reagents, fetal cells incorporating them should show mutations in the target gene. To examine a possible genome editing of fetal cells in vivo, we intravenously administered a solution containing plasmid DNA-FuGENE complex to pregnant wild-type female mice [which had been successfully mated with enhanced green fluorescent protein (EGFP)-expressing male transgenic mice] on day 12.5 of gestation. The plasmid DNA induces the expression of gRNA, which was targeted at the EGFP cDNA, and that of the Cas9 gene. All fetuses in the pregnant females should express EGFP systemically, since they are heterozygous (Tg/+) for the transgene. Thus, the delivery of CRISPR system targeted at EGFP in the fetuses will cause a reduced expression of EGFP as a result of the genome editing of EGFP genomic sequence. Of the 24 fetuses isolated from three pregnant females 2 days after gene delivery, 3 were found to have reduced fluorescence in their hearts. Genotyping of the dissected hearts revealed the presence of the transgene construct (Cas9 gene) in all the samples. Furthermore, all the three samples exhibited mutations at the target loci, although normal cells were also present. Thus, transplacental delivery of gene editing components may be a useful tool for developing animal models with heart disorder for heart-related disease research, and gene therapy in congenital heart defects such as hypertrophic cardiomyopathy (HCM). © 2019 IUBMB Life, 9999(9999):1-10, 2019.
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, 359-8513, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, 359-8513, Japan
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Tokorozawa, Saitama, 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0901, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
7
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
8
|
Intravenous Delivery of piggyBac Transposons as a Useful Tool for Liver-Specific Gene-Switching. Int J Mol Sci 2018; 19:ijms19113452. [PMID: 30400245 PMCID: PMC6274756 DOI: 10.3390/ijms19113452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Hydrodynamics-based gene delivery (HGD) is an efficient method for transfecting plasmid DNA into hepatocytes in vivo. However, the resulting gene expression is transient, and occurs in a non-tissue specific manner. The piggyBac (PB) transposon system allows chromosomal integration of a transgene in vitro. This study aimed to achieve long-term in vivo expression of a transgene by performing hepatocyte-specific chromosomal integration of the transgene using PB and HGD. Using this approach, we generated a novel mouse model for a hepatic disorder. A distinct signal from the reporter plasmid DNA was discernible in the murine liver approximately two months after the administration of PB transposons carrying a reporter gene. Then, to induce the hepatic disorder, we first administered mice with a PB transposon carrying a CETD unit (loxP-flanked stop cassette, diphtheria toxin-A chain gene, and poly(A) sites), and then with a plasmid expressing the Cre recombinase under the control of a liver-specific promoter. We showed that this system can be used for in situ manipulation and analysis of hepatocyte function in vivo in non-transgenic (Tg) animals.
Collapse
|