1
|
Ni Y, Han C, Liu Y, Li M, He W, Yang J, Zou J, Peng H, Wang P. Development of genome-wide insertion/deletion markers and genetic diversity in Sipunculus nudus along the Beibu Gulf of China. Front Genet 2025; 16:1542287. [PMID: 40276678 PMCID: PMC12020434 DOI: 10.3389/fgene.2025.1542287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Sipunculus nudus, a marine species of substantial medicinal and commercial importance, requires genetic enhancement to boost its production yield. However, progress in genetic research and selective breeding has been constrained by two critical limitations: the scarcity of available molecular markers and the absence of systematic genetic diversity assessments across China's Beibu Gulf. To address these challenges, our genome-wide investigation identified 168,771 InDel variations, from which we developed 25,558 primer pairs. Experimental validation showed 82 out of 85 synthesized primers (96.47%) successfully amplified target regions, with 81 demonstrating polymorphism. Sixteen high polymorphic markers were subsequently employed to analyze 153 samples collected along the Beibu Gulf coastline, revealing 142 distinct alleles. The number of alleles, effective number of alleles, observed heterozygosity, expected heterozygosity, Shannon's index and polymorphic information content ranged from 4 to 15 (mean of 8.875), 2.110 to 6.009 (mean of 4.110), 0.009 to 0.768 (mean of 0.232), 0.526 to 0.834 (mean of 0.734), 0.919 to 2.085 (mean of 1.576), and 0.440 to 0.816 (mean of 0.692), respectively. Population structure analysis revealed four genetically distinct subpopulations within the Beibu Gulf population. This delineation of population substructure provides critical insights for optimizing selective breeding programs and formulating germplasm conservation strategies in S. nudus.
Collapse
Affiliation(s)
- Yuzhu Ni
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Chunli Han
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Yating Liu
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Manman Li
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Weijie He
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Jialin Yang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Jie Zou
- Guangxi Institute of Oceanology, Beihai, China
| | | | - Pengliang Wang
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou, Guangxi, China
| |
Collapse
|
2
|
Ma H, Lu Y, Chen W, Gao Z, Wu D, Chong Y, Wu J, Xi D, Deng W, Hong J. Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes. Genomics 2025; 117:111006. [PMID: 39875030 DOI: 10.1016/j.ygeno.2025.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
The differentiation and lipid metabolism of preadipocytes are crucial processes in IMF deposition. Studies have demonstrated that SIRT4 plays essential roles in energy metabolism and redox homeostasis, with its expression being coordinately regulated by multiple transcription factors associated with energy and lipid metabolism. In this study, the findings of multiple omics analysis reveal that SIRT4 significantly up-regulates the expression of genes involved in adipogenesis and enhances the differentiation and lipid deposition of bovine preadipocytes. Furthermore, SIRT4 profoundly influences the expression pattern of metabolites by increasing the abundance of substances involved in lipid synthesis while decreasing those that promote lipid oxidative decomposition. Additionally, SIRT4 broadly up-regulates the expression levels of various lipid classes, including glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. These findings not only provide a theoretical basis for molecular breeding and genetic improvement in beef cattle, but also offer potential therapeutic approaches for energy homeostasis disorders and obesity.
Collapse
Affiliation(s)
- Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
The Novel Structural Variation in the GHR Gene Is Associated with Growth Traits in Yaks ( Bos grunniens). Animals (Basel) 2023; 13:ani13050851. [PMID: 36899708 PMCID: PMC10000137 DOI: 10.3390/ani13050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The growth hormone receptor (GHR) is a member of the cytokine/hematopoietic factor receptor superfamily, which plays an important role in the growth and development, immunity, and metabolism of animals. This study identified a 246 bp deletion variant in the intronic region of the GHR gene, and three genotypes, including type II, type ID, and type DD, were observed. Genotype analysis of structural variation (SV) was performed on 585 individuals from 14 yak breeds, and it was found that 246 bp deletion was present in each breed. The II genotype was dominant in all yak breeds except for SB yak. The association analysis of gene polymorphisms and growth traits in the ASD yak population showed that the 246 bp SV was significantly associated with body length at 6 months (p < 0.05). GHR messenger RNA (mRNA) was expressed in all the tested tissues, with significantly higher levels in the liver, muscle, and fat than in other organs. The results of transcription activity showed that the luciferase activity of the pGL4.10-DD vector was significantly higher than that of the pGL4.10-II vector (p < 0.05). Additionally, the transcription-factor binding prediction results showed that the SV in the runt-related transcription factor 1 (Runx1) transcription-factor binding site may affect the transcriptional activity of the GHR gene, regulating yak growth and development. This study showed that the novel SV of the GHR gene could be used as a candidate molecular marker for the selection of the early growth trait in ASD yak.
Collapse
|
4
|
Zhang J, Toremurat Z, Liang Y, Cheng J, Sun Z, Huang Y, Liu J, Chaogetu BUREN, Ren G, Chen H. Study on the Association between LRRC8B Gene InDel and Sheep Body Conformation Traits. Genes (Basel) 2023; 14:genes14020356. [PMID: 36833283 PMCID: PMC9956668 DOI: 10.3390/genes14020356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Marker-assisted selection is an important method for livestock breeding. In recent years, this technology has been gradually applied to livestock breeding to improve the body conformation traits. In this study, the LRRC8B (Leucine Rich Repeat Containing 8 VRAC Subunit B) gene was selected to evaluate the association between its genetic variations and the body conformation traits in two native sheep breeds in China. Four body conformation traits, including withers height, body length, chest circumference, and body weight, were collected from 269 Chaka sheep. We also collected the body length, chest width, withers height, chest depth, chest circumference, cannon bone circumference, and height at hip cross of 149 Small-Tailed Han sheep. Two different genotypes, ID and DD, were detected in all sheep. Our data showed that the polymorphism of the LRRC8B gene was significantly associated with chest depth (p < 0.05) in Small-Tailed Han sheep, and it is greater in sheep with DD than those with ID. In conclusion, our data suggested that the LRRC8B gene could serve as a candidate gene for marker-assisted selection in Small-Tailed Han sheep.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhansaya Toremurat
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yilin Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Jie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhenzhen Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangming Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junxia Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - BUREN Chaogetu
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha 817000, China
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- Correspondence: (G.R.); (H.C.); Tel.: +86-029-87092102 (H.C.); Fax: +86-029-87092164 (H.C.)
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (G.R.); (H.C.); Tel.: +86-029-87092102 (H.C.); Fax: +86-029-87092164 (H.C.)
| |
Collapse
|
5
|
Mi F, Wu X, Wang Z, Wang R, Lan X. Relationships between the Mini-InDel Variants within the Goat CFAP43 Gene and Body Traits. Animals (Basel) 2022; 12:ani12243447. [PMID: 36552367 PMCID: PMC9774114 DOI: 10.3390/ani12243447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The cilia- and flagella-associated protein 43 (CFAP43) gene encodes a member of the cilia- and flagellum-associated protein family. Cilia on the cell surface influence intercellular signaling and are involved in biological processes such as osteogenesis and energy metabolism in animals. Previous studies have shown that insertion/deletion (InDel) variants in the CFAP43 gene affect litter size in Shaanbei white cashmere (SBWC) goats, and that litter size and body traits are correlated in this breed. Therefore, we hypothesized that there is a significant relationship between InDel variants within the CFAP43 gene and body traits in SBWC goats. Herein, we first investigated the association between three InDel variant loci (L-13, L-16, and L-19 loci) within CFAP43 and body traits in SBWC goats (n = 1827). Analyses revealed that the L-13, L-16, and L-19 loci were significantly associated with chest depth, four body traits, and three body traits, respectively. The results of this study are in good agreement with those previously reported and could provide useful molecular markers for the selection and breeding of goats for body traits.
Collapse
Affiliation(s)
- Fang Mi
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350000, China
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350000, China
- Correspondence: (X.W.); (X.L.)
| | - Zhen Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
| | - Ruolan Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, No. 22, Xinong Road, Xianyang 712100, China
- Correspondence: (X.W.); (X.L.)
| |
Collapse
|
6
|
Yuan Y, Yang B, He Y, Zhang W, E G. Genome-Wide Selection Signal Analysis of Australian Boer Goat by Insertion/Deletion Variants. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Deletions in GSN gene associated with growth traits of four Chinese cattle breeds. Mol Genet Genomics 2022; 297:1269-1275. [PMID: 35780194 DOI: 10.1007/s00438-022-01915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
The aim of this study was to assess the potential of 21 bp mutation in the second intron of the GSN gene as a molecular marker-assisted by exploring the effect of 21 bp mutation on growth traits in four beef cattle breeds. Gelsolin (GSN), a member of the superfamily of gel proteins, is involved in the regulation of a variety of cellular activities in the organism and plays an important function in cell motility, apoptosis, signal transduction and inflammatory responses. Gelatin can not only negatively regulate the pro-apoptotic effect of P53 protein, but also promote apoptosis by blocking the interaction between actin and deoxyribonuclease, so, the GSN gene was selected as a candidate gene in this study. In this study, a 21 bp mutation on the second intron to the GSN gene was verified in 573 individuals of Yunling (YL, n = 220), Jiaxian (JX, n = 140), Xianan (XN, n = 114) and Qinchuan (QC, n = 97) cattle breeds using Once PCR and agarose gel electrophoresis. The association analysis of polymorphisms in the GSN gene with growth traits in four breeds was revealed: in YL cattle, the heart girth and forehead size of heterozygous ID genotype were significantly higher than II genotype (P < 0.05). In JX cattle, the withers height, body length and heart girth of II and ID genotype were significantly highest than DD genotype (P < 0.01); the height at hip cross and height at sacrum of II genotype was significantly highest than DD genotype (P < 0.01), but ID genotype was significantly higher than DD genotype. In XN cattle, the abdominal girth and circumference of the cannon bone of II genotype were significantly higher than ID genotype (P < 0.05). In QC cattle, the hucklebone width of ID genotype was significantly the highest than II genotype (P < 0.01). The results suggest that GSN may be an important candidate gene and that a 21 bp mutation on the second intron to the GSN gene can be used for molecular marker-assisted selection of four beef cattle breeds.
Collapse
|
8
|
Ju X, Huang X, Zhang M, Lan X, Wang D, Wei C, Jiang H. Effects of eight InDel variants in FHIT on milk traits in Xinjiang brown cattle. Anim Biotechnol 2020; 32:486-494. [PMID: 32401148 DOI: 10.1080/10495398.2020.1724124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In our previous genome-wide association study (GWAS), we identified the fragile histidine triad diadenosine triphosphatase (FHIT) gene in Xinjiang brown cattle (XJBC) as a candidate gene associated with cattle productive traits, with potential application in mark-assisted selection (MAS) in cattle breeding. FHIT is a prototype of a class of tumor suppressor genes that contain genomic loci mapped to common fragile loci. Here, 388 healthy and unrelated XJBC were selected to identify insertion/deletion (InDel) variants in the bovine FHIT and assess their effects on milk traits. Eight of the thirteen InDel loci were found to be polymorphic in FHIT. The polymorphism information content of the eight loci ranged from 0.061 to 0.375. The correlation analysis showed that all the new InDel variants were significantly related to six different milk traits (p < 0.05). The following variants presented a significant relationship with productive traits: P2-23bp with the 305 milk yield (p = 0.005) in the sixth parity; P3-24bp with the milk fat yield (p = 0.009) in the third parity; P5-21bp with the somatic cell score (p = 0.001) in the first parity and with the milk protein percentage (p = 0.002) in the sixth parity; and P7-26bp with the somatic cell score (p = 0.003) in the sixth parity. These findings will help evaluate InDel genotypes, within and between cattle breeds and identify potential target loci to accelerate progress in MAS in cattle breeding.
Collapse
Affiliation(s)
- Xing Ju
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xixia Huang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Menghua Zhang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Wang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Wei
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Hui Jiang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
9
|
Wu M, Li S, Zhang G, Fan Y, Gao Y, Huang Y, Lan X, Lei C, Ma Y, Dang R. Exploring insertions and deletions (indels) of MSRB3 gene and their association with growth traits in four Chinese indigenous cattle breeds. Arch Anim Breed 2019; 62:465-475. [PMID: 31807658 PMCID: PMC6852864 DOI: 10.5194/aab-62-465-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Methionine sulfoxide reductase B3 (MSRB3) is instrumental in ossification and fat deposition, which regulate the
growth and development of cattle directly. The purpose of this study was
aimed to explore insertions and deletions (indels) in MSRB3 gene and investigate
their association with growth traits in four indigenous cattle breeds (Luxi
cattle, Qinchuan cattle, Nanyang cattle, and Jiaxian Red cattle). Four indels
were identified by sequencing with DNA pool. Association analysis showed
that three of them were associated with growth traits (P<0.05). For
P1, the DD (deletion and deletion) genotype was significantly associated with body length of Nanyang
cattle; for P6, II (insertion and insertion) and/or DD genotypes were significantly associated with
enhanced growth traits of Qinchuan cattle; for P7, II genotype was
significantly associated with hucklebone width of Luxi cattle. Our results
demonstrated that the polymorphisms in bovine MSRB3 gene were significantly
associated with growth traits, which could be candidate loci for
marker-assisted selection (MAS) in cattle breeding.
Collapse
Affiliation(s)
- Mingli Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Guoliang Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Science, Gongzhuling, Jilin, 136100, P. R. China
| | - Yingzhi Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yun Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, 464000, P. R. China.,School of Agriculture, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
10
|
Peng K, Zhang GL, Yu T, Cao Y, Yu YS, Chen H, Lei CZ, Lan XY, Zhao YM. Detection of InDel variations within seven candidate genes and their associations with phenotypic traits in three cattle breeds. Anim Biotechnol 2019; 31:463-471. [PMID: 31159648 DOI: 10.1080/10495398.2019.1620258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Xinjiang brown cattle, Red steppe cattle, and Yunling cattle are indigenous cultivated cattle breeds in Chinese frontier provinces, and they produce high-grade beef and milk products, however, their genetic diversity in many important genes related to excellent meat and milk production is still unknown. Our previous studies have found that several candidate genes (e.g., SREBP1c and PAX7) were associated with bovine economically important phenotypic traits, but none has been reported in the above-mentioned three cattle breeds. Since the InDel (insertion/deletion) marker becomes a useful tool applied in the animal molecular breeding, herein, we firstly found that the InDel variations of seven candidate genes in these cattle. Results showed that the genotypic and allelic distributions of these seven genes were remarkably different among these three cattle (p < 0.05 or p < 0.01). Furthermore, the InDel variations of SREBP1c and PAX7 genes were significantly associated with eight phenotypic traits in Xinjiang brown cattle (p < 0.05 or p < 0.01), respectively, suggesting that they can become the useful DNA markers.
Collapse
Affiliation(s)
- Kun Peng
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, Jilin, P.R. China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun, Jilin, P.R. China.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Guo-Liang Zhang
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, Jilin, P.R. China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun, Jilin, P.R. China
| | - Ting Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yang Cao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, Jilin, P.R. China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun, Jilin, P.R. China
| | - Yong-Sheng Yu
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, Jilin, P.R. China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun, Jilin, P.R. China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chu-Zhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yu-Min Zhao
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, Jilin, P.R. China.,Key Laboratory of Beef Cattle Genetics and Breeding in Ministry of Agriculture and Rural Agriculture, Changchun, Jilin, P.R. China
| |
Collapse
|