1
|
Ibars-Serra M, Pascual-Serrano A, Ardid-Ruiz A, Doladé N, Aguilar-González S, Cirasino J, Muguerza B, Suárez M, Keijer J, Arola-Arnal A, Aragonès G. Resveratrol Prevents Weight Gain, Counteracts Visceral Adipose Tissue Dysfunction, and Improves Hypothalamic Leptin Sensitivity in Diet-Induced Obese Rats. Mol Nutr Food Res 2025:e70075. [PMID: 40289401 DOI: 10.1002/mnfr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
In obesity, increased adipocyte size is associated with metabolic complications, while elevated adipocyte numbers are considered a protective mechanism against metabolic disturbances. Adipose tissue dysfunction leads to decreased leptin sensitivity and disrupted energy balance regulation. Resveratrol (RSV), a bioactive compound known for potential health benefits, including obesity-related disorder prevention, has unclear modulatory effects on adipocyte dysfunction and leptin signaling in established obesity. This study investigated the impact of RSV on adiposity and hypothalamic leptin sensitivity in obesity. Rats were fed a cafeteria diet for 9 weeks and subsequently supplemented with different doses of RSV for 22 days. The 200 mg/kg RSV dose reduced leptin concentrations, body weight gain, and body fat mass in obese animals, while mitigating adipocyte hypertrophy and promoting adipocyte hyperplasia in the retroperitoneal fat depot. RSV also improved hypothalamic leptin sensitivity, shedding light on the molecular mechanisms underlying the benefits of RSV consumption for obesity-related disorders.
Collapse
Affiliation(s)
- Maria Ibars-Serra
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Aïda Pascual-Serrano
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Núria Doladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Aguilar-González
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Julieta Cirasino
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and, Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Pérez-García F, Muñoz-Acuña E, Valencia C, Aguila L, Felmer R, Arias ME. Effect of Bovine Follicular Fluid Small Extracellular Vesicles Isolated by Ultracentrifugation and Chromatography on In Vitro Oocyte Maturation and Embryo Development. Int J Mol Sci 2025; 26:2880. [PMID: 40243476 PMCID: PMC11988610 DOI: 10.3390/ijms26072880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 04/18/2025] Open
Abstract
Small extracellular vesicles (sEVs) play a crucial role in intercellular communication and have demonstrated significant relevance in reproductive biotechnology, particularly in in vitro maturation (IVM) and bovine embryo production. This study evaluates the effects of bovine follicular fluid-derived extracellular vesicles (ffsEVs) isolated using two methods: ultracentrifugation (UC) and size-exclusion chromatography (SEC) on oocyte maturation and preimplantational embryonic development. Significant differences in the size of ffsEVs obtained by both isolation methods were noted, with UC-derived ffsEVs (UC ffsEVs) being smaller than those isolated by SEC (SEC ffsEVs). UC ffsEVs were more effective in upregulating critical oocyte quality genes, such as HSF1 and CPT1B. However, no significant differences were observed in embryonic developmental rates. Furthermore, the expression of genes associated with preimplantational embryonic quality revealed that only the SEC ffsEVs group exhibited a significant increase in IFNT1 and SOX2 levels, indicating an enhancement in embryonic quality. Notably, blastocysts derived from SEC ffsEVs also showed a higher total cell count compared to those from UC ffsEVs. No differences were found in other critical genes like GLUT1 and CDX2. These results suggest that the use of SEC ffsEVs could improve the in vitro embryo production process, highlighting the importance of the isolation method in determining the functional efficacy of ffsEVs according to research objectives.
Collapse
Affiliation(s)
- Felipe Pérez-García
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Erwin Muñoz-Acuña
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Department of Animal Production, Faculty of Agriculture and EnvironmentalSciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cecilia Valencia
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (F.P.-G.); (E.M.-A.); (C.V.); (L.A.); (R.F.)
- Department of Animal Production, Faculty of Agriculture and EnvironmentalSciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
3
|
Zhao Y, Chen S, Yuan J, Shi Y, Wang Y, Xi Y, Qi X, Guo Y, Sheng X, Liu J, Zhou L, Wang C, Xing K. Comprehensive Analysis of the lncRNA-miRNA-mRNA Regulatory Network for Intramuscular Fat in Pigs. Genes (Basel) 2023; 14:168. [PMID: 36672909 PMCID: PMC9859044 DOI: 10.3390/genes14010168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Intramuscular fat (IMF) is an essential trait closely related to meat quality. The IMF trait is a complex quantitative trait that is regulated by multiple genes. In order to better understand the process of IMF and explore the key factors affecting IMF deposition, we identified differentially expressed mRNA, miRNA, and lncRNA in the longissimus dorsi muscle (LD) between Songliao Black (SL) pigs and Landrace pigs. We obtained 606 differentially expressed genes (DEGs), 55 differentially expressed miRNAs (DEMs), and 30 differentially expressed lncRNAs (DELs) between the SL pig and Landrace pig. Enrichment results from GO and KEGG indicate that DEGs are involved in fatty acid metabolism and some pathways related to glycogen synthesis. We constructed an lncRNA-miRNA-mRNA interaction network with 18 DELs, 11 DEMs, and 42 DEGs. Finally, the research suggests that ARID5B, CPT1B, ACSL1, LPIN1, HSP90AA1, IRS1, IRS2, PIK3CA, PIK3CB, and PLIN2 may be the key genes affecting IMF deposition. The LncRNAs MSTRG.19948.1, MSTRG.13120.1, MSTRG.20210.1, and MSTRG.10023.1, and the miRNAs ssc-miRNA-429 and ssc-miRNA-7-1, may play a regulatory role in IMF deposition through their respective target genes. Our research provides a reference for further understanding the regulatory mechanism of IMF.
Collapse
Affiliation(s)
- Yanhui Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shaokang Chen
- Beijing Animal Husbandry Station, Beijing 100101, China
| | - Jiani Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yumei Shi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yufei Xi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chuduan Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
4
|
miR-27a Regulates Sheep Adipocyte Differentiation by Targeting CPT1B Gene. Animals (Basel) 2021; 12:ani12010028. [PMID: 35011132 PMCID: PMC8749678 DOI: 10.3390/ani12010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The content of intramuscular fat (IMF) is the main determinant of the nutritional and economic value of sheep meat. Therefore, lipid synthesis in sheep longissimus lumborum (LL) has become an important research focus. MicroRNA-27a (miR-27a) has been shown to play a crucial role in the proliferation and differentiation of adipocyte progenitor cells. In this study, we revealed that miR-27a significantly inhibited the formation of lipid droplets by targeting CPT1B to inhibit genes involved in lipid synthesis including PPAR γ, SCD, LPL, and FABP4. Here, we constructed a miR-27a-CPT1B regulatory network map, which revealed the interaction between miR-27a and CPT1B in lipid synthesis in ovine preadipocytes. Abstract MiRNAs are vital regulators and play a major role in cell differentiation, biological development, and disease occurrence. In recent years, many studies have found that miRNAs are involved in the proliferation and differentiation of adipocytes. The objective of this study was to evaluate the effect of miR-27a and its target gene CPT1B on ovine preadipocytes differentiation in Small-tailed Han sheep (Ovis aries). Down-regulation of miR-27a significantly promoted the production of lipid droplets, while overexpression of miR-27a led to a reduction in lipid droplet production. In addition, inhibition of miR-27a led to a significant increase in the expression of genes involved in lipid synthesis, including PPAR γ, SCD, LPL, and FABP4. Target Scan software predicted that CPT1B is a new potential target gene of miR-27a. Further experiments revealed that CPT1B gene expression and protein levels were negatively correlated with miR-27a expression. Overexpression of miR-27a led to a significant decrease in CPT1B mRNA levels and inhibited the accumulation of lipid droplets and vice versa. Moreover, overexpression of CPT1B promoted the synthesis of lipid droplets in ovine preadipocytes. Furthermore, luciferase reporter assays confirmed CPT1B to be a miR-27a direct target gene. This study confirmed that miR-27a increases the expression of genes related to lipid synthesis in ovine preadipocytes by targeting CPT1B, thereby promoting the synthesis of lipid droplets. The results of this study can be used to be exploited in devising novel approaches for improving the IMF content of sheep.
Collapse
|