1
|
Khiari Z. Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy. Mar Drugs 2024; 22:411. [PMID: 39330292 PMCID: PMC11433245 DOI: 10.3390/md22090411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with the generation and management of wastes, which pose a serious threat to human health and the environment if not properly treated. In the best-case scenario, fishery and aquaculture waste is processed into low-value commodities such as fishmeal and fish oil. However, this renewable organic biomass contains a number of highly valuable bioproducts, including enzymes, bioactive peptides, as well as functional proteins and polysaccharides. Marine-derived enzymes are known to have unique physical, chemical and catalytic characteristics and are reported to be superior to those from plant and animal origins. Moreover, it has been established that enzymes from marine species possess cold-adapted properties, which makes them interesting from technological, economic and sustainability points of view. Therefore, this review centers around enzymes from fishery and aquaculture waste, with a special focus on proteases, lipases, carbohydrases, chitinases and transglutaminases. Additionally, the use of fishery and aquaculture waste as a substrate for the production of industrially relevant microbial enzymes is discussed. The application of emerging technologies (i.e., artificial intelligence and machine learning) in microbial enzyme production is also presented.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
2
|
Patil U, Baloch KA, Nile SH, Kim JT, Benjakul S. Trypsin from Pyloric Caeca of Asian Seabass: Purification, Characterization, and Its Use in the Hydrolysis of Acid-Soluble Collagen. Foods 2023; 12:2937. [PMID: 37569206 PMCID: PMC10418725 DOI: 10.3390/foods12152937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The study aimed to purify trypsin from the pyloric caeca of Asian seabass (Lates calcarifer), and investigate its proteolytic capability toward acid-soluble collagen (ASC) in comparison with commercial porcine trypsin (CPT). Trypsin was purified from pyloric caeca, a leftover from the evisceration process, via ammonium sulphate (40-60% saturation) precipitation, and a soybean trypsin inhibitor (SBTI)-Sepharose 4B column. A 18.5-fold purification and a yield of 15.2% were obtained. SDS-PAGE analysis confirmed a single band of trypsin with a molecular weight of 23.5 kDa. Purified trypsin also showed the single band in native-PAGE. The optimal pH and temperature of trypsin for BAPNA (the specific substrate for amidase) hydrolysis were 8.5 and 60 °C, respectively. The trypsin was stable within the pH range of 7.0-9.5 and temperature range of 25-55 °C. Protease inhibition study confirmed that the purified enzyme was trypsin. The purified trypsin had a Michaelis-Menten constant (Km) and catalytic constant (kcat) of 0.078 mM and 5.4 s-1, respectively, when BAPNA was used. For the hydrolysis of TAME (the specific substrate for esterase), the Km and Kcat were 0.09 mM and 4.8 s-1, respectively. Partially purified seabass trypsin (PPST) had a slightly lower hydrolysis capacity toward ASC than CPT, as evidenced by the lower degree of hydrolysis and protein degradation when the former was used. Both the α-chain and β-chain became more degraded as the hydrolysis time increased. Based on MALDI-TOP, peptides with MW of 2992-2970 Da were dominant in the hydrolysates. Therefore, seabass trypsin could be used in the production of hydrolyzed collagen. It could have economic importance to the market, by replacing some commercial proteases, which have religious constraints.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (U.P.); (K.A.B.)
| | - Khurshid Ahmed Baloch
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (U.P.); (K.A.B.)
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector 81, Sahibzada Ajit Singh Nagar 140306, Punjab, India;
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (U.P.); (K.A.B.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
3
|
Zamani A, Khajavi M, Abedian Kenari A, Haghbin Nazarpak M, Solouk A, Esmaeili M, Gisbert E. Physicochemical and Biochemical Properties of Trypsin-like Enzyme from Two Sturgeon Species. Animals (Basel) 2023; 13:ani13050853. [PMID: 36899710 PMCID: PMC10000239 DOI: 10.3390/ani13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This work aimed to determine the physicochemical and biochemical properties of trypsin from beluga Huso huso and sevruga Acipenser stellatus, two highly valuable sturgeon species. According to the results obtained from the methods of casein-zymogram and inhibitory activity staining, the molecular weight of trypsin for sevruga and beluga was 27.5 and 29.5 kDa, respectively. Optimum pH and temperature values for both trypsins were recorded at 8.5 and 55 °C by BAPNA (a specific substrate), respectively. The stability of both trypsins was well-preserved at pH values from 6.0 to 11.0 and temperatures up to 50 °C. TLCK and SBTI, two specific trypsin inhibitors, showed a significant inhibitory effect on the enzymatic activity of both trypsins (p < 0.05). The enzyme activity was significantly increased in the presence of Ca+2 and surfactants and decreased by oxidizing agents, Cu+2, Zn+2, and Co+2 (p < 0.05). However, univalent ions Na+ and K+ did not show any significant effect on the activity of both trypsins (p > 0.05). The results of our study show that the properties of trypsin from beluga and sevruga are in agreement with data reported in bony fish and can contribute to the clear understanding of trypsin activity in these primitive species.
Collapse
Affiliation(s)
- Abbas Zamani
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, 4th km of Arak Road, Malayer 6574184621, Iran
- New Technologies Research Center, Amirkabir University of Technology, Tehran 1591634653, Iran
- Correspondence: ; Tel./Fax: +98-81-32355330
| | - Maryam Khajavi
- Fisheries Department, Faculty of Natural Resources and Environment, Malayer University, 4th km of Arak Road, Malayer 6574184621, Iran
| | - Abdolmohammad Abedian Kenari
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor P.O. Box 46414-356, Iran
| | | | - Atefeh Solouk
- Department of Biomaterial and Tissue Engineering, Medical Engineering Faculty, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Mina Esmaeili
- Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University, Sari 4818168984, Iran
| | - Enric Gisbert
- IRTA, Centre de la Rápita, Aquaculture Program, Crta. del Poble Nou Km 5.5, 43540 la Rápita, Spain
| |
Collapse
|
4
|
Nikoo M, Benjakul S, Ahmadi Gavlighi H. Protein hydrolysates derived from aquaculture and marine byproducts through autolytic hydrolysis. Compr Rev Food Sci Food Saf 2022; 21:4872-4899. [PMID: 36321667 DOI: 10.1111/1541-4337.13060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/19/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
Abstract
Autolysis technology has shown potential for protein hydrolysates production from marine and aquaculture byproducts. Viscera are a source of cheap proteolytic enzymes for producing protein hydrolysates from the whole fish or processing byproducts of the most valuable commercial species by applying autolysis technology. The use of autolysis allows economical production of protein hydrolysate and provides an opportunity to valorize downstream fish and shellfish processing byproducts at a lower cost. As a result, production and application of marine byproduct autolysates is increasing in the global protein hydrolysates market. Nevertheless, several restrictions occur with autolysis, including lipid and protein oxidation mediated by the heterogeneous composition of byproducts. The generally poor storage and handling of byproducts may increase the formation of undesirable metabolites during autolysis, which can be harmful. The formation of nitrogenous compounds (i.e., biogenic amines), loss of freshness, and process of autolysis in the byproducts could increase the rate of quality and safety loss and lead to more significant concern about the use of autolysates for human food applications. The current review focuses on the autolysis process, which is applied for the hydrolysis of aquaculture and marine discards to obtain peptides as functional or nutritive ingredients. It further addresses the latest findings on the mechanisms and factors contributing the deterioration of byproducts and possible ways to control oxidation and other food quality and safety issues in raw materials and protein hydrolysates.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, West Azerbaijan, Iran
| | - Soottawat Benjakul
- Faculty of Agro-Industry, International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Hassan Ahmadi Gavlighi
- Faculty of Agriculture, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Preparation and characterization of intelligent color-changing nanosensor based on bromophenol blue and GONH2 nanosheet for freshness evaluation of minced Caspian sprat (Clupeonella cultriventris caspia) stored at 4 °C. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02095-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Evaluation of a Bacterial Single-Cell Protein in Compound Diets for Rainbow Trout ( Oncorhynchus mykiss) Fry as an Alternative Protein Source. Animals (Basel) 2020; 10:ani10091676. [PMID: 32957512 PMCID: PMC7552228 DOI: 10.3390/ani10091676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Fish meal (FM), as the main protein source, is used in aquafeeds due to its good nutritional profile and palatability. In recent years, because of the high cost and uncertainty in FM supply, studies have been focused to identify and evaluate alternative protein ingredients to minimize FM and reducethe cost of formulated feeds. Currently, plant protein ingredients and animal by-products are used as alternative protein sources to FM, but these components have some nutritional limitations, such as beingrich in anti-nutritional elements and deficient in certain essential amino acids. Among alternative protein sources, single-cell protein (SCP) such as bacteria, yeasts and microalgae, is considered a promising substitute for animal- or plant-derived ingredients. In this work, we aimed to evaluate the replacement of FM with a bacterial SCP, a by-product of the monosodium L-glutamic acid produced by microbial fermentation of vegetal raw materials, in diets for rainbow trout (Oncorhynchus mykiss) fry. Results indicated that the maximum replacement of FM by SCP in terms of growth and feed efficiency performance was up to 50%, while the broken-line regression analyses using DHA muscle content and weight gain showed that this value ranged between 46.9 to 52% SCP depending on the parameter considered. Abstract A 60-day trial was conducted in rainbow trout (Oncorhynchus mykiss) fry (initial weight = 2.5 ± 0.6 g) to evaluate the potential use of a bacterial single-cell protein (SCP) as an alternative protein source. Five experimental diets with different levels of fishmeal replacement (0, 25, 50, 75 and 100%) and no amino acid supplementation were tested. At the end of the trial, we found that fry fed diets, replacing 25 and 50% of fishmeal with bacterial SCP, were 9.1 and 21.8% heavier, respectively, than those fed the control diet (p < 0.05), while Feed Conversion Ratio (FCR) values were also lower in comparison to the reference group. These results were also supported by Protein Efficiency Ratio (PER) and Lipid Efficiency Ratio (LER) values that improved in fish fed diets replacing 50% fishmeal by bacterial SCP. The inclusion of SCP enhanced Feed intake (FI) (p < 0.05), although FI was reduced at higher inclusion levels (>50%), which was associated to feed palatability. High levels of bacterial SCP (>50%) affected the muscular amino acid and fatty acid profiles, imbalances that were associated to their dietary content. The broken-line regression analysis using muscle DHA content and weight gain data showed that the maximum levels of fishmeal replacement by bacterial SCP were 46.9 and 52%, respectively.
Collapse
|
7
|
Alavi F, Jamshidian M, Rezaei K. Applying native proteases from melon to hydrolyze kilka fish proteins (Clupeonella cultriventris caspia) compared to commercial enzyme Alcalase. Food Chem 2019; 277:314-322. [DOI: 10.1016/j.foodchem.2018.10.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/31/2018] [Accepted: 10/25/2018] [Indexed: 01/04/2023]
|
8
|
Jesús-de la Cruz K, Álvarez-González CA, Peña E, Morales-Contreras JA, Ávila-Fernández Á. Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech 2018; 8:186. [PMID: 29556440 DOI: 10.1007/s13205-018-1208-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/09/2018] [Indexed: 11/28/2022] Open
Abstract
In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli-based systems have been tested for the production of fish trypsins; however, P. pastoris-based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.
Collapse
Affiliation(s)
- Kristal Jesús-de la Cruz
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
| | | | - Emyr Peña
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
- Cátedra Consejo Nacional de Ciencia y Tecnología-UJAT, Villahermosa, Tabasco México
| | - José Antonio Morales-Contreras
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| | - Ángela Ávila-Fernández
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| |
Collapse
|
9
|
Zamani A, Benjakul S. Trypsin from unicorn leatherjacket (Aluterus monoceros) pyloric caeca: purification and its use for preparation of fish protein hydrolysate with antioxidative activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:962-969. [PMID: 25777470 DOI: 10.1002/jsfa.7172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Fish proteases, especially trypsin, could be used to prepare fish protein hydrolysates with antioxidative activities. In this study, trypsin from the pyloric caeca of unicorn leatherjacket was purified by ammonium sulfate precipitation and soybean trypsin inhibitor (SBTI)-Sepharose 4B affinity chromatography. Hydrolysate from Indian mackerel protein isolate with different degrees of hydrolysis (20, 30 and 40% DH) was prepared using the purified trypsin, and antioxidative activities (1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activities, ferric-reducing antioxidant power and ferrous-chelating activity) of the hydrolysate were determined. RESULTS Trypsin was purified 26.43-fold with a yield of 13.43%. The purified trypsin had a molecular weight (MW) of 23.5 kDa and optimal activity at pH 8.0 and 55 °C. It displayed high stability in the pH range of 6.0-11.0 and was thermally stable up to 50 °C. Both SBTI (0.05 mmol L(-1)) and N-p-tosyl-L-lysine-chloromethylketone (5 mmol L(-1)) completely inhibited trypsin activity. Antioxidative activities of the hydrolysate from Indian mackerel protein isolate increased with increasing DH up to 40% (P < 0.05). Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis, the hydrolysate with 40% DH had a MW lower than 6.5 kDa. CONCLUSION The purified protease from unicorn leatherjacket pyloric caeca was identified as trypsin based on its ability to hydrolyze a specific synthetic substrate and the response to specific trypsin inhibitors. The purified trypsin could hydrolyze Indian mackerel protein isolate, and the resulting hydrolysate exhibited antioxidative activity depending on its DH.
Collapse
Affiliation(s)
- Abbas Zamani
- Fisheries Department, Faculty of Natural Resources and Environmental, Malayer University, Malayer, Hamedan, Iran
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|