1
|
López-Medina FA, Dublán-García O, Morachis-Valdez AG, Saucedo-Vence K, López-García G, Díaz-Bandera D, Gómez-Espinoza RM. Biopolymeric Hydrolysates from Dosidicus gigas: Functional Applications and Shelf-Life Extension in Squid Sausages. Polymers (Basel) 2025; 17:839. [PMID: 40219232 PMCID: PMC11991224 DOI: 10.3390/polym17070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Bioactive protein hydrolysates from Dosidicus gigas, obtained via Bacillus subtilis fermentation (20 °C, 4-8 h), were assessed for functional properties and their impact on jumbo squid sausage preservation. The hydrolysates exhibited strong antioxidant activity (742.17 μmol TE/g) and inhibited key metabolic enzymes: α-glucosidase (93.29%), α-amylase (20.87%), lipase (35.44%), and ACE-I (88.96%), indicating potential benefits for managing diabetes, obesity, and hypertension. Sausages enriched with 0.1% hydrolysates, stored at 4 °C, had a 95.5% longer shelf life (43 vs. 22 days), reduced microbial spoilage (TVC: 3.68 vs. 5.42 Log CFU/g), and 35.6% lower total volatile bases. Water-holding capacity improved (88.21% vs. 87.15%), and oxidative browning was delayed, preserving color stability. These results highlight D. gigas hydrolysates as multifunctional bioactive compounds with potential as natural stabilizers in clean-label formulations. Their capacity to enhance food stability and replace synthetic preservatives offers a sustainable, innovative strategy for the functional food industry.
Collapse
Affiliation(s)
- Francisco Antonio López-Medina
- Laboratorio de Alimentos, Facultad de Química, Unidad Cerrillo, Universidad Autónoma del Estado de México, Carretera Toluca—Ixtlahuaca Kilómetro 15.5, El Cerrillo Piedras Blancas, Toluca C. P. 50200, Mexico; (F.A.L.-M.); (G.L.-G.); (D.D.-B.); (R.M.G.-E.)
| | - Octavio Dublán-García
- Laboratorio de Alimentos, Facultad de Química, Unidad Cerrillo, Universidad Autónoma del Estado de México, Carretera Toluca—Ixtlahuaca Kilómetro 15.5, El Cerrillo Piedras Blancas, Toluca C. P. 50200, Mexico; (F.A.L.-M.); (G.L.-G.); (D.D.-B.); (R.M.G.-E.)
| | - Ana Gabriela Morachis-Valdez
- Laboratorio de Alimentos, Facultad de Química, Unidad Cerrillo, Universidad Autónoma del Estado de México, Carretera Toluca—Ixtlahuaca Kilómetro 15.5, El Cerrillo Piedras Blancas, Toluca C. P. 50200, Mexico; (F.A.L.-M.); (G.L.-G.); (D.D.-B.); (R.M.G.-E.)
| | - Karinne Saucedo-Vence
- Unidad Académica de Capulhuac, Universidad Tecnológica del Valle de Toluca (UTVT), Calle s/n, 611 Oriente de, Colonia, Lomas de San Juan Municipio, Capulhuac de Mirafuentes C. P. 52700, Mexico;
| | - Guadalupe López-García
- Laboratorio de Alimentos, Facultad de Química, Unidad Cerrillo, Universidad Autónoma del Estado de México, Carretera Toluca—Ixtlahuaca Kilómetro 15.5, El Cerrillo Piedras Blancas, Toluca C. P. 50200, Mexico; (F.A.L.-M.); (G.L.-G.); (D.D.-B.); (R.M.G.-E.)
| | - Daniel Díaz-Bandera
- Laboratorio de Alimentos, Facultad de Química, Unidad Cerrillo, Universidad Autónoma del Estado de México, Carretera Toluca—Ixtlahuaca Kilómetro 15.5, El Cerrillo Piedras Blancas, Toluca C. P. 50200, Mexico; (F.A.L.-M.); (G.L.-G.); (D.D.-B.); (R.M.G.-E.)
| | - Rosa María Gómez-Espinoza
- Laboratorio de Alimentos, Facultad de Química, Unidad Cerrillo, Universidad Autónoma del Estado de México, Carretera Toluca—Ixtlahuaca Kilómetro 15.5, El Cerrillo Piedras Blancas, Toluca C. P. 50200, Mexico; (F.A.L.-M.); (G.L.-G.); (D.D.-B.); (R.M.G.-E.)
| |
Collapse
|
2
|
Semwal J, Meera MS. Novel mode of kafirin modification using combination of enzyme and thermal treatment to expand its food application. Food Chem 2024; 460:140489. [PMID: 39047474 DOI: 10.1016/j.foodchem.2024.140489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/31/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Kafirin in sorghum inhibits starch digestion and exhibits antioxidant properties, however its potential in food industry remains unexplored. Therefore, the study was aimed to explore and improve the potential of kafirin as natural carbohydrate blocker using papain (6 NFU/mL) and/or infrared treatment (220 °C/3 min). Results indicated that the combined treatment, PIR (infrared + papain) is the most efficient treatment to modify kafirin. PIR generated a new ∼37 kDa high molecular weight moiety in kafirin with a crystal size of 157.44 Å. All samples showed superior antioxidant activity post-treatments, with PIR exhibiting highest scavenging activity from 31.09 to 82.97%, 15.09 to 42.82%, and 25.92 to 38.58% for DPPH, FRAP, and ABTS, respectively. PIR-modified kafirin limited malondialdehyde production, and increased α-amylase and α-glucosidase inhibition. Incorporation of 7.5% kafirin in corn starch increased resistant starch from 5.09 to 21.04% after cooking, which suggests potential of kafirin in development of diabetic-friendly food formulations.
Collapse
Affiliation(s)
- Jyoti Semwal
- Department of Grain Science and Technology, CSIR- Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - M S Meera
- Department of Grain Science and Technology, CSIR- Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
3
|
Sharma D, Gite S, Tuohy MG. Exploring the Physicochemical Characteristics of Marine Protein Hydrolysates and the Impact of In Vitro Gastrointestinal Digestion on Their Bioactivity. Mar Drugs 2024; 22:452. [PMID: 39452860 PMCID: PMC11509636 DOI: 10.3390/md22100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Fish protein hydrolysates (FPHs) were obtained from different fish sources using a combination of microbial enzymes. The industrially produced FPHs from blue whiting (Micromesistius poutassou) and sprat (Sprattus sprattus) were compared to freeze-dried FPHs generated in-house from hake (Merluccius merluccius) and mackerel (Scomber scombrus) in terms of their physicochemical composition and functionality. Significant differences (p < 0.05) were observed in the protein, moisture, and ash contents of the FPHs, with the majority having high levels of protein (73.24-89.31%). Fractions that were more extensively hydrolysed exhibited a high solubility index (74.05-98.99%) at different pHs. Blue whiting protein hydrolysate-B (BWPH-B) had the highest foaming capacity at pH 4 (146.98 ± 4.28%) and foam stability over 5 min (90-100%) at pH 4, 6, and 8. The emulsifying capacity ranged from 61.11-108.90 m2/g, while emulsion stability was 37.82-76.99% at 0.5% (w/v) concentration. In terms of peptide bioactivity, sprat protein hydrolysate (SPH) had the strongest overall reducing power. The highest Cu2+ chelating activity was exhibited by hake protein hydrolysate (HPH) and mackerel protein hydrolysate (MPH), with IC50 values of 0.66 and 0.78 mg protein/mL, respectively, while blue whiting protein hydrolysate-A (BWPH-A) had the highest activity against Fe2+ (IC50 = 1.89 mg protein/mL). SPH scavenged DPPH and ABTS radicals best with IC50 values of 0.73 and 2.76 mg protein/mL, respectively. All FPHs displayed noteworthy scavenging activity against hydroxyl radicals, with IC50 values ranging from 0.48-3.46 mg protein/mL. SPH and MPH showed the highest scavenging potential against superoxide radicals with IC50 values of 1.75 and 2.53 mg protein/mL and against hydrogen peroxide with 2.22 and 3.66 mg protein/mL, respectively. While inhibition of α-glucosidase was not observed, the IC50 values against α-amylase ranged from 8.81-18.42 mg protein/mL, with SPH displaying the highest activity. The stability of FPHs following simulated gastrointestinal digestion (SGID) showed an irregular trend. Overall, the findings suggest that marine-derived protein hydrolysates may serve as good sources of natural nutraceuticals with antioxidant and antidiabetic properties.
Collapse
Affiliation(s)
- Deepanshi Sharma
- Molecular Glycobiotechnology Group, Biochemistry, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland;
| | - Snehal Gite
- Bio-Marine Ingredients Ireland, Unit 9, Lough Egish Food Park, Co., A75 WR82 Monaghan, Ireland
| | - Maria G. Tuohy
- Molecular Glycobiotechnology Group, Biochemistry, School of Biological and Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland;
- Ryan Institute and MaREI, SFI Research Centre for Energy, Climate and Marine Research and Innovation, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Habinshuti I, Nsengumuremyi D, Muhoza B, Ebenezer F, Yinka Aregbe A, Antoine Ndisanze M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem 2023; 423:136313. [PMID: 37182498 DOI: 10.1016/j.foodchem.2023.136313] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Antioxidant peptides obtained through enzymatic hydrolysis of food proteins exhibit a broad range of bioactivities both in vitro and in vivo models. The antioxidant peptides showed the potential to fight against the reactive oxygen species, free radicals and other pro-oxidative substances which are considered the source of various chronic diseases for humans. Both animals and plants have been recognized as natural protein sources and attracted much research interest over the synthetic ones in terms of safety. However, the main challenge remains to increase the antioxidant peptides yield, reduce the enzyme quantity and the reaction time. Consequently, different efficient and innovative food processing technologies such as thermal, ultrasound, microwave, high hydrostatic pressure, pulsed electric field, etc. have been developed and currently used to treat food proteins before (pretreatment) or during the enzymatic hydrolysis (assisted). Those technologies were found to significantly enhance the degree of hydrolysis and the production of substantial antioxidant peptides. These emerging technologies enhance the enzymatic hydrolysis by inducing protein denaturation/unfolding, and the enzymatic activation without altering their functional and nutritional properties. This review discusses the state of the art of thermal, ultrasound, high hydrostatic pressure, microwave, and pulsed electric field techniques, their applications while coupled with enzymatic hydrolysis, their comparison and potential challenges for the production of antioxidant peptides from food proteins.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- INES-Ruhengeri, Institute of Applied Sciences, B.P. 155, Ruhengeri, Rwanda; Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya; Thought For Food Foundation, 2101 Highland Ave, Birmingham, Alabama 35205, USA.
| | | | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Falade Ebenezer
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Afusat Yinka Aregbe
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | | |
Collapse
|
5
|
Yathisha UG, Tanaaz M, Bhat I, Luckose F, Mamatha BS. Physicochemical properties and angiotensin-I converting enzyme inhibitory activity of lipid-free ribbon fish ( Lepturacanthus savala) protein hydrolysate. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:340-352. [PMID: 36618059 PMCID: PMC9813303 DOI: 10.1007/s13197-022-05620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022]
Abstract
The study aims at removal of lipid from ribbon fish protein hydrolysate (FPH) to enhance the protein content and analyse its physicochemical and bioactive properties. Ribbon fish protein hydrolysate was prepared using commercially available papain enzyme (1.5% w/v for 4 h). The resulting supernatant was further treated with lipase (0.5-2.0% w/v for 1-5 h). The treatment used in this study reduced ~ 98% of lipids depending on the enzyme concentration, temperature, pH, and duration of the treatment. Lipase treatment for 2 h increased the protein content from 62.87 to 94.11%. FPH after lipase treatment showed 1.21 folds increase in angiotensin-converting enzyme-I (ACE-I) inhibitory activity and 1.7 folds increase in standard amino acids composition (32.193 to 61.493 g/100 g). The physicochemical properties of FPH samples were analyzed by solubility, hygroscopicity, color, FT-IR, SEM, SDS-PAGE, and Zeta Potential. Use of lipase enzyme for separating the lipid content from protein hydrolysate without conferring any undesirable adverse effects on the physicochemical properties of protein hydrolysate. Lipid-free protein hydrolysates can be of commercial importance for their enhanced ACE-I inhibitory activity, replacing the side effect causing synthetic drugs for hypertension, and can have potential applications in developing functional food formulations. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05620-z.
Collapse
Affiliation(s)
- Undiganalu Gangadharappa Yathisha
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, Karnataka 575 018 India
| | - Moideen Tanaaz
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, Karnataka 575 018 India
| | - Ishani Bhat
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, Karnataka 575 018 India
| | - Feby Luckose
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, Karnataka 575 018 India
| | - B. S. Mamatha
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, Karnataka 575 018 India
| |
Collapse
|
6
|
Development of a protein concentrate for human consumption by direct enzymatic hydrolysis of antarctic krill (Euphausia superba). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022; 11:1823. [PMID: 35804638 PMCID: PMC9265340 DOI: 10.3390/foods11131823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Bioactive peptides (BPs) derived from animal and plant proteins are important food functional ingredients with many promising health-promoting properties. In the food industry, enzymatic hydrolysis is the most common technique employed for the liberation of BPs from proteins in which conventional heat treatment is used as pre-treatment to enhance hydrolytic action. In recent years, application of non-thermal food processing technologies such as ultrasound (US), high-pressure processing (HPP), and pulsed electric field (PEF) as pre-treatment methods has gained considerable research attention owing to the enhancement in yield and bioactivity of resulting peptides. This review provides an overview of bioactivities of peptides obtained from animal and plant proteins and an insight into the impact of US, HPP, and PEF as non-thermal treatment prior to enzymolysis on the generation of food-derived BPs and resulting bioactivities. US, HPP, and PEF were reported to improve antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, and antidiabetic properties of the food-derived BPs. The primary modes of action are due to conformational changes of food proteins caused by US, HPP, and PEF, improving the susceptibility of proteins to protease cleavage and subsequent proteolysis. However, the use of other non-thermal techniques such as cold plasma, radiofrequency electric field, dense phase carbon dioxide, and oscillating magnetic fields has not been examined in the generation of BPs from food proteins.
Collapse
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Thao T. Le
- Department of Food and Microbiology, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tuyen Truong
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| |
Collapse
|
8
|
Semwal J, Ms M. In situ thermal modification of kafirin using infrared radiations and microwaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1903-1911. [PMID: 34516659 DOI: 10.1002/jsfa.11527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Kafirin is a prolamin protein located in the corneous endosperm of sorghum. The conventional thermal processing of kafirin reduces its solubility, which limits its utilization in the food industry. Therefore, the study was aimed to investigate the effect of in situ thermal modification of kafirin using two different electromagnetic thermal treatments, namely infrared (IR) and microwave (MW) radiation, on the physicochemical, structural, thermal, and antioxidant properties. RESULTS The results demonstrated that both the thermal modifications improved yield, purity, and solubility of the kafirin with a decrease in hydrophobicity. However, IR-treated samples showed higher solubility (910.67 g kg-1 ) and lower hydrophobicity (387.67). The IR modifications also improved the ratio of α helix/β sheets to a great extent. The alterations in the disulfide content were concomitant with the improvement in the thermal stability of kafirin. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed variations in the band intensities of β- and γ-kafirin, indicating alterations in the kafirin subunits. Morphological examination of kafirin revealed surface withering and agglomeration. Notably, IR treatment improved the antioxidant activity more efficiently (from 32.11% to 74.05%). CONCLUSION Although both the IR and MW treatments modified kafirin, the effect seemed to be more pronounced in IR modification. The IR-modified kafirin had better solubility and lesser hydrophobicity than MW-modified kafirin. The physicochemical and structural changes induced by IR treatment improved the biological activity of kafirin, in terms of antioxidant activity. Therefore, it was concluded that the in situ IR modification of kafirin can alter its characteristic properties, improving its potential as a food ingredient. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jyoti Semwal
- Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Meera Ms
- Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
9
|
Nirmal NP, Santivarangkna C, Rajput MS, Benjakul S, Maqsood S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr Rev Food Sci Food Saf 2022; 21:1803-1842. [PMID: 35150206 DOI: 10.1111/1541-4337.12917] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
Fish processing industries result in an ample number of protein-rich byproducts, which have been used to produce protein hydrolysate (PH) for human consumption. Chemical, microbial, and enzymatic hydrolysis processes have been implemented for the production of fish PH (FPH) from diverse types of fish processing byproducts. FPH has been reported to possess bioactive active peptides known to exhibit various biological activities such as antioxidant, antimicrobial, angiotensin-I converting enzyme inhibition, calcium-binding ability, dipeptidyl peptidase-IV inhibition, immunomodulation, and antiproliferative activity, which are discussed comprehensively in this review. Appropriate conditions for the hydrolysis process (e.g., type and concentration of enzymes, time, and temperature) play an important role in achieving the desired level of hydrolysis, thus affecting the functional and bioactive properties and stability of FPH. This review provides an in-depth and comprehensive discussion on the sources, process parameters, purification as well as functional and bioactive properties of FPHs. The most recent research findings on the impact of production parameters, bitterness of peptide, storage, and food processing conditions on functional properties and stability of FPH were also reported. More importantly, the recent studies on biological activities of FPH and in vivo health benefits were discussed with the possible mechanism of action. Furthermore, FPH-polyphenol conjugate, encapsulation, and digestive stability of FPH were discussed in terms of their potential to be utilized as a nutraceutical ingredient. Last but not the least, various industrial applications of FPH and the fate of FPH in terms of limitations, hurdles, future research directions, and challenges have been addressed.
Collapse
Affiliation(s)
| | | | - Mithun Singh Rajput
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), Gujarat, India
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Negara BFSP, Sohn J, Kim J, Choi J. Recent research on bioactive compounds of
Scomber
spp. and their health effects. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bertoka Fajar Surya Perwira Negara
- Seafood Research Center, IACF, Silla University Advanced Seafood Processing Complex Busan Republic of Korea
- Department of Food Biotechnology College of Medical and Life Sciences Silla University Busan Republic of Korea
| | - Jae‐Hak Sohn
- Seafood Research Center, IACF, Silla University Advanced Seafood Processing Complex Busan Republic of Korea
- Department of Food Biotechnology College of Medical and Life Sciences Silla University Busan Republic of Korea
| | - Jin‐Soo Kim
- Department of Seafood and Aquaculture Science Gyeongsang National University Tongyeong‐si Republic of Korea
| | - Jae‐Suk Choi
- Seafood Research Center, IACF, Silla University Advanced Seafood Processing Complex Busan Republic of Korea
- Department of Food Biotechnology College of Medical and Life Sciences Silla University Busan Republic of Korea
| |
Collapse
|
11
|
Nirmal NP, Santivarangkna C, Benjakul S, Maqsood S. Fish protein hydrolysates as a health-promoting ingredient-recent update. Nutr Rev 2021; 80:1013-1026. [PMID: 34498087 DOI: 10.1093/nutrit/nuab065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dietary habits and lifestyle-related diseases indicate that food has a direct impact on individual health. Hence, a diet containing essential nutrients is important for healthy living. Fish and fish products are important in diets worldwide because of their nutritional value, especially their easily digestible proteins with essential amino acids. Similarly, fish protein hydrolysate (FPH) obtained from fish muscle and by-products has been reported to exhibit various biological activities and to have functional properties, which make FPH a suitable nutraceutical candidate. This review focuses on the health-promoting ability of FPH in terms of skin health, bone and cartilage health, blood lipid profile, and body-weight management studied in rats and human model systems. The absorption and bioavailability of FPH in humans is discussed, and challenges and obstacles of FPH as a functional food ingredient are outlined.
Collapse
Affiliation(s)
- Nilesh P Nirmal
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chalat Santivarangkna
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Soottawat Benjakul
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- N.P. Nirmal and C. Santivarangkna are with the Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand. S. Benjakul is with The International Center of Excellence in Seafood Science and Innovation, Prince of Songkla University, Songkhla, Thailand. S. Maqsood is with the Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
12
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
13
|
Hunsakul K, Laokuldilok T, Prinyawiwatkul W, Utama‐ang N. Effects of thermal processing on antioxidant activities, amino acid composition and protein molecular weight distributions of jasmine rice bran protein hydrolysate. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kanrawee Hunsakul
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
| | - Thunnop Laokuldilok
- Division of Marine Product Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
- Cluster of High value product of Thai rice for health Chiang Mai University Chiang Mai50100Thailand
- Research Center for Development of Local Lanna Rice and Rice Product Chiang Mai University Chiang Mai50200Thailand
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Agricultural Center Louisiana State University Baton Rouge LA70803USA
| | - Niramon Utama‐ang
- Division of Product Development Technology Faculty of Agro‐Industry Chiang Mai University Chiang Mai50100Thailand
- Cluster of High value product of Thai rice for health Chiang Mai University Chiang Mai50100Thailand
- Research Center for Development of Local Lanna Rice and Rice Product Chiang Mai University Chiang Mai50200Thailand
| |
Collapse
|
14
|
Chen F, Lin L, Zhao M, Zhu Q. Modification of Cucumaria frondosa hydrolysate through maillard reaction for sea cucumber peptide based-beverage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|