1
|
Zhang P, Zhang W, Han Y, Yang T, Zhong J, Yun H, Fang L. Investigation of the connection between triglyceride-glucose (TyG) index and the risk of acute kidney injury in septic patients - a retrospective analysis utilizing the MIMIC-IV database. Ren Fail 2025; 47:2449199. [PMID: 39763061 PMCID: PMC11721622 DOI: 10.1080/0886022x.2024.2449199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
The TyG index serves as a valuable tool for evaluating insulin resistance. An elevated TyG has shown a strong association with the occurrence of acute kidney injury (AKI). Nevertheless, existing literature does not address the relationship between the TyG index and acute kidney injury in patients with sepsis. Sepsis patients were identified from the MIMIC-IV database and categorized into four groups according to quadrilles of their TyG index values. The primary outcome of this study was the incidence of AKI. The relationship between the TyG index and the risk of AKI in septic patients was evaluated using Cox proportional hazards and restricted cubic spline models. Subgroup analyses were conducted to investigate the prognostic value of the TyG index in different subgroups. A total of 2,616 patients with sepsis (57% of whom were male) were included in this study. The incidence of AKI was found to be 78%. Cox proportional hazards analysis revealed a significant correlation between the TyG index and the occurrence of AKI in septic patients. Furthermore, a restricted cubic spline model revealed an approximately linear relationship between a higher TyG index and an elevated risk of AKI in septic patients. The trend of the hazard ratio (HR) remained consistent across various subgroups. These findings emphasize the reliability of the TyG index as an independent predictor for the occurrence of AKI and unfavorable renal outcomes in sepsis patients. Nevertheless, establishing a causal relationship between the two requires demonstration through larger prospective studies.
Collapse
Affiliation(s)
- Pirun Zhang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wenli Zhang
- Qingdao Mental Health Center, Qingdao, Shandong Province, China
| | - Yan Han
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Tong Yang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiayi Zhong
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Han Yun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
- Chao En-xiang Famous Chinese Medicine Expert Inheritance Studio, Guangzhou, Guangdong Province, China
| | - Lai Fang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong Province, China
- Chao En-xiang Famous Chinese Medicine Expert Inheritance Studio, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Liu Y, Wang Y, Cheng S, Mu J, Yin G, Gao H. Pantothenic acid alleviates osteoarthritis progression by inhibiting inflammatory response and ferroptosis through the SIRT1/Nrf2 signaling pathway. Chem Biol Interact 2025; 413:111494. [PMID: 40157627 DOI: 10.1016/j.cbi.2025.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that is a major cause of deformity, swelling, pain and even loss of function in the knee joints of the elderly. Pantothenic acid (PA) plays a protective role in many organs due to its antioxidant and anti-inflammatory properties. Herein, we aimed to assess the protective role of PA on osteoarthritis and investigate the underlying molecular mechanism. The levels of inflammatory factors (IL-1β and TNF-α) in knee tissues were measured by ELISA. The Safranin O-Fast Green staining was used to assess the severity of OA and the H&E staining was used to assess the degree of synovitis. In vitro, the levels of iron, MDA, GSH were measured by the detection kits. Western blotting was used to assess the levels of signaling-related proteins. Our results showed that PA significantly attenuated the degree of cartilage degeneration in the MIA-induced osteoarthritis model. PA also reduced the expression of IL-1β, TNF-α, MMP1 and MMP3. In vitro, PA effectively reduced the concentrations of MMP1 and MMP3 in IL-1β-stimulated chondrocytes. PA decreased the levels of Fe2+ and MDA, while increasing GSH production and GPX4 and SLC7A11 expression in IL-1β-induced chondrocytes. Meanwhile, we found that PA was able to inhibit the phosphorylation level of p65, IκB protein in chondrocytes, which effectively blocked the NF-κB signaling pathway. Furthermore, PA also increased the level of SIRT1, Nrf2, and HO-1 protein expression. In addition, the inhibition of PA on IL-1β-induced MMPs production and ferroptosis were inhibited by the SIRT1 inhibitor EX-527. In conclusion, PA inhibited chondrocyte ferroptosis and cartilage destruction in osteoarthritis. The mechanism was through activating SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yi Liu
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Wang
- The First Operation Room, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shengqi Cheng
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Mu
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guanchen Yin
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hang Gao
- Department of Bone and Joint Surgery, Orthopaedic Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Wang C, Liu X, Sun X, Li Y, Yang X, Liu Y. Dietary betaine supplementation improved egg quality and gut microbes of laying hens under dexamethasone-induced oxidative stress. Poult Sci 2024; 103:104178. [PMID: 39154612 PMCID: PMC11381779 DOI: 10.1016/j.psj.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
Oxidative stress is a frequent concern in the breeding of laying hens, and limit the healthy development of poultry. Dexamethasone (DXM) has been demonstrated to induce oxidative stress. Conversely, betaine is an alkaloid with a potent antioxidant activity. The study was designed to investigate the ameliorative effect of betaine on DXM-induced oxidative stress in laying hens. The results revealed that DXM treatment significantly decreased laying rate, shell strength, albumen height, Haugh unit, egg weight, folk weight and albumen weight, alongside increased malondialdehyde (MDA) and decreased total antioxidant capacity (T-AOC) in serum and liver (P < 0.05). In contrast, dietary betaine addition reversed those parameters mentioned above (P < 0.05). Hepatic RNA-seq analysis showed that there existed 110 up- and 88 down-regulated genes in DXM group when compared with the control. Meanwhile there were 117 upregulation and 169 downregulation genes in BT group when compared with DXM group. Besides, we found that dietary betaine addition significantly down-regulated cell adhesion molecules, glycerolipid metabolism and glycolysis gluconeogenesis pathways. In addition, a total of 44 and 94 differential metabolites were identified respectively from Con vs. DXM and DXM vs BT. More importantly, dietary betaine addition significantly increased the levels of pantothenic acid, gamma-Aminobutyric acid, equol and choline, all of which were related to antioxidant and anti-inflammatory properties. Furthermore, gut microbiota analysis indicated that the Chao and Observed_species indexes were remarkably higher in BT group (P<0.05). Heatmap analysis revealed that Subdoligranulum, Prevotella, Blautia, YRC22, Bacteroides, Ruminococcus and Coprococcus were notably restored in BT group (P<0.05). Taken together, our findings collectively illustrate that dietary betaine addition could attenuate DXM-induced oxidative stress, improve egg quality and gut microbes of laying hens.
Collapse
Affiliation(s)
- Chaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoying Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Hassan NH, Saleh D, Abo El-Khair SM, Almasry SM, Ibrahim A. The relation between autophagy modulation by intermittent fasting and aquaporin 2 expression in experimentally induced diabetic nephropathy in albino rat. Tissue Cell 2024; 88:102395. [PMID: 38692159 DOI: 10.1016/j.tice.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Polyuria is an early sign of diabetic nephropathy (DN) that produces dehydration in diabetic patients. This could be caused by alteration of renal aquaporin 2 (AQP2) expression. This study aimed to describe the relation between autophagy modulation via intermittent fasting (IF) and renal AQP2 expression and polyuria in case of DN. We divided the rats into control, DN and IF groups. After 2 and 4 weeks of diabetes induction, blood glucose (BG), serum creatinine (Scr), urine volume, and 24 hours urine protein (UP) were examined. Diabetic nephropathy histopathological index (DNHI) was calculated to evaluate histopathological changes. Immunohistochemistry and real-time PCR were performed to measure the levels of AQP2 and the autophagy marker; LC3 in kidney tissue. DNHI was correlated to the PCR and immunoexpression of AQP2 and LC3. Intermittent fasting significantly decreased the BG, Scr, urine volume, 24 hours UP, and DNHI as compared diabetes. Diabetes significantly elevated the immunoreactivity and mRNA expression levels of AQP2 and LC3 as compared to the control. However, the IF decreased AQP2 and stimulated autophagy in cyclic fashion. Our data revealed significant positive correlations between AQP2 and LC3 at the level of immunoexpression and mRNA at 2nd weeks. Taken together, these data showed that autophagy stimulation didn't regulate AQP2 expression in case of diabetic nephropathy, however IF decreased polyuria through improvement of glycemic state.
Collapse
Affiliation(s)
- Nora Hisham Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt.
| | - Dalia Saleh
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Shaima M Almasry
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Amira Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
5
|
Sun Y, Zhou Y, Long Q, Xing J, Guo P, Liu Y, Zhang C, Zhang Y, Fernie AR, Shi Y, Luo Y, Luo J, Jin C. OsBCAT2, a gene responsible for the degradation of branched-chain amino acids, positively regulates salt tolerance by promoting the synthesis of vitamin B5. THE NEW PHYTOLOGIST 2024; 241:2558-2574. [PMID: 38258425 DOI: 10.1111/nph.19551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Salt stress negatively affects rice growth, development and yield. Metabolic adjustments contribute to the adaptation of rice under salt stress. Branched-chain amino acids (BCAA) are three essential amino acids that cannot be synthesized by humans or animals. However, little is known about the role of BCAA in response to salt stress in plants. Here, we showed that BCAAs may function as scavengers of reactive oxygen species (ROS) to provide protection against damage caused by salinity. We determined that branched-chain aminotransferase 2 (OsBCAT2), a protein responsible for the degradation of BCAA, positively regulates salt tolerance. Salt significantly induces the expression of OsBCAT2 rather than BCAA synthesis genes, which indicated that salt mainly promotes BCAA degradation and not de novo synthesis. Metabolomics analysis revealed that vitamin B5 (VB5) biosynthesis pathway intermediates were higher in the OsBCAT2-overexpressing plants but lower in osbcat2 mutants under salt stress. The salt stress-sensitive phenotypes of the osbcat2 mutants are rescued by exogenous VB5, indicating that OsBCAT2 affects rice salt tolerance by regulating VB5 synthesis. Our work provides new insights into the enzymes involved in BCAAs degradation and VB5 biosynthesis and sheds light on the molecular mechanism of BCAAs in response to salt stress.
Collapse
Affiliation(s)
- Yangyang Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Yutong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Qiyuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Junwei Xing
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Peizhen Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Changjian Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Yuheng Shi
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Yuehua Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| |
Collapse
|
6
|
Gürler M, Selçuk EB, Özerol BG, Tanbek K, Taşlıdere E, Yıldız A, Yağın FH, Gürel E. Protective effect of dexpanthenol against methotrexate-induced liver oxidative toxicity in rats. Drug Chem Toxicol 2023; 46:708-716. [PMID: 35655424 DOI: 10.1080/01480545.2022.2084103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
Methotrexate is a familiar chemotherapeutic preferred in a wide range of clinical fields such as leukemia, psoriasis, rheumatoid arthritis, neoplastic and autoimmune disorders. However, methotrexate therapy has limitations as it causes severe side effects from which liver damage is the most important one. Several antioxidant compounds have been studied against methotrexate related liver toxicity, but dexpanthenol has not been experienced. Vitamin B5-derived dexpanthenol is a usual therapeutic having a potent anti-inflammatory and antioxidant effect. In this study, we aimed to evaluate the ameliorating effect of dexpanthenol against methotrexate-induced hepatotoxicity. We performed our experiments on Wistar albino rats divided randomly into four groups involving control, dexphantenol, dexpanthenol + methotrexate and methotrexate applied animals. After this experimental work on rats, for the first time, we showed dexpanthenol improvement effect on ROS-caused hepatotoxicity initiated by methotrexate administration in terms of liver tissue antioxidant/oxidant enzymes, liver function tests, and histological changes. We suggest that dexpanthenol might be applied during methotrexate treatment in order to reduce the liver toxicity. However, further studies are needed to find out the optimal dose regimen and to understand the mechanism of action.
Collapse
Affiliation(s)
- Mukaddes Gürler
- Department of Medical Biochemistry, Medical Faculty of Hacettepe University, Ankara, Turkey
| | - Engin Burak Selçuk
- Department of Family Medicine, Medical Faculty of Inonu University, Malatya, Turkey
| | - Beyza Güzide Özerol
- Department of Family Medicine, Yesilyurt Hasan Çalık State Hospital, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Azibe Yıldız
- Department of Histology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Fatma Hilal Yağın
- Department of Biostatistics and Medical Informatics, Medical Faculty of Inonu University, Malatya, Turkey
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty of Inonu University, Malatya, Turkey
| |
Collapse
|
7
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Wu HHL, McDonnell T, Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023; 11:biomedicines11041153. [PMID: 37189771 DOI: 10.3390/biomedicines11041153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The number of people living with chronic kidney disease (CKD) is growing as our global population continues to expand. With aging, diabetes, and cardiovascular disease being major harbingers of kidney disease, the number of people diagnosed with diabetic kidney disease (DKD) has grown concurrently. Poor clinical outcomes in DKD could be influenced by an array of factors-inadequate glycemic control, obesity, metabolic acidosis, anemia, cellular senescence, infection and inflammation, cognitive impairment, reduced physical exercise threshold, and, importantly, malnutrition contributing to protein-energy wasting, sarcopenia, and frailty. Amongst the various causes of malnutrition in DKD, the metabolic mechanisms of vitamin B (B1 (Thiamine), B2 (Riboflavin), B3 (Niacin/Nicotinamide), B5 (Pantothenic Acid), B6 (Pyridoxine), B8 (Biotin), B9 (Folate), and B12 (Cobalamin)) deficiency and its clinical impact has garnered greater scientific interest over the past decade. There remains extensive debate on the biochemical intricacies of vitamin B metabolic pathways and how their deficiencies may affect the development of CKD, diabetes, and subsequently DKD, and vice-versa. Our article provides a review of updated evidence on the biochemical and physiological properties of the vitamin B sub-forms in normal states, and how vitamin B deficiency and defects in their metabolic pathways may influence CKD/DKD pathophysiology, and in reverse how CKD/DKD progression may affect vitamin B metabolism. We hope our article increases awareness of vitamin B deficiency in DKD and the complex physiological associations that exist between vitamin B deficiency, diabetes, and CKD. Further research efforts are needed going forward to address the knowledge gaps on this topic.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Thomas McDonnell
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
9
|
Gülmez A, Kuru Bektaşoğlu P, Tönge Ç, Yaprak A, Türkoğlu ME, Önder E, Ergüder Bİ, Sargon MF, Gürer B, Kertmen H. Neuroprotective Effects of Dexpanthenol on Rabbit Spinal Cord Ischemia/Reperfusion Injury Model. World Neurosurg 2022; 167:e172-e183. [PMID: 35948219 DOI: 10.1016/j.wneu.2022.07.109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Dexpanthenol (DXP) reportedly protects tissues against oxidative damage in various inflammation models. This study aimed to evaluate its effects on oxidative stress, inflammation, apoptosis, and neurological recovery in an experimental rabbit spinal cord ischemia/reperfusion injury (SCIRI) model. METHODS Rabbits were randomized into 5 groups of 8 animals each: group 1 (control), group 2 (ischemia), group 3 (vehicle), group 4 (methylprednisolone, 30 mg/kg), and group 5 (DXP, 500 mg/kg). The control group underwent laparotomy only, whereas other groups were subjected to spinal cord ischemia by aortic occlusion (just caudal to the 2 renal arteries) for 20 min. After 24 h, a modified Tarlov scale was employed to record neurological examination results. Malondialdehyde and caspase-3 levels and catalase and myeloperoxidase activities were analyzed in tissue and serum samples. Xanthine oxidase activity was measured in the serum. Histopathological and ultrastructural evaluations were also performed in the spinal cord. RESULTS After SCIRI, serum and tissue malondialdehyde and caspase-3 levels and myeloperoxidase and serum xanthine oxidase activities were increased (P < 0.05-0.001). However, serum and tissue catalase activity decreased significantly (P < 0.001). DXP treatment was associated with lower malondialdehyde and caspase-3 levels and reduced myeloperoxidase and xanthine oxidase activities but increased catalase activity (P < 0.05-0.001). Furthermore, DXP was associated with better histopathological, ultrastructural, and neurological outcome scores. CONCLUSIONS This study was the first to evaluate antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects of DXP on SCIRI. Further experimental and clinical investigations are warranted to confirm that DXP can be administered to treat SCIRI.
Collapse
Affiliation(s)
- Ahmet Gülmez
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | | | - Çağhan Tönge
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Ahmet Yaprak
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - M Erhan Türkoğlu
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Evrim Önder
- Department of Pathology, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| | - Berrin İmge Ergüder
- Department of Biochemistry, Ankara University School of Medicine, Ankara, Turkey
| | | | - Bora Gürer
- Department of Neurosurgery, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Hayri Kertmen
- Department of Neurosurgery, University of Health Sciences, Dışkapı Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Protective effects of dexpanthenol in carbon tetrachloride-induced myocardial toxicity in rats. Tissue Cell 2022; 77:101824. [DOI: 10.1016/j.tice.2022.101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
|
11
|
Zhao X, Zhang S, Shao H. Dexpanthenol attenuates inflammatory damage and apoptosis in kidney and liver tissues of septic mice. Bioengineered 2022; 13:11625-11635. [PMID: 35510377 PMCID: PMC9275904 DOI: 10.1080/21655979.2022.2070585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sepsis is capable of causing systemic infections resulting in multiple organ damage. Dexpanthenol (DXP) has been reported to protect against kidney and liver injury. Therefore, this paper attempts to explore the role of DXP in sepsis-induced kidney and liver injury. A mice model of sepsis was established using the cecal ligation and puncture (CLP) method. The expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein (MCP)-1 in the serum of mice were measured utilizing enzyme linked immunosorbent assay (ELISA). Additionally, the damage of kidney and liver tissues in CLP-induced mice was determined by their respective commercial kits, western blot, and hematoxylin–eosin (HE) staining kits. The apoptosis of kidney and liver tissues in CLP-induced mice was assessed by means of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and western blot. It was observed that DXP decreased the expressions of TNF-α, IL-1β, IL-6, and MCP-1 in the serum of CLP-induced mice, attenuated the functional impairment, pathological damage, inflammation, and cell apoptosis of kidney tissue. Meanwhile, DXP decreased the functional impairment of liver in CLP-induced mice, reduced the levels of inflammatory factors and antioxidant enzymes, attenuated liver pathological damage, and decreased cell apoptosis in liver tissues. In conclusion, DXP attenuates inflammatory damage and apoptosis in kidney and liver organs in a sepsis model.
Collapse
Affiliation(s)
- Xi Zhao
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Siquan Zhang
- Intensive Care Unit, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyi Shao
- Department of Emergency Intensive Care Medicine, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| |
Collapse
|
12
|
Saccharomyces boulardii exerts renoprotection by modulating oxidative stress, renin angiotensin system and uropathogenic microbiota in a murine model of diabetes. Life Sci 2022; 301:120616. [PMID: 35533758 DOI: 10.1016/j.lfs.2022.120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/22/2022]
Abstract
AIMS We aimed to investigate whether Saccharomyces boulardii strain might exert renoprotective effects by modulating renal renin angiotensin system, oxidative stress and intestinal microbiota in streptozotocin-diabetic mice. MAIN METHODS Thirty-six C57BL/6 male mice were divided into four groups: control (C), control + probiotic (CP), diabetes (D), diabetes + probiotic (DP). Diabetes was induced by one intraperitoneal injection of streptozotocin and Saccharomyces boulardii was administered by oral gavage for 8 weeks. Blood glucose, albuminuria and urinary volume were measured. Renal levels of angiotensin peptides (angiotensin I, II and 1-7) and the activities of angiotensin-converting enzyme (ACE) and ACE2 were determined, besides that, renal morphology, serotonin and dopamine levels and also microbiota composition were analyzed. KEY FINDINGS Probiotics significantly increased C-peptide secretion and reduced blood glucose of diabetic animals. Saccharomyces boulardii also improved renal antioxidant defense, restored serotonin and dopamine concentration, and activated the renin-angiotensin system (RAS) vasodilator and antifibrotic axis. The modulation of these markers was associated with a beneficial impact on glomerular structure and renal function of diabetic treated animals. The phenotypic changes induced by Saccharomyces boulardii were also related to modulation of intestinal microbiota, evidenced by the decreased abundance of Proteus and Escherichia-Shigella, considered diabetic nephropathy biomarkers. SIGNIFICANCE Therefore, probiotic administration to streptozotocin-induced diabetic mice improves kidney structure and function in a murine model and might represent a reasonable strategy to counteract nephropathy-associated maladaptive responses in diabetes.
Collapse
|
13
|
Aydın A, Sönmez MG, Ecer G, Kılınç F, Kocabaş R, Atılgan AE, Oltulu P, Balasar M. The effect of intratesticular dexpanthenol on experimentally-induced testicular ischaemia/reperfusion injury. J Pediatr Urol 2021; 17:440.e1-440.e7. [PMID: 33883095 DOI: 10.1016/j.jpurol.2021.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Testis torsion is a urological emergency and a serious situation that may cause testis atrophy, testicular dysfunction and infertility due to ischaemia/reperfusion(I/R) injury even with early intervention. OBJECTIVE To assess the protective effect of dexpanthenol administered intratesticular after detorsion against testis I/R injury. STUDY DESIGN Twenty-seven rats were randomly divided into 3 groups containing 9 rats each. The 1st group comprised the sham group with no procedure performed. The 2nd group had only torsion applied, while the 3rd group had torsion + dexpanthenol applied. Rats had 720° clockwise rotation applied to the left testis. After 2 h of ischaemia, testes were de-torsioned and the dexpanthenol group had 500 mg/kg dexpanthenol administered intratesticular after detorsion. After 4 h of reperfusion, rats had blood samples taken and orchiectomy was performed for histologic assessment. RESULTS A significant difference was detected in all parameters [necrosis(p:<0.001), Cosentino grade (p < 0.001), congestion (p:0.005), fibrosis (p:<0.001), interstitial oedema (p:0.017), JTBS score (p:<0.001), apoptosis (p < 0.001) and testosterone levels (p:0.006)] when the sham, torsion, and torsion + dexpanthenol groups were compared. Significant differences were observed for fibrosis (p:0.010), Cosentino score (p < 0.001), JTBS score (p:<0.001), apoptosis (p:0.001) and total testosterone levels (p:0.013) when torsion and torsion + dexpanthenol groups were compared. The torsion + dexpanthenol group was identified to have more preservation of testis function observed histologically and hormonally compared to the torsion group. DISCUSSION Dexpanthenol is used in many areas due to both epithelizing and antioxidant effects and lack of clear side effects. In spite of use of many chemical and biological agents to protect against testis I/R injury, none have entered routine use. This study showed that dexpanthenol, which can be easily injected intratesticular during detorsion surgery, has protective effect against histological and functional injury that may develop linked to testis I/R injury. The main limitations of the study are short duration of follow-up due to being a rat experiment and lack of comparison of lipid peroxidation products. CONCLUSION This study identified that dexpanthenol with clinically easy use by intratesticular injection after detorsion during surgery had a protective effect against histological and functional injury that will develop linked to I/R injury in the testis.
Collapse
Affiliation(s)
- Arif Aydın
- NEÜ Meram Medicine Faculty Department of Urology, Konya, Turkey.
| | | | - Gökhan Ecer
- NEÜ Meram Medicine Faculty Department of Urology, Konya, Turkey.
| | - Fahriye Kılınç
- NEÜ Meram Medicine Faculty Department of Pathology, Konya, Turkey.
| | - Rahim Kocabaş
- NEÜ Meram Medicine Faculty Konüdam Exp. Medicine&App. Res. Center, Konya, Turkey.
| | - Adeviye Elçi Atılgan
- Faculty of Medicine, Department of Urogynecology, Medipol Mega University Hospital, Bağcılar, İstanbul, Turkey.
| | - Pembe Oltulu
- NEÜ Meram Medicine Faculty Department of Pathology, Konya, Turkey.
| | - Mehmet Balasar
- NEÜ Meram Medicine Faculty Department of Urology, Konya, Turkey.
| |
Collapse
|
14
|
Karahan G, Kaya H, Eyceyurt RS, Erdogan MA, Yigitturk G, Erbas O. Dexpanthenol reduces fibrosis and aids repair following nerve laceration and neurorrhaphy. Exp Ther Med 2021; 21:207. [PMID: 33574908 PMCID: PMC7818528 DOI: 10.3892/etm.2021.9639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the effect of dexpanthenol on nerve healing following neurorrhaphy in lacerated peripheral nerves. A total of 30 mature Sprague Dawley rats were used. Surgical sciatic nerve dissection and repair was performed on an experimental group of 20 rats. The remaining 10 rats were designated as the control group. The experimental group was divided into 2 subgroups. The surgery + saline group (SSLE; n=10) was given 1 ml/kg 0.9% sodium chloride saline intraperitoneally. The surgery + dexpanthenol group (SDPL; n=10) rats were given 500 mg/kg/day dexpanthenol intraperitoneally. Histological evaluation of the sciatic nerve tissue revealed that the fibrosis score was significantly lower in the SDPL group than in the SSLE group (P<0.001). Electrophysiological evaluation of compound muscle action potential (CMAP) indicated that the CMAP level in the SDPL group was significantly higher than that of the SSLE group (P<0.001), and the CMAP latency period was lower in the SDPL group compared with the SSLE group (P<0.001). In addition, the SDPL group malondialdehyde level was significantly lower than that of the SSLE group (P<0.001). Functional evaluation with an inclined plane test revealed a significant difference between the SSLE (39.6±5.5˚) and SDPL (79.1±6.93˚) groups (P<0.001). Dexpanthenol was observed to have a positive effect on nerve tissue repaired with neurorrhaphy in a rat sciatic model of laceration-type injuries similar to those frequently encountered in the clinic.
Collapse
Affiliation(s)
- Gokhan Karahan
- Orthopedics and Traumatology Department, Bozyaka Training and Research Hospital, Izmir 35110, Turkey
| | - Huseyin Kaya
- Orthopedics and Traumatology Department, Faculty of Medicine, Ege University, Izmir 35040, Turkey
| | - Recep Selçuk Eyceyurt
- Orthopedics and Traumatology Department, Bozyaka Training and Research Hospital, Izmir 35110, Turkey
| | - Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Karabaglar, Izmir 35000, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Faculty of Medicine, Muğla University, Menteşe, Muğla 48000, Turkey
| | - Oytun Erbas
- Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Şişli, Istanbul 34000, Turkey
| |
Collapse
|
15
|
Kutlu Ö. Dexpanthenol may be a novel treatment for male androgenetic alopecia: Analysis of nine cases. Dermatol Ther 2020; 33:e13381. [PMID: 32255530 DOI: 10.1111/dth.13381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Ömer Kutlu
- Uşak University School of Medicine, Department of Dermatology and Venereology Uşak Turkey
| |
Collapse
|
16
|
Pınar N, Çakırca G, Hakverdi S, Kaplan M. Protective effect of alpha lipoic acid on cisplatin induced hepatotoxicity in rats. Biotech Histochem 2019; 95:219-224. [DOI: 10.1080/10520295.2019.1667025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Neslihan Pınar
- Department of Medical Pharmacology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Gökhan Çakırca
- Department of Biochemistry, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Turkey
| | - Sibel Hakverdi
- Department of Pathology, School of Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Mahir Kaplan
- Department of Medical Pharmacology, School of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|