1
|
Gil CRE, Lund J, Żylicz JJ, Ranea-Robles P, Sørensen TIA, Clemmensen C. Food insecurity promotes adiposity in mice. Obesity (Silver Spring) 2025. [PMID: 40123276 DOI: 10.1002/oby.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE The obesity epidemic, driven by a complex interplay of environmental and biological factors, remains a significant global health challenge. Herein, we investigate the impact of food insecurity, characterized by unpredictable food access, on the regulation of body weight and body composition in mice. METHODS Male and female C57BL/6J mice were subjected to a combination of intermittent fasting and calorie restriction to simulate food insecurity. RESULTS Our new model demonstrates that food insecurity increases fat mass and decreases lean mass in both sexes on a standard chow diet. Additionally, high-fat diet-fed male mice exposed to the food insecurity paradigm show decreased lean mass despite being in positive energy balance. Transcriptomic analysis of white adipose tissue from food-insecure male mice revealed upregulation of metabolic pathways associated with fat mass expansion and downregulation of immune response-related transcripts. CONCLUSIONS These findings underscore the role of food insecurity in driving metabolic adaptations that favor fat storage. Understanding this paradoxical link between food insecurity and adiposity is crucial for developing targeted interventions to address the disproportionate incidence of obesity in socioeconomically disadvantaged populations.
Collapse
Affiliation(s)
- Cláudia R E Gil
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan J Żylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhi Y, Duan Y, Zhang Y, Hu H, Hu F, Wang P, Liu B, Wang C, Liu D, Gu G. miR-421-mediated suppression of FGF13 as a novel mechanism ameliorates cardiac hypertrophy by inhibiting endoplasmic reticulum stress. Eur J Pharmacol 2024; 985:177085. [PMID: 39486770 DOI: 10.1016/j.ejphar.2024.177085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure. Currently, clinical treatments offer limited effectiveness, and both mortality and morbidity from cardiac hypertrophy and heart failure continue to be significant. Therefore, it is extremely urgent to find new intervention targets to prevent and alleviate pathological cardiac hypertrophy. In this study, we explored FGF13 expression and its upstream regulators in hypertrophic hearts. Firstly, we observed an increase in FGF13 expression levels in human hypertrophic myocardium tissues, as well as in mouse models of TAC-induced hypertrophy and in neonatal rat cardiomyocyte (NRCM) models induced by isoproterenol (ISO). Moreover, these elevated levels of FGF13 were shown to positively correlate with hypertrophic markers, including ANP and BNP. By using both gain-of-function and loss-of-function approaches in an in vitro hypertrophy model, we demonstrated that FGF13 knockdown could inhibit endoplasmic reticulum stress (ERS), thereby ameliorating cardiomyocyte hypertrophy. Meanwhile, we investigated the upstream regulators of FGF13 in hypertrophic hearts, and a dual-luciferase reporter assay confirmed that FGF13 is a direct target of miR-421. Overexpression of miR-421 decreased the protein level of FGF13 and ameliorated ISO-induced cardiomyocyte hypertrophy via modulating ER stress. In contrast, overexpression of FGF13 attenuated the ameliorative effect of miR-421 on ISO-induced cardiomyocyte hypertrophy. Taken together, the present results suggested that miR-421 ameliorated ISO-induced cardiomyocyte hypertrophy by negatively regulating FGF13 expression. This finding may offer a novel approach for the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Yaxin Zhi
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yanru Duan
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Haijuan Hu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fengli Hu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Pengfei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Bin Liu
- Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050000, China.
| | - Demin Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Guoqiang Gu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
3
|
Cai H, Li X, Niu X, Li J, Lan X, Lei C, Huang Y, Xu H, Li M, Chen H. Copy number variations within fibroblast growth factor 13 gene influence growth traits and alternative splicing in cattle. Anim Biotechnol 2024; 35:2314104. [PMID: 38426908 DOI: 10.1080/10495398.2024.2314104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Previous researches revealed a copy number variation (CNV) region in the bovine fibroblast growth factor 13 (FGF13) gene. However, its effects remain unknown. This study detected the various copy number types in seven Chinese cattle breeds and analysed their population genetic characteristics and effects on growth traits and transcription levels. Copy number Loss was more frequent in Caoyuan Red cattle and Xianan cattle than in the other breeds. Association analysis between CNV and growth traits of Qinchuan indicated that the CNV was significantly related to chest depth, hip width and hucklebone width (P < 0.05). Additionally, the growth traits of individuals with copy number Loss were significantly inferior to those with copy number Gain or Median (P < 0.05). Besides, we found two splicing isoforms, AS1 and AS2, in FGF13 gene, which resulted from alternative 5' splicing sites of intron 1. These isoforms showed varied expression levels in various tissues. Moreover, CNV was significantly and negatively associated with the mRNA expression of AS1 (r = -0.525, P < 0.05). The CNVs in bovine FGF13 gene negatively regulated growth traits and gene transcription. These observations provide new insights into bovine FGF13 gene, delivering potentially useful information for future Chinese cattle breeding programs.
Collapse
Affiliation(s)
- Hanfang Cai
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Biyang, Henan, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agriculture University, Zhengzhou, China
| | - Hong Chen
- College of Animal Science, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
4
|
Zhang W, Liao Y, Shao P, Yang Y, Huang L, Du Z, Zhang C, Wang Y, Lin Y, Zhu J. Integrated analysis of differently expressed microRNAs and mRNAs at different postnatal stages reveals intramuscular fat deposition regulation in goats (Capra hircus). Anim Genet 2024; 55:238-248. [PMID: 38175181 DOI: 10.1111/age.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Intramuscular fat refers to the adipose tissue distributed in the muscle. It is an important indicator that affects the quality of goat meat, and can directly affect the tenderness and flavor of goat meat. Our previous study revealed the mRNA that may be crucial for intramuscular fat deposition during goat growth; however, how the microRNAs (miRNAs) are involved in the process is largely unclear. In the present study, a total of 401 known miRNAs and 120 goat novel miRNAs, including 110 differentially expressed (DE) miRNAs, were identified among longissimus dorsi from three growth stages (2, 9, and 24 months) by miRNA sequencing. Combining analysis of the DE mRNAs and DE miRNAs was then performed by miRDB and miRwalk, and miR-145-5p and FOXO1, miR-487b-3p, and PPARG coactivator 1 α (PPARGC1A), miR-345-3p, and solute carrier family 2 member 4 (SLC2A4), etc. were shown to closely associate with lipid metabolism, which was then validated by a correlation analysis. The final DE mRNAs were significantly enriched in fatty acid transmembrane transport, fatty acid homeostasis, apelin signaling pathway, glucagon signaling pathway, insulin signaling pathway, and AMPK signaling pathway by gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Besides, miR-145-5p showed a certain effect on goat intramuscular fat metabolism by acting on the possible target gene Forkhead Box O1 (FOXO1). These data provide some theoretical support for improving the quality of goat meat.
Collapse
Affiliation(s)
- Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yu Liao
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Peng Shao
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yuling Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
Li Y, He C, Ran L, Wang Y, Xiong Y, Wang Y, Zhu J, Lin Y. miR-130b duplex (miR-130b-3p/miR-130b-5p) negatively regulates goat intramuscular preadipocyte lipid droplets accumulation by inhibiting Krüppel-like factor 3 expression. J Anim Sci 2023; 101:skad184. [PMID: 37279650 PMCID: PMC10276645 DOI: 10.1093/jas/skad184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Intramuscular lipid deposition is important for meat quality improvement. microRNAs and their target mRNAs provide a new approach for studying the mechanism of fat deposition. The present study aimed to investigate the effect of miR-130b duplex (miR-130b-5p, miR-130b-3p) and its target gene KLF3 in regulating goat intramuscular adipocyte differentiation. Goat intramuscular preadipocytes were isolated from 7-d-old male Jianzhou big-ear goats and identified by Oil red O staining after differentiation induction. miR-130b-5p and miR-130b-3p mimics or inhibitors and their corresponding controls were transfected into goat intramuscular preadipocytes, respectively, and differentiation was induced by 50μM oleic acid for 48 h. Oil red O and Bodipy staining indicated that both miR-130b-5p and miR-130b-3p can reduce lipid droplets accumulation and triglyceride (TG) content (P < 0.01). Differentiation markers C/EBPα, C/EBPβ, PPARγ, pref1, fatty acids synthesis markers ACC, FASN, DGAT1, DGAT2, AGPAT6, TIP47, GPAM, ADRP, AP2, SREBP1, and TG markers LPL, ATGL, HSL were assessed by qPCR. All the markers measured were downregulated by miR-130b-5p and miR-130b-3p analog (P < 0.01), suggesting that miR-130b inhibits goat intramuscular adipocyte adipogenic differentiation, fatty acids synthesis, and lipid lipolysis. To examine the mechanism of miR-130b duplex inhibition of lipid deposition, TargetScan, miRDB, and starBase were used to predict the potential targets, KLF3 was found to be the only one intersection. Furthermore, the 3'UTR of KLF3 was cloned, qPCR analysis and dual luciferase activity assay showed that both miR-130b-5p and miR-130b-3p could directly regulate KLF3 expression (P < 0.01). In addition, overexpression and interference of KLF3 were conducted, it was found that KLF3 positively regulated lipid droplets accumulation by Oil red O, Bodipy staining, and TG content detection (P < 0.01). Quantitative PCR result indicated that KLF3 overexpression promoted lipid droplets accumulation relative genes C/EBPβ, PPARγ, pref1, ACC, FASN, DGAT1, DGAT2, AGPAT6, TIP47, GPAM, ADRP, SREBP1, LPL, and ATGL expression (P < 0.01). Downregulation of KLF3 inhibited the expression of genes such as C/EBPα, C/EBPβ, PPARγ, pref1, TIP47, GPAM, ADRP, AP2, LPL, and ATGL expression (P < 0.01). Taken together, these results indicate that miR-130b duplex could directly inhibit KLF3 expression, then attenuated adipogenic and TG synthesis genes expression, thus leading to its anti-adipogenic effect.
Collapse
Affiliation(s)
- Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Li Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|