1
|
Wu C, Lu Q, Ma S, Mamat N, Tang S, Liu W, Wang Y, Anwar A, Lu Y, Ma Q, Aimaier G, Fu X. Proteomics Reveals the Role of PLIN2 in Regulating the Secondary Hair Follicle Cycle in Cashmere Goats. Int J Mol Sci 2025; 26:2710. [PMID: 40141352 PMCID: PMC11942475 DOI: 10.3390/ijms26062710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Based on comprehensive proteomic analysis conducted across various stages of secondary hair follicles (SHFs), the growth and development regulatory mechanisms of SHFs in Jiangnan cashmere goats were studied. Proteomic analysis of skin tissue from the SHF anagen (An), catagen (Cn), and telogen (Tn) revealed 145 differentially expressed proteins (DEPs) between the An and Tn, 53 DEPs between the Cn and An, and 168 DEPs between the Cn and Tn. Gene Ontology (GO) annotations indicated that the DEPs were predominantly involved in keratin filament formation (KRTAP3-1, KRT1, KRT8), intermediate filament formation (KRT26, KRT35, KRT19, etc.), and lipid metabolism (FA2H, CERS6, ECH1, TECR, etc.). Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified significant enrichment of DEPs in pathways related to hair follicle growth and development. Notably, these included the PPAR signaling pathway (PLIN2, PLIN4, ACSL5, etc.), the IL-17 signaling pathway (S100A7A, LOC108633164), and the estrogen signaling pathway (KRT26, KRT35, LOC102176457.). Western blotting (WB) experiments were then performed on five DEPs (KRT28, FA2H, PLIN2, FABP7, and VNN1) to validate the consistency of the WB results with the proteomic data. Overexpression and siRNA interference of PLIN2 in dermal papilla cells (DPCs) were followed by CCK8 and flow cytometry assays, revealing that PLIN2 knockdown significantly decreased DPC proliferation while inducing apoptosis, compared to controls. These findings suggest that the PLIN2 gene plays a crucial role in modulating SHF growth cycles in cashmere goats by influencing DPC proliferation. These results provide novel insights that could inform the development of breeding strategies aimed at enhancing the cashmere yield in such goats.
Collapse
Affiliation(s)
- Cuiling Wu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Center for the Collaborative Management of Cross-Border Pest in Central Asia, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (C.W.); (N.M.); (G.A.)
| | - Qingwei Lu
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Shengchao Ma
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Nuramina Mamat
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Center for the Collaborative Management of Cross-Border Pest in Central Asia, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (C.W.); (N.M.); (G.A.)
| | - Sen Tang
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Wenna Liu
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Yaqian Wang
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Asma Anwar
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Yingjie Lu
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Qiangqiang Ma
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| | - Gulinigaer Aimaier
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, International Center for the Collaborative Management of Cross-Border Pest in Central Asia, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (C.W.); (N.M.); (G.A.)
| | - Xuefeng Fu
- Xinjiang Key Laboratory of Animal Biotechnology, Key Laboratory of Herbivorous Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Sciences, Urumqi 830011, China; (Q.L.); (S.M.); (S.T.); (W.L.); (Y.W.); (A.A.); (Y.L.); (Q.M.)
| |
Collapse
|
2
|
Vasu M, Ahlawat S, Arora R, Sharma R. Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review. Mamm Genome 2025; 36:162-182. [PMID: 39904908 DOI: 10.1007/s00335-025-10109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
3
|
Wu J, Zhai J, Jia H, Ahamba IS, Dong X, Ren Z. Whole-transcriptome analysis reveals the profiles and roles of coding and non-coding RNAs during hair follicle cycling in Rex rabbits. BMC Genomics 2025; 26:74. [PMID: 39863835 PMCID: PMC11765939 DOI: 10.1186/s12864-025-11264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown. RESULTS In this study, we identified the hair follicle stages of Rex rabbits aged 3 to 5.5 months. Skin samples collected at 4, 5 and 5.5 months, representing the morphological features of the anagen, catagen and telogen stage separately, were finally selected for whole-transcriptome analysis. 25,736 mRNA, 8280 lncRNA, 24,885 circRNA and 1138 miRNA transcripts were identified. 6027 differently expressed mRNAs (DEGs), 2381 differently expressed lncRNAs (DELs), 438 differently expressed circRNAs (DECs) and 167 differently expressed miRNAs (DEMs) were detected in the anagen vs. catagen (AvC) comparison. 4092 DEGs, 1540 DELs, 356 DECs and 141 DEMs were detected in the anagen vs. telogen (AvT) comparison. 2290 DEGs, 779 DELs, 249 DECs and 92 DEMs were detected in the catagen vs. telogen (CvT) comparison. DEGs were primarily enriched in GO items including plasma membrane, integral component of plasma membrane and extracellular space. KEGG enrichment analysis revealed that DEGs were mainly enriched in PI3K-Akt signaling pathway, cell cycle and Wnt signaling pathway (p < 0.05). KEGG analysis showed trans-acting genes of DELs were significantly enriched in Hippo signaling pathway, PI3K-Akt signaling pathway and Melanogenesis. Target genes of DEMs were mainly enriched in MAPK signaling pathway, Wnt signaling pathway, ECM-receptor interaction and Signaling pathways regulating pluripotency of stem cells. Based on the ceRNA mechanism, lncRNA/circRNA-miRNA-mRNA networks were constructed involving 9 DECs, 437 DELs, 50 DEMs and 416 DEGs. CONCLUSIONS Totally, this study provides comprehensive insights into the expression patterns of protein-coding genes and non-coding transcripts throughout the HF cycle, and enhancing the understanding of the regulatory mechanisms underlying mammalian hair fiber development.
Collapse
Affiliation(s)
- Jie Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haofan Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ifeanyi Solomon Ahamba
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhanjun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Zheng Y, Chen R, Yue C, Zhang Y, Guo S, Wang Y, Bai Z, Cai W, Hui T, Sun J, Zhang X, Wang Z. CeRNA regulates network and expression and SNP effect on NFKBIA of cashmere fineness. Anim Biotechnol 2023; 34:2863-2874. [PMID: 36165594 DOI: 10.1080/10495398.2022.2124165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, a total of 1140 Liaoning Cashmere Goats (LCG) were genotyped for single nucleotide polymorphism (SNP) of NFKBIA gene. There are 15 SNPs and 7 genotypes have been found, and G1547A (GG) genotype has been associated with cashmere fineness and cashmere yield. An integrated ceRNA regulatory network of NFKBIA gene was made. To prove NFKBIA and these non-coding RNAs (ncRNAs) may be related to cashmere fineness, we performed qPCR on these ncRNA in LCG coarse type skin (CT-LCG) and LCG fine type skin (FT-LCG). The result of qPCR showed lncRNA XLOC_011060 and ciRNA452 are at high expression level in CT-LCG, all miRNAs appear high expressed in FT-LCG, and mir-93 was the most significant difference between CT-LCG and FT-LCG. In addition, five miRNAs were selected for qPCR in different genotypes. The qPCR results showed that mir-93 might negatively regulate cashmere fineness and mir-17-5p may play a positive role in regulating cashmere fineness of individuals with G1355A (AG) genotype. These results demonstrated that NFKBIA gene is associated with cashmere fineness of LCG and G1547A (GG) genotype is the preferred marker genotype for cashmere fineness.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingchun Zhang
- Wenhua Road Primary School, Shenhe District, Shenyang, China
| | - Suping Guo
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanru Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Raza SHA, Wijayanti D, Pant SD, Abdelnour SA, Hashem NM, Amin A, Wani AK, Prakash A, Dawood MAO, Zan L. Exploring the physiological roles of circular RNAs in livestock animals. Res Vet Sci 2022; 152:726-735. [PMID: 36270182 DOI: 10.1016/j.rvsc.2022.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Circular RNAs (circRNAs) are a recently identified class of RNAs produced via back-splicing and covalent linkage between RNA ends, resulting in a circularized RNA molecule. Physiologically, circRNAs are known to influence a variety of biological pathways, and can also regulate transcription, post-transcription, RNA splicing, or interaction with other proteins or microRNAs (miRNAs). Functionally, circRNAs are known to competitively bind to various other RNA molecules including miRNAs and other competing endogenous RNA such as long noncoding RNA, thereby significantly influencing gene expression. Since gene expression is a crucial factor that underlies economically important livestock traits, it is likely that circRNAs significantly influence livestock traits like growth, milk production, reproduction, meat quality, hair follicle growth, and gametogenesis. Thousands of circRNAs have been recognized in different species of animals, and some of these circRNAs have also been shown to regulate stress responses that may be crucial for animal welfare. Therefore, in this review, we aim to highlight the biogenesis of circRNAs, along with its potential implications for livestock. The presented summary would offer a fundamental understanding of the molecular machinery that underlies circRNAs and associated biological phenomena and emphasize the need for further explorations into the role of circRNAs in the other productive, reproductive, and physiological attributes in animals.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dwi Wijayanti
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sameer D Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (144411), India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, USA
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Egypt; Center for Applied Research on the Environment and Sustainability, The American University in Cairo, New Cairo 11835, Egypt
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Gong G, Fan Y, Yan X, Li W, Yan X, Liu H, Zhang L, Su Y, Zhang J, Jiang W, Liu Z, Wang Z, Wang R, Zhang Y, Lv Q, Li J, Su R. Identification of Genes Related to Hair Follicle Cycle Development in Inner Mongolia Cashmere Goat by WGCNA. Front Vet Sci 2022; 9:894380. [PMID: 35774980 PMCID: PMC9237575 DOI: 10.3389/fvets.2022.894380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cashmere goat from Inner Mongolia is an excellent local breed in China, and the related cashmere product is a kind of precious textile raw material with high price. Cashmere is generated from secondary hair follicles, which has obvious annual periodicity and includes three different stages: anagen, catagen, and telogen. Therefore, we investigated skin transcriptome data for 12 months using weighted gene co-expression network analysis (WGCNA) to explore essential modules, pathways, and genes responsible for the periodic growth and development of secondary hair follicles. A total of 17 co-expression modules were discovered by WGCNA, and there is a strong correlation between steelblue module and month (0.65, p = 3E−09), anagen (0.52, p = 1E−05), telogen (−0.6, p = 8E−08). Gene expression was generally high during late anagen to catagen (June to December), while expression was downregulated from telogen to early anagen (January–May), which is similar to the growth rule of hair follicle cycle. KEGG pathway enrichment analyses of the genes of steelblue module indicated that genes are mainly enriched in Cell cycle, Wnt signaling pathway, p53 signaling pathway and other important signal pathways. These genes were also significantly enriched in GO functional annotation of the cell cycle, microtubule movement, microtubule binding, tubulin binding, and so on. Ten genes (WIF1, WNT11, BAMBI, FZD10, NKD1, LEF1, CCND3, E2F3, CDC6, and CDC25A) were selected from these modules, and further identified as candidate biomarkers to regulate periodic development of hair follicles using qRT-PCR. The Wnt signaling pathway and Cell cycle play an important role in the periodic development of hair follicles. Ten genes were identified as essential functional molecules related to periodic development of hair follicle. These findings laid a foundation for understanding molecular mechanisms in biological functions such as hair follicle development and hair growth in cashmere goats.
Collapse
Affiliation(s)
- Gao Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenze Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaomin Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hongfu Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ludan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yixing Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
- *Correspondence: Qi Lv
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
- Jinquan Li
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
- Rui Su
| |
Collapse
|
7
|
Wu C, Qin C, Fu X, Huang X, Tian K. Integrated analysis of lncRNAs and mRNAs by RNA-Seq in secondary hair follicle development and cycling (anagen, catagen and telogen) of Jiangnan cashmere goat (Capra hircus). BMC Vet Res 2022; 18:167. [PMID: 35524260 PMCID: PMC9074311 DOI: 10.1186/s12917-022-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Among the world's finest natural fiber composites is derived from the secondary hair follicles (SHFs) of cashmere goats yield one of the world's best natural fibres. Their development and cycling are characterized by photoperiodism with diverse, well-orchestrated stimulatory and inhibitory signals. Long non-coding RNA (lncRNAs) and mRNAs play important roles in hair follicle (HF) development. However, not many studies have explored their specific functions in cashmere development and cycling. This study detected mRNAs and lncRNAs with their candidate genes and related pathways in SHF development and cycling of cashmere goat. We utilized RNA sequencing (RNA-Seq) and bioinformatics analysis on lncRNA and mRNA expressions in goat hair follicles to discover candidate genes and metabolic pathways that could affect development and cycling (anagen, catagen, and telogen). RESULTS We identified 228 differentially expressed (DE) mRNAs and 256 DE lncRNA. For mRNAs, catagen and anagen had 16 upregulated and 35 downregulated DEGs, catagen and telogen had 18 upregulated and 9 downregulated DEGs and telogen and anagen had 52 upregulated and 98 downregulated DEGs. LncRNA witnessed 22 upregulated and 39 downregulated DEGs for catagen and anagen, 36 upregulated and 29 downregulated DEGs for catagen and telogen as well as 66 upregulated and 97 downregulated DEGs for telogen and anagen. Several key genes, including MSTRG.5451.2, MSTRG.45465.3, MSTRG.11609.2, CHST1, SH3BP4, CDKN1A, GAREM1, GSK-3β, DEFB103A KRTAP9-2, YAP1, S100A7A, FA2H, LOC102190037, LOC102179090, LOC102173866, KRT2, KRT39, FAM167A, FAT4 and EGFL6 were shown to be potentially important in hair follicle development and cycling. They were related to, WNT/β-catenin, mTORC1, ERK/MAPK, Hedgehog, TGFβ, NFkB/p38MAPK, caspase-1, and interleukin (IL)-1a signaling pathways. CONCLUSION This work adds to existing understanding of the regulation of HF development and cycling in cashmere goats via lncRNAs and mRNAs. It also serves as theoretical foundation for future SHF research in cashmere goats.
Collapse
Affiliation(s)
- Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.,Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Aksu, 843000, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China. .,Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool sheep & Cashmere-goat, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China.
| |
Collapse
|
8
|
Bai Z, Xu Y, Gu M, Cai W, Zhang Y, Qin Y, Chen R, Sun Y, Wu Y, Wang Z. Proteomic analysis of coarse and fine skin tissues of Liaoning cashmere goat. Funct Integr Genomics 2022; 22:503-513. [PMID: 35366687 DOI: 10.1007/s10142-022-00856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Xu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Zhang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Qin
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinggang Sun
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanzhi Wu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
9
|
Identification and Molecular Analysis of m6A-circRNAs from Cashmere Goat Reveal Their Integrated Regulatory Network and Putative Functions in Secondary Hair Follicle during Anagen Stage. Animals (Basel) 2022; 12:ani12060694. [PMID: 35327094 PMCID: PMC8944478 DOI: 10.3390/ani12060694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Cashmere is a natural, high-end textile material. It is derived from the secondary hair follicle (SHFs) tissue in the skin of cashmere goats. Previous studies have indicated that m6A modifications in circRNA molecules play important roles in a variety of cells through multiple mechanisms. However, little information is available on the expression profile and functional regulatory characteristics of m6A-modified circRNA (m6A-circRNA) in SHFs of cashmere goats. In this study, a total of 15 m6A-circRNAs were identified. Six of these m6A-circRNAs were revealed to have significantly higher expression in skin at anagen than at telogen. To gain insight into the potential regulatory mechanisms of the anagen up-regulated m6A-circRNAs, we constructed the regulatory networks along with related pathways in SHFs of cashmere goats. In addition, we found that the expression trends of four m6A-circRNAs in the SHFs during SHF cycles were highly similar to their host genes. However, the expression patterns of two m6A-circRNAs were inconsistent with the linear RNAs from their host genes in the SHFs of cashmere goats. These results will provide new insights to elucidate the biological functions and regulatory features of m6A-circRNA in SHF development and cashmere growth in goats. Abstract N6-methyladenosine (m6A) is the most abundant modification in linear RNA molecules. Over the last few years, interestingly, many circRNA molecules are also found to have extensive m6A modification sites with temporal and spatial specific expression patterns. To date, however, little information is available concerning the expression profiling and functional regulatory characteristics of m6A modified circRNAs (m6A-circRNAs) in secondary hair follicles (SHFs) of cashmere goats. In this study, a total of fifteen m6A-circRNAs were identified and characterized in the skin tissue of cashmere goats. Of these, six m6A-circRNAs were revealed to have significantly higher expression in skin at anagen compared with those at telogen. The constructed ceRNA network indicated a complicated regulatory relationship of the six anagen up-regulated m6A-circRNAs through miRNA mediated pathways. Several signaling pathways implicated in the physiological processes of hair follicles were enriched based on the potential regulatory genes of the six anagen up-regulated m6A-circRNAs, such as TGF-beta, axon guidance, ribosome, and stem cell pluripotency regulatory pathways, suggesting the analyzed m6A-circRNAs might be essentially involved in SHF development and cashmere growth in cashmere goats. Further, we showed that four m6A-circRNAs had highly similar expression trends to their host genes in SHFs of cashmere goats including m6A-circRNA-ZNF638, -TULP4, -DNAJB6, and -CAT. However, the expression patterns of two m6A-circRNAs (m6A-circRNA-STAM2 and -CAAP1) were inconsistent with the linear RNAs from their host genes in the SHFs of cashmere goats. These results provide novel information for eluci-dating the biological function and regulatory characteristics of the m6A-circRNAs in SHF development and cashmere growth in goats.
Collapse
|
10
|
Wang Z, Wang Y, Hui T, Chen R, Xu Y, Zhang Y, Tian H, Wang W, Cong Y, Guo S, Zhu Y, Zhang X, Guo D, Bai M, Fan Y, Yue C, Bai Z, Sun J, Cai W, Zhang X, Gu M, Qin Y, Sun Y, Wu Y, Wu R, Dou X, Bai W, Zheng Y. Single-Cell Sequencing Reveals Differential Cell Types in Skin Tissues of Liaoning Cashmere Goats and Key Genes Related Potentially to the Fineness of Cashmere Fiber. Front Genet 2021; 12:726670. [PMID: 34858469 PMCID: PMC8631524 DOI: 10.3389/fgene.2021.726670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.
Collapse
Affiliation(s)
- Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yanru Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Taiyu Hui
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - He Tian
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuyan Cong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanxu Zhu
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Xinghui Zhang
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Dan Guo
- Liaoning Provincial Department of Science and Technology, Shenyang, China
| | - Man Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuting Qin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinggang Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center, Shenyang, China
| | - Wenlin Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Hui T, Zheng Y, Yue C, Wang Y, Bai Z, Sun J, Cai W, Zhang X, Bai W, Wang Z. Screening of cashmere fineness-related genes and their ceRNA network construction in cashmere goats. Sci Rep 2021; 11:21977. [PMID: 34753940 PMCID: PMC8578607 DOI: 10.1038/s41598-021-01203-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) is a transcript that can be mutually regulated at the post-transcriptional level by competing shared miRNAs. The ceRNA network connects the function of protein-encoded mRNA with the function of non-coding RNA, such as microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). However, compared with the ceRNA, the identification and combined analysis of lncRNAs, mRNAs, miRNAs, and circRNAs in the cashmere fineness have not been completed. Using RNA-seq technology, we first identified the miRNAs presented in Liaoning Cashmere Goat (LCG) skin, and then analyzed the mRNAs, lncRNAs, circRNAs expressed in LCG and Inner Mongolia cashmere goat (MCG) skin. As a result, 464 known and 45 new miRNAs were identified in LCG skin. In LCG and MCG skin, 1222 differentially expressed mRNAs were identified, 170 differentially expressed lncRNAs and 32 differentially expressed circRNAs were obtained. Then, qRT-PCR was used to confirm further the representative lncRNAs, mRNAs, circRNAs and miRNAs. In addition, miRanda predicted the relationships of ceRNA regulatory network among lncRNAs, circRNAs, miRNAs and mRNAs, the potential regulatory effects were investigated by Go and KEGG analysis. Through the screening and analysis of the results, the ceRNA network regulating cashmere fineness was constructed. LncRNA MSTRG14109.1 and circRNA452 were competed with miRNA-2330 to regulated the expression of TCHH, KRT35 and JUNB, which may provide a potential basis for further research on the process of regulating the cashmere fineness.
Collapse
Affiliation(s)
- Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
12
|
Yang M, Weng T, Zhang W, Zhang M, He X, Han C, Wang X. The Roles of Non-coding RNA in the Development and Regeneration of Hair Follicles: Current Status and Further Perspectives. Front Cell Dev Biol 2021; 9:720879. [PMID: 34708037 PMCID: PMC8542792 DOI: 10.3389/fcell.2021.720879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alopecia is a common problem that affects almost every age group and is considered to be an issue for cosmetic or psychiatric reasons. The loss of hair follicles (HFs) and hair caused by alopecia impairs self-esteem, thermoregulation, tactile sensation and protection from ultraviolet light. One strategy to solve this problem is HF regeneration. Many signalling pathways and molecules participate in the morphology and regeneration of HF, such as Wnt/β-catenin, Sonic hedgehog, bone morphogenetic protein and Notch. Non-coding RNAs (ncRNAs), especially microRNAs and long ncRNAs, have significant modulatory roles in HF development and regeneration via regulation of these signalling pathways. This review provides a comprehensive overview of the status and future prospects of ncRNAs in HF regeneration and could prompt novel ncRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Min Yang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojie He
- Department of General Practice, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Chen Z, Wang X, Hou X, Ding F, Yi K, Zhang P, You T. Knockdown of Long Non-Coding RNA AFAP1-AS1 Promoted Viability and Suppressed Death of Cardiomyocytes in Response to I/R In Vitro and In Vivo. J Cardiovasc Transl Res 2020; 13:996-1007. [PMID: 32406007 DOI: 10.1007/s12265-020-10016-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Long non-coding RNA (lncRNA) plays a pivotal role in the development of myocardial infarction (MI). The aim of this study was to investigate the effects of lncRNA actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) on cell cycle, proliferation, and apoptosis. RT-qPCR was used to detect the expression levels of AFAP1-AS1, miR-512-3p, and reticulon 3 (RTN3) in rat model of I/R. The simulated MI environment was constructed. MTT assay and flow cytometry were used to detect changes in cardiomyocyte viability and cell cycle/apoptosis after MI by AFAP1-AS1 silencing or RTN3 silencing. The targeting relationship of miR-512-3p and AFAP1-AS1 and RTN3 in cardiomyocytes was verified by dual luciferase reporter assay. The expression levels of AFAP1-AS1 and RTN3 were significantly upregulated in a rat model of LAD ligation (or MI) ligation, while the expression level of miR-512-3p was significantly reduced. Overexpressed AFAP1-AS1 and RTN3 promoted cardiomyocyte apoptosis and inhibited cardiomyocyte proliferation. MiR-512-3p was a direct target of AFAP1-AS1, and RTN3 was a direct target of miR-512-3p. AFAP1-AS1 promoted the progression of MI by targeting miR-512-3p. AFAP1-AS1 promoted the progression of MI by modulating the miR-512-3p/RTN3 axis. AFAP1-AS1 may be a potential therapy target for MI. Graphical Abstract The role of AFAP1-AS1 in regulating MI injury in vivo. (A) Effect of AFAP1-AS1 in MI injury in vivo. (B) The mRNA level of RTN3 in MI injury in vivo. (C) The protein level of RTN3 in MI injury in vivo. (D) Effect of miR-512-3p in MI model group. (E) TUNEL assay. *P < 0.05, **P < 0.01 vs the sham group; #P < 0.05, ##P < 0.01 vs the MI group.
Collapse
Affiliation(s)
- Zhigong Chen
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Xinkuan Wang
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Xiaodong Hou
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Fan Ding
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Kang Yi
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Peng Zhang
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China
| | - Tao You
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, No. 204, Dong gang West Road, Chengguan District, Lanzhou City, Gansu province, 730000, People's Republic of China.
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
14
|
Yin RH, Zhao SJ, Wang ZY, Zhu YB, Yin RL, Bai M, Fan YX, Wang W, Bai WL. LncRNA-599547 contributes the inductive property of dermal papilla cells in cashmere goat through miR-15b-5p/Wnt10b axis. Anim Biotechnol 2020; 33:493-507. [PMID: 32808845 DOI: 10.1080/10495398.2020.1806860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lncRNA-599547 (619-nt in length) is identified in secondary hair follicle (SHF) of cashmere goat, but its functional roles in regulating the inductive property of dermal papilla cells (DPCs) remains unknown. We found that lncRNA-599547 had significantly higher expression in dermal papilla of cashmere goat SHF at anagen than its counterpart at telogen. The overexpression of lncRNA-599547 led to a significant increase of ALP and LEF1 expression in DPCs (p < 0.05), whereas, the siLncRNA-1 mediated silencing of lncRNA-599547 significantly down-regulated the expression of ALP and LEF1 in DPCs (p < 0.05). Based on biotin-labeled RNA pull-down assay, we found that lncRNA-599547 directly interacted with chi-miR-15b-5p in DPCs. Based on both overexpression and silencing analysis of lncRNA-599547, our results indicate that lncRNA-599547 promotes the expression of Wnt10b in DPCs but without modulating its promoter methylation level. Using the mRNA-3'UTR fragments of goat Wnt10b containing the predicted binding sites of chi-miR-15b-5p in Dual-luciferase Reporter Assays, we show that lncRNA-599547 modulates the expression of Wnt10b at the chi-miR-15b-5p mediated post-transcriptional level. Taken together, our results indicate that lncRNA-599547 sponges miR-15b-5p to positively regulate the expression of Wnt10 gene, and thereby contributes the inductive property of DPCs in cashmere goat.
Collapse
Affiliation(s)
- Rong H Yin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Su J Zhao
- Sichuan Animal Science Academy, Chengdu, Sichuan, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Ze Y Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yu B Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Rong L Yin
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun, China
| | - Man Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yi X Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Wen L Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
15
|
Bao L, Zong H, Fang S, Zheng L, Li Y. Randomized trial of electrodynamic microneedling combined with 5% minoxidil topical solution for treating androgenetic alopecia in Chinese males and molecular mechanistic study of the involvement of the Wnt/β-catenin signaling pathway. J DERMATOL TREAT 2020; 33:483-493. [PMID: 32412314 DOI: 10.1080/09546634.2020.1770162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Treatment of androgenetic alopecia (AGA) with concurrent electrodynamic microneedling and 5% minoxidil may further stimulate hair growth.Objectives: To evaluate the efficacy of microneedling combined with 5% minoxidil in Chinese male AGA patients and to explore the underlying mechanisms.Methods: Seventy-one male volunteers with AGA completed the entire trial and follow-up. The first group (n = 23) received only 5% minoxidil twice daily for 24 weeks; the second group (n = 23) received only microneedle therapy every 3 weeks for eight treatments; and the third group (n = 25) received the combination treatment for a total of 24 weeks. Changes in hair density and diameter were evaluated before and after treatment every 3 weeks, and patients were followed up at 6 months after the final treatment. In the combination group, a PCR array was used to detect the expression of molecules in the Wnt/β-catenin pathway within the hair loss sites on top of the head before and after treatment and within the scalp tissues from non-hair loss sites on top of the head. The tissues were obtained by punches in the most severe area of hair loss on top of the head and in the adjacent normal hair area without hair loss. Real-time quantitative PCR and western blotting were used to further examine changes in the differentially expressed molecules identified by PCR array (FZD3) and in molecules in the Wnt/β-catenin signaling pathway closely related to hair growth (β-catenin and LEF-1).Results: Compared to single minoxidil or single microneedle treatment, the combination therapy showed superior therapeutic effects clinically, with further upregulation of FZD3, β-catenin, and LEF-1 expression levels at both mRNA and protein levels in the treated areas.Conclusions: Microneedling combined with 5% minoxidil can improve AGA, and the underlying mechanism may involve activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Linlin Bao
- Department of Dermatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China.,Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haifeng Zong
- Department of NICU, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Sining Fang
- Department of Dermatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Lixiong Zheng
- Department of Dermatology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Yuanhong Li
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Yin RH, Wang YR, Zhao SJ, Yin RL, Bai M, Wang ZY, Zhu YB, Cong YY, Liu HY, Bai WL. LncRNA-599554 sponges miR-15a-5p to contribute inductive ability of dermal papilla cells through positive regulation of the expression of Wnt3a in cashmere goat. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Jiao Q, Wang YR, Zhao JY, Wang ZY, Guo D, Bai WL. Identification and molecular analysis of cashmere goat lncRNAs reveal their integrated regulatory network and potential roles in secondary hair follicle. Anim Biotechnol 2020; 32:719-732. [PMID: 32233965 DOI: 10.1080/10495398.2020.1747477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) is a class of eukaryotic transcripts with length of more than 200 bp. They contribute to the regulation of gene expressions involved in multiple processes including the skin cell proliferation, differentiation, and reconstruction of the secondary hair follicles (SHFs). In this study, firstly, we identified 16 putative lncRNAs from SHFs of cashmere goat based on the EST sequences from NCBI database. Secondly, we investigated their transcriptional pattern in SHFs of cashmere goat, and constructed their ceRNA regulatory networks. The RT-qPCR results showed four lncRNAs (lncRNA-475074, -052149, -052140, and -051789) were significantly up-regulated, and nine lncRNAs (lncRNA-711032, -475083, -475070, -052139, -052127, -052037, -051903, -051847, and -051804) were significantly down-regulatd in anagen SHFs of cashmere goat. CeRNA networks analysis revealed complex interactional relationship among lncRNAs, miRNAs and mRNAs. Further, the KEGG pathway enrichment was performed for the potential target genes of the identified lncRNAs based on bioinformatics technique, and the results indicated that differentially expressed lncRNAs directly or indirectly might regulate potential target genes. Our results from this study will provide a significant information for further exploring the functions and possible mechanisms of the identified lncRNAs in SHFs of cashmere goat.
Collapse
Affiliation(s)
- Qian Jiao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yan R Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Jun Y Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Ze Y Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, P.R. China
| | - Wen L Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, P.R. China
| |
Collapse
|
18
|
Lin BJ, Zhu JY, Ye J, Lu SD, Liao MD, Meng XC, Yin GQ. LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cell Signal 2020; 72:109623. [PMID: 32243962 DOI: 10.1016/j.cellsig.2020.109623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alopecia is a highly prevalent disease characterizing by the loss of hair. Dermal papilla (DP) cells are the inducer of hair follicle regeneration, and in vitro three-dimensional (3D) culturing DP cells have been proven to induce hair follicle regeneration. However, the molecular mechanisms behind the regulation of 3D culturing DP cells remain unclear. METHODS 3D-cultivated DP cells were used as in vitro cell model. DP sphere xenograft to nude mice was performed for in vivo study of hair follicle regeneration. qRT-PCR, Western blotting, and immunofluorescence were used for detecting the level of XIST, miR-424 and Hedgehog pathway-related proteins, respectively. H&E staining was used to examine hair neogenesis. Cell viability, proliferation and ALP activity were measured by MTT, CCK-8 and ELISA assays, respectively. Luciferase assays were used for studying molecular regulation between XIST, miR-424 and Shh 3'UTR. RESULTS XIST and Shh were up-regulated, and miR-424 was down-regulated in 3D DP cells. Molecular regulation studies suggested that XIST sponged miR-424 to promote Shh expression. Knockdown of XIST suppressed DP cell activity, cell proliferation, ALP activity and the expression of other DP markers by sponging miR-424. Knockdown of XIST suppressed Shh mediated hedgehog signaling by targeting miR-424. Moreover, the knockdown of XIST inhibited DP sphere induced in vivo hair follicle regeneration and hair development. CONCLUSION XIST sponges miR-424 to promote Shh expression, thereby activating hedgehog signaling and facilitating DP mediated hair follicle regeneration.
Collapse
Affiliation(s)
- Bo-Jie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Jiang-Ying Zhu
- Academy of Humanities and Social Sciences, Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Jun Ye
- Department of Emergency Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, Hunan Province, PR China
| | - Si-Ding Lu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Ming-De Liao
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Xu-Chang Meng
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China
| | - Guo-Qian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, PR China.
| |
Collapse
|
19
|
Genome‑wide integrated analysis demonstrates widespread functions of lncRNAs in mammary gland development and lactation in dairy goats. BMC Genomics 2020; 21:254. [PMID: 32293242 PMCID: PMC7092584 DOI: 10.1186/s12864-020-6656-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background The mammary gland is a unique organ for milk synthesis, secretion and storage, and it undergoes cyclical processes of development, differentiation, lactation and degeneration. At different developmental periods, the biological processes governing mammary gland physiology and internal environmental homeostasis depend on a complex network of genes and regulatory factors. Emerging evidence indicates that lncRNAs have arbitrarily critical functions in regulating gene expression in many organisms; however, the systematic characteristics, expression, and regulatory roles of lncRNAs in the mammary gland tissues of dairy goats have not been determined. Result In the present study, we profiled long noncoding RNA (lncRNA) expression in the mammary gland tissues of Laoshan dairy goats (Capra hircus) from different lactation periods at the whole-genome level, to identify, characterize and explore the regulatory functions of lncRNAs. A total of 37,249 transcripts were obtained, of which 2381 lncRNAs and 37,249 mRNAs were identified, 22,488 transcripts, including 800 noncoding transcripts and 21,688 coding transcripts, differed significantly (p ≤ 0.01) among the different lactation stages. The results of lncRNA-RNA interaction analysis showed that six known lncRNAs belonging to four families were identified as the precursors of 67 known microRNAs; 1478 and 573 mRNAs were predicted as hypothetical cis-regulation elements and antisense mRNAs, respectively. GO annotation and KEGG analysis indicated that the coexpressed mRNAs were largely enriched in biological processes related to such activities as metabolism, immune activation, and stress,., and most genes were involved in pathways related to such phenomena as inflammation, cancer, signal transduction, and metabolism. Conclusions Our results clearly indicated that lncRNAs involved in responses to stimuli, multiorganism processes, development, reproductive processes and growth, are closely related to mammary gland development and lactation.
Collapse
|
20
|
Identification and characterization of circRNAs in the skin during wool follicle development in Aohan fine wool sheep. BMC Genomics 2020; 21:187. [PMID: 32111155 PMCID: PMC7048093 DOI: 10.1186/s12864-020-6599-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/20/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aohan fine wool sheep (AFWS) is a historically bred fine wool sheep, cultivated in China. The wool has excellent quality and good textile performance. Investigating the molecular mechanisms that regulate wool growth is important to improve wool quality and yield. Circular RNAs (circRNAs) are widely expressed non-coding RNAs that can act as competitive endogenous RNAs (ceRNAs) to bind to miRNAs. Although circRNAs have been studied in many fields, research on their activity in sheep wool follicles is limited. To understand the regulation of circRNAs in the growth of fine wool in sheep, we used RNA-Seq to identify circRNAs in sheep shoulder skin samples at three developmental stages: embryonic day 90 (E90d), embryonic day 120 (E120d), and at birth (Birth). RESULTS We identified 8753 circRNAs and found that 918 were differentially-expressed. We then analyzed the classification and characteristic of the circRNAs in sheep shoulder skin. Using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we identified the source genes of circRNAs, which were mainly enriched in cellular component organization, regulation of primary metabolic processes, tight junctions, and the cGMP-PKG and AMPK signaling pathways. In addition, we predicted interactions between 17 circRNAs and eight miRNAs, using miRanda software. Based on the significant pathways, we speculate that circ_0005720, circ_0001754, circ_0008036, circ_0004032, circ_0005174, circ_0005519, and circ_0007826 might play an important role in regulating wool follicle growth in AFWS. Seven circRNAs were randomly selected to validate the RNA-Seq results, using qRT-PCR. CONCLUSION Our results provide more information about circRNAs regulation of wool follicle development in AFWS, and establish a solid foundation for future research.
Collapse
|
21
|
Wang Y, Zheng Y, Guo D, Zhang X, Guo S, Hui T, Yue C, Sun J, Guo S, Bai Z, Cai W, Zhang X, Fan Y, Wang Z, Bai W. m6A Methylation Analysis of Differentially Expressed Genes in Skin Tissues of Coarse and Fine Type Liaoning Cashmere Goats. Front Genet 2020; 10:1318. [PMID: 32038703 PMCID: PMC6987416 DOI: 10.3389/fgene.2019.01318] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common internal modification in mRNAs of all higher eukaryotes. Here we perform two high-throughput sequencing methods, m6A-modified RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to identify key genes with m6A modification in cashmere fiber growth. A total of 9,085 m6A sites were differentially RNA m6A methylated as reported from by MeRIP-seq, including 7,170 upregulated and 1,915 downregulated. In addition, by comparing m6A-modified genes between the fine-type Liaoning cashmere goat (FT-LCG) and coarse-type Liaoning Cashmere Goat (CT-LCG) skin samples, we obtain 1,170 differentially expressed genes. In order to identify the differently methylated genes related to cashmere fiber growth, 19 genes were selected to validate by performing qRT-PCR in FT-LCG and CT-LCG. In addition, GO enrichment analysis shows that differently methylated genes are mainly involved in keratin filament and intermediate filament. These findings provide a theoretical basis for future research on the function of m6A modification during the growth of cashmere fiber.
Collapse
Affiliation(s)
- Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | - Xinghui Zhang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, China
| | | | - Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Suping Guo
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yixing Fan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
22
|
Discovery and molecular analysis of conserved circRNAs from cashmere goat reveal their integrated regulatory network and potential roles in secondary hair follicle. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Dai W, Mu L, Cui Y, Li Y, Chen P, Xie H, Wang X. Long non‑coding RNA CASC2 enhances berberine‑induced cytotoxicity in colorectal cancer cells by silencing BCL2. Mol Med Rep 2019; 20:995-1006. [PMID: 31173223 PMCID: PMC6625213 DOI: 10.3892/mmr.2019.10326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Berberine, a natural isoquinoline alkaloid derived from Berberis species, has been reported to have anticancer effects. However, the mechanisms of action in human colorectal cancer (CRC) are not well established to date. In the present study, the cell cytotoxicity effect of berberine on human CRC cells, as well as the possible mechanisms involved, was investigated. The results of the cell viability and apoptosis assay revealed that treatment of CRC cells with berberine resulted in inhibition of cell viability and activation of cell apoptosis in a concentration-dependent manner. To reveal the underlying mechanism of berberine-induced anti-tumor activity and cell apoptosis, RNA-sequencing followed by reverse-transcription quantitative PCR were performed. In addition, RNA immunoprecipitation, chromatin immunoprecipitation and western blot analysis were used to identify the functional regulation of CASC2/EZH2/BCL2 axis in berberine-induced CRC cell apoptosis. The data revealed that lncRNA CASC2 was upregulated by berberine treatment. Gain- or loss-of-function assays suggested that lncRNA CASC2 was required for the berberine-induced inhibition of cell viability and activation of cell apoptosis. Subsequently, the downstream antiapoptotic gene BCL2 was identified as a functional target of the berberine/CASC2 mechanism, as BCL2 reversed the berberine/CASC2-induced cell cytotoxicity. lncRNA CASC2 silenced BCL2 expression by binding to the promoter region of BCL2 in an EZH2-dependent manner. In summary, berberine may be a novel therapeutic agent for CRC and lncRNA CASC2 may serve as an important therapeutic target to improve the anticancer effect of berberine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Liyuan Mu
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yali Cui
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Yingying Li
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Ping Chen
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hongjian Xie
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xia Wang
- Department of Medical Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
24
|
Zheng Y, Wang Z, Zhu Y, Wang W, Bai M, Jiao Q, Wang Y, Zhao S, Yin X, Guo D, Bai W. LncRNA-000133 from secondary hair follicle of Cashmere goat: identification, regulatory network and its effects on inductive property of dermal papilla cells. Anim Biotechnol 2019; 31:122-134. [PMID: 30632899 DOI: 10.1080/10495398.2018.1553788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), a class of non-protein conding RNAs > 200 nt in length, were thought to play critical roles in regulating the expression of protein-coding genes. Here, we identified and characterized a novel lncRNA-000133 from the secondary hair follicle (SHF) of cashmere goat with its ceRNA network analysis, as well as, its potential effects on inductive property of dermal papilla cells were evaluated through overexpression analysis. Expression analysis indicated that lncRNA-000133 had a significantly higher expression at anagen than that at telogen in SHF of Cashmere goat, suggesting that lncRNA-000133 might be involved in the reconstruction of SHF with the formation and growth of cashmere fiber. Taken together with methylation analysis, we showed that 5' regulatory region methylation of the lncRNA-000133 gene might be involved in its expression suppression in SHF of Cashmere goat. The ceRNA regulatory network showed that a rich and complex regulatory relationship between lncRNA-000133 and related miRNAs with their target genes. The overexpression of lncRNA-000133 led to a significant increasing in the relative expression of ET-1, SCF, ALP and LEF1 in dermal papilla cells suggesting that lncRNA-000133 appears to contribute the inductive property of dermal papilla cells.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yubo Zhu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Wei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Man Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Qian Jiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Sujun Zhao
- Sichuan Animal Science Academy, Chengdu, P. R. China
| | - Xianbo Yin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang, P. R. China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
25
|
Jiao Q, Yin RH, Zhao SJ, Wang ZY, Zhu YB, Wang W, Zheng YY, Yin XB, Guo D, Wang SQ, Zhu YX, Bai WL. Identification and molecular analysis of a lncRNA-HOTAIR transcript from secondary hair follicle of cashmere goat reveal integrated regulatory network with the expression regulated potentially by its promoter methylation. Gene 2018; 688:182-192. [PMID: 30521888 DOI: 10.1016/j.gene.2018.11.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
The HOTAIR transcript is transcribed from the antisense strand within the HOXC gene cluster, and it is thought to play a role in regulating the inductive capacity of dermal papilla cells during the reconstruction of hair-follicle. In the current investigation, we firstly isolated and characterized a lncRNA-HOTAIR transcript from the secondary hair follicle of cashmere goat. Also, we analyzed its transcriptional pattern and methylation level of HOTAIR gene promoter in secondary hair follicle of cashmere goat during anagen and telogen stages. Nucleotide composition analysis indicated that the contents of Adenine (A) and Thymine (T) are higher than that of Guanine (G) and Cytosine (C) in lncRNA-HOTAIR transcript of cashmere goat with the highest frequency distribution of AG nucleotide pair (8.06%). The regulatory network analysis showed a directly or indirectly complex regulatory relationships between lncRNA-HOTAIR of cashmere goat and its potential target molecules: miRNAs, mRNAs and proteins. Also, we showed that lncRNA-HOTAIR was properly transcribed at both anagen and telogen stages of secondary hair follicle of cashmere goat with the anagen being significantly higher than telogen in its expression, which suggest that lncRNA-HOTAIR transcript might be involved in the reconstruction of secondary hair follicle with the formation and growth of cashmere fiber. Taken together with methylation analysis of HOTAIR gene promoter, our data suggest that the promoter methylation of HOTAIR gene most likely is involved in its transcriptional suppression in secondary hair follicle of cashmere goat.
Collapse
Affiliation(s)
- Qian Jiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rong H Yin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Su J Zhao
- Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Ze Y Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yu B Zhu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yuan Y Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xian B Yin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang 111000, PR China
| | - Shi Q Wang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang 111000, PR China
| | - Yan X Zhu
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang 111000, PR China
| | - Wen L Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|