1
|
Pandiselvam R, Aydar AY, Aksoylu Özbek Z, Sözeri Atik D, Süfer Ö, Taşkin B, Olum E, Ramniwas S, Rustagi S, Cozzolino D. Farm to fork applications: how vibrational spectroscopy can be used along the whole value chain? Crit Rev Biotechnol 2024:1-44. [PMID: 39494675 DOI: 10.1080/07388551.2024.2409124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 11/05/2024]
Abstract
Vibrational spectroscopy is a nondestructive analysis technique that depends on the periodic variations in dipole moments and polarizabilities resulting from the molecular vibrations of molecules/atoms. These methods have important advantages over conventional analytical techniques, including (a) their simplicity in terms of implementation and operation, (b) their adaptability to on-line and on-farm applications, (c) making measurement in a few minutes, and (d) the absence of dangerous solvents throughout sample preparation or measurement. Food safety is a concept that requires the assurance that food is free from any physical, chemical, or biological hazards at all stages, from farm to fork. Continuous monitoring should be provided in order to guarantee the safety of the food. Regarding their advantages, vibrational spectroscopic methods, such as Fourier-transform infrared (FTIR), near-infrared (NIR), and Raman spectroscopy, are considered reliable and rapid techniques to track food safety- and food authenticity-related issues throughout the food chain. Furthermore, coupling spectral data with chemometric approaches also enables the discrimination of samples with different kinds of food safety-related hazards. This review deals with the recent application of vibrational spectroscopic techniques to monitor various hazards related to various foods, including crops, fruits, vegetables, milk, dairy products, meat, seafood, and poultry, throughout harvesting, transportation, processing, distribution, and storage.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Alev Yüksel Aydar
- Department of Food Engineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Zeynep Aksoylu Özbek
- Department of Food Engineering, Manisa Celal Bayar University, Manisa, Türkiye
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Didem Sözeri Atik
- Department of Food Engineering, Agriculture Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye
| | - Özge Süfer
- Department of Food Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, Osmaniye, Türkiye
| | - Bilge Taşkin
- Centre DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Suchdol, Prague 6, Czech Republic
| | - Emine Olum
- Department of Gastronomy and Culinary Arts, Faculty of Fine Arts Design and Architecture, Istanbul Medipol University, Istanbul, Türkiye
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, India
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Pérez-Bermúdez I, Castillo-Suero A, Cortés-Inostroza A, Jeldrez C, Dantas A, Hernández E, Orellana-Palma P, Petzold G. Observation and Measurement of Ice Morphology in Foods: A Review. Foods 2023; 12:3987. [PMID: 37959105 PMCID: PMC10648627 DOI: 10.3390/foods12213987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Freezing is an effective technology with which to maintain food quality. However, the formation of ice crystals during this process can cause damage to the cellular structure, leading to food deterioration. A good understanding of the relationship between food microstructure and ice morphology, as well as the ability to effectively measure and control ice crystals, is very useful to achieve high-quality frozen foods. Hence, a brief discussion is presented on the fundamentals/principles of optical microscopic techniques (light microscopy), electronic microscopic techniques (transmission electron microscopy (TEM) and scanning electron microscopy (SEM)), as well as other non-invasive techniques (X-rays, spectroscopy, and magnetic resonance) and their application to measuring ice formation rates and characterizing ice crystals, providing insight into the freezing mechanisms as well as direct monitoring of the entire process. And, in addition, this review compares (the negative and positive aspects of) the use of simple and cheap but destructive technologies (optical microscopy) with detailed microscopic technologies at the micro/nanometer scale but with pretreatments that alter the original sample (SEM and TEM), and non-destructive technologies that do not require sample preparation but which have high acquisition and operational costs. Also included are images and examples which demonstrate how useful an analysis using these techniques can be.
Collapse
Affiliation(s)
- Indira Pérez-Bermúdez
- Grupo de Crioconcentración de Alimentos y Procesos Relacionados, Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Campus Fernando May, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile
| | - Alison Castillo-Suero
- Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Campus Andrés Bello, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (A.C.-S.); (A.C.-I.); (C.J.)
| | - Anielka Cortés-Inostroza
- Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Campus Andrés Bello, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (A.C.-S.); (A.C.-I.); (C.J.)
| | - Cristóbal Jeldrez
- Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Campus Andrés Bello, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (A.C.-S.); (A.C.-I.); (C.J.)
| | - Adriana Dantas
- Institute of Agrifood Research and Technology (IRTA), Food Quality and Technology, Finca Camps i Armet, Monells, 17121 Girona, Spain;
| | - Eduardo Hernández
- Agri-Food Engineering and Biotechnology Department, Campus del Baix Llobregat, Universitat Politècnica de Catalunya BarcelonaTech, Edifici D-4 C/Esteve Terradas, 8, Castelldefels, 08860 Barcelona, Spain;
| | - Patricio Orellana-Palma
- Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Campus Andrés Bello, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (A.C.-S.); (A.C.-I.); (C.J.)
| | - Guillermo Petzold
- Grupo de Crioconcentración de Alimentos y Procesos Relacionados, Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Campus Fernando May, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile
| |
Collapse
|
3
|
Nunes AL, Corrêa Filho RAC, Seraphim GN, Pires LB, Martins TX, Prates MFM, Oliveira CAL, Duarte MT, Povh JA. Body yield and quality of fresh and post-freezing filet of Nile tilapia (Oreochromis niloticus) genetic groups. AN ACAD BRAS CIENC 2023; 95:e20190509. [PMID: 37585878 DOI: 10.1590/0001-3765202320190509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/07/2019] [Indexed: 08/18/2023] Open
Abstract
The aim of this study was to evaluate the body yield and quality of fresh and post-freezing filet of male and female fish of inbred and non-inbred AquaAmérica genetic group and the hybrid between the AquaAmérica and Tilamax varieties. Forty fish (20 males and 20 females) of each genetic group were housed in four 48-m3 hapa net cages, getting 120 fish per cage. The fish were housed at 51 days of age and farmed for 269 days. Pre-slaughter weight was higher (P<0.05) in the AquaAmérica × Tilamax males (0.805±0.204 kg) than in the inbred AquaAmérica male (0.643±0.115 kg). Filet yield percentage was higher (P<0.05) in the AquaAmérica × Tilamax males (32.14±4.72%) than in the inbred AquaAmérica (28.15±2.67%) and non-inbred AquaAmérica (29.06±2.80%) males. Head and viscera yield percentages, pH, color values (L*, a* and b*), shear force, drip loss and cooking loss did not differ significantly between the genetic groups and sexes. Alterations in meat quality were observed after freezing. In conclusion, inbreeding in the AquaAmérica variety resulted in reduced slaughter weight for males; AquaAmérica × Tilamax males have a higher filet yield; and filet quality is not influenced by crossing, inbreeding, or sex, but is changed after freezing.
Collapse
Affiliation(s)
- André L Nunes
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Ruy A C Corrêa Filho
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Guilherme N Seraphim
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Luana B Pires
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Thiago X Martins
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Michel F M Prates
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Carlos A L Oliveira
- Universidade Estadual de Maringá (UEM), Departamento de Ciência Animal, Avenida Colombo, 5790, Zona 7, Bloco J45, 87020-900 Maringá, PR, Brazil
| | - Marjorie T Duarte
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| | - Jayme A Povh
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul (UFMS), Faculdade de Medicina Veterinária e Zootecnia, Avenida Senador Filinto Muller, 2443, Vila Ipiranga, 79074-460 Campo Grande, MS, Brazil
| |
Collapse
|
4
|
Qian YF, Yu JY, Yu YJ, Xie J, Yang SP. Effects of immersing treatment of curcumin and piperine combined with vacuum packaging on the quality of salmon ( Salmo salar) during cold chain logistics. Front Nutr 2022; 9:1021280. [PMID: 36407510 PMCID: PMC9671655 DOI: 10.3389/fnut.2022.1021280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2023] Open
Abstract
In order to study the effects of the compound preservatives (curcumin and piperine (CP)) and vacuum packaging (VP) on the quality of salmon during cold chain logistics suffered from temperature abuse, the physiochemical indexes (texture, water holding capacity (WHC), total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), free amino acids (FAA) contents), microbial indicators (total mesophilic bacteria count (MBC), total psychrotrophic bacteria count (PBC), H2S-producing bacteria count (HSBC)) were determined, and the moisture changes were explored by near-infrared (NIR) spectroscopy and low-field nuclear magnetic resonance (LF-NMR). The results showed that the treatment of curcumin and piperine in combination with vacuum packaging could maintain the quality of salmon suffered from temperature abuse most effectively. At the end of storage, the MBC of VP+CP was only 4.95 log CFU/g, which was about 1 log CFU/g lower than the control sample stored at the same condition. The combined treatment also retarded the increase of TVB-N, TBARS, and the decrease of hardness, springiness, and a* value, as well as water migration in salmon, contributing to higher water holding capacity and better appearance. Besides, VP+CP retarded the decrease of free glutamate, which contributed to umami taste. Due to the biological activity and safety of the preserves, the combined treatment could be a promising method for preservation of seafood.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jia-Yi Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying-Jie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Kotsanopoulos K, Martsikalis PV, Gkafas GA, Exadactylos A. The use of various statistical methods for authenticity and detection of adulteration in fish and seafood. Crit Rev Food Sci Nutr 2022; 64:1553-1571. [PMID: 36052815 DOI: 10.1080/10408398.2022.2117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Various methodologies including genetic analyses, morphometrics, proteomics, lipidomics, metabolomics, etc. are now used or being developed to authenticate fish and seafood. Such techniques usually lead to the generation of enormous amounts of data. The analysis and interpretation of this information can be particularly challenging. Statistical techniques are therefore commonly used to assist in analyzing these data, visualizing trends and differences and extracting conclusions. This review article aims at presenting and discussing statistical methods used in studies on fish and seafood authenticity and adulteration, allowing researchers to consider their options based on previous successes/failures but also offering some recommendations about the future of such techniques. Techniques such as PCA, AMOVA and FST statistics, that allow the differentiation of genetic groups, or techniques such as MANOVA that allow large data sets of morphometric characteristics or elemental differences to be analyzed are discussed. Furthermore, methods such as cluster analysis, DFA, CVA, CDA and heatmaps/Circos plots that allow samples to be differentiated based on their geographical origin are also reviewed and their advantages and disadvantages as found in past studies are given. Finally, mathematical simulations and modeling are presented in a detailed review of studies using them, together with their advantages and limitations.
Collapse
Affiliation(s)
- Konstantinos Kotsanopoulos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Petros V Martsikalis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - George A Gkafas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
6
|
Asefa BG, Sun C, Van Beers R, Saeys W, Ruyters S. A feasibility study on nondestructive classification of frozen Atlantic salmon (Salmo salar) fillets based on temperature history at the logistics using NIR spectroscopy. J Food Sci 2022; 87:2847-2857. [PMID: 35638339 DOI: 10.1111/1750-3841.16195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Temperature fluctuation commonly occurs in the cold chain leading to complete or partial thawing and refreezing of frozen products resulting in a multifrozen product. Such oscillation of temperature could cause significant quality reduction compared to single frozen products. This study was designed to differentiate frozen Atlantic salmon fillets based on the level of temperature fluctuation. Near-infrared spectroscopy (NIRS) coupled with chemometrics was used to classify the frozen fillets stored at no fluctuation (NF), low fluctuation (LF), high fluctuation (HF), and very high fluctuation (VF) temperature. Using spectral profiles obtained at both frozen and thawed states, fillets were classified based on the level of temperature fluctuation by partial least squares discriminant analysis (PLS-DA). The thawed samples showed better classification accuracy (71%) than frozen samples (66%) in a four-class model. Considering the small variation within the first two (NF, LF) and the last two (HF, VF) groups, a two-class classification model was developed using thawed samples, and the obtained model correctly classified the two groups ([NF, LF] and [HF, VF]) with 100 % classification accuracy. Protein- and water-related changes were found important to distinguish the fillets. Based on these findings, the four-class prediction model is found insufficient to be used for nondestructive determination of temperature history of frozen fillets. However, the two-class prediction model with further external validation can be applied to determine the level of temperature fluctuation particularly using fillets scanned at thawed state. PRACTICAL APPLICATION: NIR spectroscopy can be used to evaluate the degree of temperature fluctuation and thus related quality loss throughout the logistics of frozen Atlantic salmon fillets. Researchers, food control authorities, and the retail industry could be the primary beneficiaries of this research output.
Collapse
Affiliation(s)
- Bezuayehu Gutema Asefa
- Food Science and Nutrition Research Department, National Fishery and Aquatic Life Research Center (NFALRC), Ethiopian Institute of Agricultural Research (EIAR), Sebeta, Ethiopia.,Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | - Chanjun Sun
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | - Robbe Van Beers
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | - Wouter Saeys
- Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors (MeBioS), University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
7
|
Classification of sea bream (Sparus aurata) fillets subjected to freeze-thaw cycles by using front-face fluorescence spectroscopy. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Vilkova D, Kondratenko E, Chèné C, Karoui R. Effect of multiple freeze–thaw cycles on the quality of Russian sturgeon (Acipenser gueldenstaedtii) determined by traditional and emerging techniques. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
He Q, Yang M, Chen X, Yan X, Li Y, He M, Liu T, Chen F, Zhang F. Differentiation between Fresh and Frozen-Thawed Meat using Rapid Evaporative Ionization Mass Spectrometry: The Case of Beef Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5709-5724. [PMID: 33955749 DOI: 10.1021/acs.jafc.0c07942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An intelligent surgical knife (iKnife) coupled with rapid evaporative ionization mass spectrometry (REIMS) was employed for the lipidomic profiling of fresh and frozen-thawed beef muscle. The data were obtained by REIMS and then processed using multivariate statistical analysis methods including principal component analysis-linear discriminant analysis (PCA-LDA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). The discrimination of fresh and frozen-thawed meat has been achieved, and the real-time identification accuracy was 92-100%. Changes in the composition and content of fatty acids and phospholipids were statistically analyzed by OPLS-DA, and the ions of m/z 279.2317, m/z 681.4830, and m/z 697.4882 were selected as differential compounds/metabolites. The developed method was also successfully applied in the discrimination of fresh and frozen-thawed meat samples. These results showed that REIMS as a high-throughput, rapid, and real-time mass spectrometry detection technology can be used for the identification of fresh and frozen-thawed meat samples.
Collapse
Affiliation(s)
- Qichuan He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250014, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong 250014, China
| | - Xiaoting Yan
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Bekaert K, Cropotova J, García MR, Messens W, Bover‐Cid S. The use of the so-called 'superchilling' technique for the transport of fresh fishery products. EFSA J 2021; 19:e06378. [PMID: 33552296 PMCID: PMC7842081 DOI: 10.2903/j.efsa.2021.6378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Superchilling entails lowering the fish temperature to between the initial freezing point of the fish and about 1-2°C lower. The temperature of superchilled fresh fishery products (SFFP) in boxes without ice was compared to that of products subject to the currently authorised practice in boxes with ice (CFFP) under the same conditions of on-land storage and/or transport. A heat transfer model was developed and made available as a tool to identify under which initial configurations of SFFP the fish temperature, at any time of storage/transport, is lower or equal to CFFP. A minimum degree of superchilling, corresponding to an ice fraction in the fish matrix of SFFP equal or higher than the proportion of ice added per mass of fish in CFFP, will ensure with 99-100% certainty (almost certain) that the fish temperature of SFFP and the consequent increase of relevant hazards will be lower or equal to that of CFFP. In practice, the degree of superchilling can be estimated using the fish temperature after superchilling and its initial freezing point, which are subject to uncertainties. The tool can be used as part of 'safety-by-design' approach, with the reliability of its outcome being dependent on the accuracy of the input data. An evaluation of methods capable of detecting whether a previously frozen fish is commercially presented as 'superchilled' was carried out based on, amongst others, their applicability for different fish species, ability to differentiate fresh fish from fish frozen at different temperatures, use as a stand-alone method, ease of use and classification performance. The methods that were considered 'fit for purpose' are Hydroxyacyl-coenzyme A dehydrogenase (HADH) test, α-glucosidase test, histology, ultraviolet-visible-near-infrared (UV-VIS/NIR) spectroscopy and hyperspectral imaging. These methods would benefit from standardisation, including the establishment of threshold values or classification algorithms to provide a practical routine test.
Collapse
|
11
|
Emerging Techniques for Differentiation of Fresh and Frozen-Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020; 25:molecules25194472. [PMID: 33003382 PMCID: PMC7582365 DOI: 10.3390/molecules25194472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023] Open
Abstract
Fish and other seafood products have a limited shelf life due to favorable conditions for microbial growth and enzymatic alterations. Various preservation and/or processing methods have been developed for shelf-life extension and for maintaining the quality of such highly perishable products. Freezing and frozen storage are among the most commonly applied techniques for this purpose. However, frozen–thawed fish or meat are less preferred by consumers; thus, labeling thawed products as fresh is considered a fraudulent practice. To detect this kind of fraud, several techniques and approaches (e.g., enzymatic, histological) have been commonly employed. While these methods have proven successful, they are not without limitations. In recent years, different emerging methods have been investigated to be used in place of other traditional detection methods of thawed products. In this context, spectroscopic techniques have received considerable attention due to their potential as being rapid and non-destructive analytical tools. This review paper aims to summarize studies that investigated the potential of emerging techniques, particularly those based on spectroscopy in combination with chemometric tools, to detect frozen–thawed muscle foods.
Collapse
|
12
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|