1
|
Ter Ü, Ertürk Gürkan S, Gürkan M, Kunili IE, Aksoy E. Pathological and oxidative stress responses of Mytilus galloprovincialis to Vibrio mediterranei infection: An in vivo challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109889. [PMID: 39250984 DOI: 10.1016/j.fsi.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Since the identification of Vibrio mediterranei as a causative agent in mass mortalities of pen shells across the Mediterranean, elucidating its pathogenicity, virulence, and interactions with other bivalves has gained importance. While the cellular and immune responses of bivalves to various Vibrio species have been extensively studied, the infectious characteristics of this Vibrio species, particularly in the context of pen shell outbreaks, remain unclear for other bivalves. Therefore, to evaluate its pathogenicity, we investigated the histological and oxidative effects on the Mediterranean mussel (Mytilus galloprovincialis), a key species in aquaculture. Two distinct infection setups were established: one involving the inoculation of seawater with the bacterial isolate and another involving direct injection of the bacteria into the mussels. After a 24-h exposure period, histological evaluations were conducted on the mantle, gill, and digestive gland tissues of the mussels. Additionally, measurements of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation levels were performed in the gill and digestive gland tissues. Oxidative responses were significantly elevated in both infection setups compared to the control group, with the directly injected samples exhibiting the highest oxidative responses (p < 0.05). Histological findings indicated that tissue-specific responses to host-pathogen interactions were consistent under both infection conditions. Notable observations included intense hemocytic infiltration in tissues, epithelial hyperplasia, and vacuolization in the gills, as well as focal necrotic areas in the digestive gland. The findings of this study indicate that V. mediterranei, a relatively novel pathogen, can provoke significant acute immune responses and tissue-level reactions in M. galloprovincialis, a species that is both widely distributed and vital to the food chain. These insights into the potential susceptibility of mussels underscore the need for further comprehensive research and inform the development of effective management strategies.
Collapse
Affiliation(s)
- Ümmügülsüm Ter
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Ibrahim Ender Kunili
- Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale, Turkey
| | - Emircan Aksoy
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| |
Collapse
|
2
|
Ye J, Zheng L, Pan W, Huang Y, Zhang N, Yang D, Yang Y, Zheng B, Zhang X, Xiao M. Sulfated polysaccharide from Apostichopus japonicus viscera exhibits anti-inflammatory properties in vitro and in vivo. Int J Biol Macromol 2024; 280:135500. [PMID: 39276906 DOI: 10.1016/j.ijbiomac.2024.135500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Polysaccharides from sea cucumbers are known for their biological activities, but little is known about those from sea cucumber viscera. The present study isolated a sulfated polysaccharide (SCVP-2) from the viscera of Apostichopus japonicas, which had a molecular weight of 209.1 kDa. SCVP-2 comprised 66.3 % total sugars, 2.1 % uronic acid, 4.5 % proteins, and 25.5 % sulfate groups, containing glucosamine, galactosamine, glucose, galactose, and fucose. FT-IR and NMR analyses identified SCVP-2 as a fucoidan sulfate with sulfation patterns of the fucose branches as Fuc2S, Fuc4S, and Fuc0S. SEM and AFM analyses showed irregular clusters and linear conformations. SCVP-2 demonstrated strong anti-inflammatory properties both in vitro and in vivo. In lipopolysaccharide (LPS)-induced inflammation in macrophage RAW264.7 cells, SCVP-2 significantly reduced nitric oxide (NO) and cytokine secretion (IL-1β, IL-6, TNF-α). Additionally, it downregulated the expression of these cytokine genes. Furthermore, the anti-inflammatory mechanism of SCVP-2 was related to the inhibition of the MAPKs and NF-κB pathways. SCVP-2's anti-inflammatory capacity was confirmed in acute inflammation models, including xylene-induced ear swelling and acetic acid-induced peritoneal capillary permeability, and in high-fat diet-induced systemic low-grade chronic inflammation. In conclusion, SCVP-2 exhibits significant anti-inflammatory activity, suggesting its potential for development as a functional food ingredient or therapeutic agent for inflammation-related diseases.
Collapse
Affiliation(s)
- Jing Ye
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China.
| | - Linjing Zheng
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Weipeng Pan
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China
| | - Yayan Huang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Na Zhang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Dongda Yang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China
| | - Yucheng Yang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Bingde Zheng
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Enginering, Huaqiao University, Xiamen 362021, China; Engineering Technology Research Center for Comprehensive Utilization of Marine Biological Resources in Xiamen, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
3
|
Muhsin MF, Fujaya Y, Hidayani AA, Fazhan H, Wan Mahari WA, Lam SS, Shu-Chien AC, Wang Y, Afiqah-Aleng N, Rukminasari N, Waiho K. Bridging the gap between sustainability and profitability: unveiling the untapped potential of sea cucumber viscera. PeerJ 2023; 11:e16252. [PMID: 37842055 PMCID: PMC10576502 DOI: 10.7717/peerj.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Sea cucumbers have high economic value, and in most forms of trade, their body wall is typically the only part that is harvested and sold. The organs of the sea cucumber, collectively known as the viscera, are frequently discarded, contributing to land and water pollution. However, discarded sea cucumber viscera contain various nutrients that can be used in many applications. Therefore, this review highlights the biological and economic aspects of sea cucumbers, followed by a critical discussion of the nutritional value of their internal organs and possible applications, including as functional feed additives in the aquaculture industry, sources of natural testosterone for application in sex reversal and production of monosex population, of neuroprotective agents against central nervous system disorders and of cosmetic ingredients, especially for skin whitening and anti-ageing products. The review further highlights the valorisation potential of viscera to maximize their economic potential, thus providing an enormous prospect for reusing sea cucumber waste, thereby reducing the negative impact of the sea cucumber fishery sector on the environment.
Collapse
Affiliation(s)
- Muhammad Fatratullah Muhsin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Yushinta Fujaya
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Andi Aliah Hidayani
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Wan Adibah Wan Mahari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Alexander Chong Shu-Chien
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Nor Afiqah-Aleng
- Institute of Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nita Rukminasari
- Faculty of Marine Sciences and Fishery, Hasanuddin University, Makassar, Indonesia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, China
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Del Carmen Gómez-Regalado M, Martín J, Hidalgo F, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. Accumulation and metabolization of the antidepressant venlafaxine and its main metabolite o-desmethylvenlafaxine in non-target marine organisms Holothuria tubulosa, Anemonia sulcata and Actinia equina. MARINE POLLUTION BULLETIN 2023; 192:115055. [PMID: 37207394 DOI: 10.1016/j.marpolbul.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
The assessment of exposure to the antidepressant venlafaxine and its major metabolite o-desmethylvenlafaxine in Holothuria tubulosa, Anemonia sulcata and Actinia equina is proposed. A 28-day exposure experiment (10 μg/L day) followed by a 52-day depuration period was conducted. The accumulation shows a first-order kinetic process reaching an average concentration of 49,125/54342 ng/g dw in H. tubulosa and 64,810/93007 ng/g dw in A. sulcata. Venlafaxine is considered cumulative (BCF > 2000 L/kg dw) in H. tubulosa, A. sulcata and A. equina respectively; and o-desmethylvenlafaxine in A. sulcata. Organism-specific BCF generally followed the order A. sulcata > A. equina > H. tubulosa. The study revealed differences between tissues in metabolizing abilities in H. tubulosa this effect increases significantly with time in the digestive tract while it was negligible in the body wall. The results provide a description of venlafaxine and o-desmethylvenlafaxine accumulation in common and non-target organisms in the marine environment.
Collapse
Affiliation(s)
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain.
| | - Felix Hidalgo
- Department of Zoology, Sciences Faculty, University of Granada, E-18071 Granada, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/Virgen de África 7, E-41011 Seville, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, Sciences Faculty, University of Granada, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, E-18016 Granada, Spain; Institute of Nutrition and Food Technology, INYTA, University of Granada, Spain.
| |
Collapse
|
5
|
Gómez-Regalado MDC, Martín-Pozo L, Hidalgo F, Cantarero-Malagón S, Zafra-Gómez A. Multi-residue determination of 17 antibiotics in sea cucumbers (Holothuria tubulosa) by ultrahigh performance liquid chromatography-tandem mass spectrometry. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Elemental composition and in vitro bioaccessibility assessment of holothuroids. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Elvevoll EO, James D, Toppe J, Gamarro EG, Jensen IJ. Food Safety Risks Posed by Heavy Metals and Persistent Organic Pollutants (POPs) related to Consumption of Sea Cucumbers. Foods 2022; 11:3992. [PMID: 36553734 PMCID: PMC9778379 DOI: 10.3390/foods11243992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The global production of sea cucumbers was 245 thousand tons in 2020. Sea cucumbers are important food items in Asian and Pacific cuisines, the highest proportion being consumed in China as "bêche-de-mer" dried, gutted, boiled and salted body wall. However, consumption of sea cucumbers is expanding in China and globally, and the high demand has led to decline in populations of sea cucumbers, due to overexploitation. Aquaculture, together with novel fisheries on new species in new regions is easing the demand. Thus, an assessment of food safety is warranted. A literature search on food hazards was performed. A high proportion of the selected papers concerned heavy metals and metalloid hazards, such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). No specific maximum limits (MLs) have been set for contents of these in sea cucumbers. Thus, the contents were compared with maximum limits set for aquatic animals in general or bivalve molluscs if available. With regard to Hg and Cd levels, none of the samples exceeded limits set by the European Commission or the National Standard of China, while for Pb, samples from highly industrialised areas exceeded the limits. Surprisingly, data on contaminants such as POPs, including dioxins and dl-PCB, PAH and PFAS as well as microbial hazards were scarce. The availability of fresh sea cucumber has increased due to aquaculture. To preserve the original flavour some consumers are reported to prefer to eat raw sea cucumber products, sashimi and sushi, which inevitably causes challenges from the microbial food safety perspective. Altogether, this paper highlights specific needs for knowledge, in particular when harvesting new species of sea cucumbers or in industrialized regions. Systematic monitoring activities, appropriate guidelines and regulations are highly warranted to guide the utilization of sea cucumbers.
Collapse
Affiliation(s)
- Edel Oddny Elvevoll
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
| | - David James
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Jogeir Toppe
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Esther Garrido Gamarro
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Ida-Johanne Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
8
|
Biandolino F, Parlapiano I, Spada L, Di Leo A, Calò M, Fanelli G, Prato E, Giandomenico S. Occurrence and patterns of nutritional traits and polycyclic aromatic hydrocarbons (PAHs) in sea cucumber (Holothuria polii) tissues: benefits and risk for human health. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objectives
The paper evaluated the benefit and risk for human health associated with consumption of sea cucumber H. polii from Italian coasts (Central Mediterranean Sea).
Materials and Methods
body wall-BW, internal tunic-ITu, muscle bands-MB, alimentary canal-AC, gonad-Gd and respiratory tree-RT of H. polii were analyzed for proximate composition. Moreover, aminoacids, fatty acids and polycyclic aromatic hydrocarbons (PAHs) were determined with HPLC UV/Vis, GC-FID and GC-MS, respectively.
Results
Differences in the contents of Total Aminoacids (TAA) occurred based on tissue and sex, with AC and MB of female and Gd of male showing higher contents (range 47.8 -60.2 g/kg ww). Glycine and glutamic acid were the most abundant. Polyunsaturated (PUFA) was the major class of fatty acids and Arachidonic and Eicosapentaenoic (EPA) acids were the predominant PUFA. n-3 PUFA showed higher content in Gd, AC and RT indicating a higher quality. A favorable n-3/n-6 in the range 1.04-1.67 was observed. PAHs showed values ranged from 23 to 207 µg/kg ww with the highest levels in Gd-AC tissues and the lower in BW. Benzo[a]Pyrene, the most toxic compound, was detected in all tissues, of both sexes, at levels of 1.5-18 µg/Kg ww.
Conclusion
All tissues of H. polii, although with differences among them, are valuable food and can contribute for a healthy diet. Excess Cancer risk (CR) values for Gd and AC tissues, were above the considerable CR threshold of one in ten thousand established by USEPA, for high ingestion rate of these seafood.
Collapse
Affiliation(s)
- Francesca Biandolino
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Isabella Parlapiano
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Lucia Spada
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Antonella Di Leo
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Maria Calò
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Giovanni Fanelli
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Ermelinda Prato
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| | - Santina Giandomenico
- CNR-IRSA, National Research Council Water Research Institute - Via Roma 3, Taranto, Italy
| |
Collapse
|
9
|
Sales S, Lourenço HM, Pessoa MF, Pombo A, Félix PM, Bandarra NM. Chemical Composition and Omega 3 Human Health Benefits of Two Sea Cucumber Species of North Atlantic. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1909683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sabrina Sales
- GeoBioTec, Department of Earth Sciences, Faculty of Science and Technology, New University of Lisbon, Lisbon, Portugal
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
| | - Helena Maria Lourenço
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
| | - Maria Fernanda Pessoa
- GeoBioTec, Department of Earth Sciences, Faculty of Science and Technology, New University of Lisbon, Lisbon, Portugal
| | - Ana Pombo
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Pedro Miguel Félix
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Narcisa Maria Bandarra
- Department of Sea and Marine Resources, Portuguese Institute for the Sea and Atmosphere (IPMA), Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|