1
|
Bradic J, Petrovic A, Kocovic A, Mitrovic S, Jakovljevic V, Lazarevic N, Bolevich S, Simanic I. Hypotensive and Cardioprotective Potential of Yellow Bedstraw Extract-Based Oral Liquid in Spontaneously Hypertensive Rats. Int J Mol Sci 2024; 25:8346. [PMID: 39125920 PMCID: PMC11313326 DOI: 10.3390/ijms25158346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to prepare, characterize and assess the antioxidant activity of yellow bedstraw extracts (YBEs), focusing on identifying extracts with high antioxidant capacity. The selected extract was loaded into an oral liquid formulation and further investigated for its therapeutic potential in reducing blood pressure and associated complications in spontaneously hypertensive Wistar kyoto rats (SHR). Rats were divided into untreated SHR and SHR treated with a YBE-based oral formulation over four weeks. After treatment, blood pressure was measured, and cardiac function was assessed using the Langendorff technique to simulate ex vivo ischemic conditions. Prooxidant levels were assessed in plasma while antioxidant activity was evaluated in red blood cells. Histological analyses of heart, kidney, and liver samples were conducted to assess pathological changes induced by hypertension. Our results showed that the oral formulation loaded with ethanol YBE effectively reduced blood pressure, preserved myocardial function under ischemic stress, and decreased oxidative stress markers in blood. Importantly, our formulation with YBE demonstrated potential in attenuating structural kidney damage associated with hypertension. Overall, these findings suggest a cardioprotective effect of orally administered YBE formulation, highlighting its potential as an herbal supplement. However, clinical studies are warranted to validate these findings and explore the extract's suitability for clinical use.
Collapse
Affiliation(s)
- Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.B.); (A.K.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Anica Petrovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.B.); (A.K.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Aleksandar Kocovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.B.); (A.K.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya Street St., 119991 Moscow, Russia;
| | - Nevena Lazarevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia; (J.B.); (A.K.); (N.L.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia;
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, 8 Trubetskaya Street St., 119991 Moscow, Russia;
| | - Igor Simanic
- Specialized Hospital for Rehabilitation and Orthopedic Prosthetics, Sokobanjska 17, 11000 Beograd, Serbia;
- Department of Physical Medicine and Rehabilitation, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica St., 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Yan CX, Wei YW, Li H, Xu K, Zhai RX, Meng DC, Fu XJ, Ren X. Vitex rotundifolia L. f. and Vitex trifolia L.: A review on their traditional medicine, phytochemistry, pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116273. [PMID: 36822343 DOI: 10.1016/j.jep.2023.116273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitex rotundifolia L. f. and Vitex trifolia L. belong to the genus Vitex, and Vitex rotundifolia L. f. evolved from Vitex trifolia L. Both are essential ethnic medicinal plants with a long history, commonly used to treat headaches, fever, diarrhea, hair loss, wound recovery, and other diseases. AIM OF THE REVIEW The research status of Vitex trifolia L. and its relative species Vitex rotundifolia L. f. were reviewed from the aspects of traditional medicinal use, phytochemistry, and pharmacological activities, to provide a reference for the further development and utilization of Vitex rotundifolia L. f. and Vitex trifolia L. MATERIALS AND METHODS In this paper, a comprehensive search of published literature was conducted through various books and online databases to obtain relevant information on Vitex rotundifolia L. f. and Vitex trifolia L. The search terms "(Vitex rotundifolia) OR (Vitex trifolia) OR (Fructus viticis)" were entered in PubMed, Web of Science, China national knowledge infrastructure (CNKI), Wanfang Data, Baidu Scholar, respectively. In addition to setting the year threshold of "2018-2022" on Baidu Scholar, other databases searched all fields and found 889, 283, 1263, 1023, and 147 articles, respectively. Among them, review, repetition, overlapping data, and other reasons were excluded, and finally, a total of 164 articles were included in the review study. RESULTS A total of 369 compounds have been identified, including 159 terpenoids, 51 flavonoids, 83 phenylpropanoids, and 76 other compounds. Pharmacological studies have shown that Vitex rotundifolia L. f. and Vitex trifolia L. have a variety of pharmacological activities, such as anti-tumor, analgesic, antipyretic, anti-inflammatory, antioxidant, antibacterial, and estrogen-like activity. Modern clinical use for treating cold headaches, diarrhea dysentery, irregular menstruation, and other diseases. CONCLUSIONS As traditional medicinal plants, Vitex rotundifolia L. f. and Vitex trifolia L. have wealthy chemical constituents and extensive pharmacological activities and are widely used in clinical practice from traditional to modern times. However, the research on the pharmacological activities of Vitex rotundifolia L. f. and Vitex trifolia L. is not in-depth, and the potential active components still need to be explored.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Ya-Wen Wei
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Hui Li
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Kuo Xu
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Run-Xiang Zhai
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - De-Chuan Meng
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China.
| | - Xia Ren
- Marine Traditional Chinese Medicine Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao, 266114, China; Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine Deep Development and Industrialization, Qingdao, 266114, China.
| |
Collapse
|
3
|
Topcu A, Saral S, Mercantepe T, Akyildiz K, Tumkaya L, Yilmaz A. The effects of apelin-13 against cisplatin-induced nephrotoxicity in rats. Drug Chem Toxicol 2023; 46:77-87. [PMID: 34894944 DOI: 10.1080/01480545.2021.2011309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute kidney injury (AKI) is observed in nearly 60% of patients undergoing cisplatin (CP) therapy. The aim of this study was to reveal the potential effects of apelin-13 (AP-13) in the prevention of CP-induced renal toxicity, together with its antioxidant and anti-inflammatory effect mechanisms. Four experimental groups were established. Group 1, the control group, received 0.9% saline solution alone intraperitoneally (IP). Group 2, the CP group, received CP IP at 5 mg/kg once weekly for four weeks for induction of nephrotoxicity. In Group 3, the CP + Apelin-13 (AP-13) group, AP-13 was prepared at 20 nmol kg/d in sterile pyrogen-free saline before injection every day for four weeks and administered IP. CP was administered IP at 5 mg/kg once weekly for four weeks for induction of nephrotoxicity. In Group 4, the AP-13 group, AP-13 was prepared at 20 nmol kg/d in sterile pyrogen-free 0.9% saline before injection every day for four weeks and administered IP. Thiobarbituric acid reactive substances (TBARS), thiol (-SH), interleukin-1 beta, cleaved caspase-3, 8-hydroxy 2-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κβ/p65) levels were then measured. Increased oxidative stress, inflammation, and apoptosis as a result of CP application activated the cascade. However, AP-13 administration reduced the oxidative stress increased by CIS with the determined antioxidant effect and reduced the damage by increasing total -SH levels. 8-OHdG and NF-κβ/p65, which were up-regulated by triggering oxidative stress and inflammation, were down-regulated through the antioxidant and anti-inflammatory effects of AP-13.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Medical Services and Techniques, Health Care Services Vocational School, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
4
|
Al-Shahat A, Hulail MAE, Soliman NMM, Khamis T, Fericean LM, Arisha AH, Moawad RS. Melatonin Mitigates Cisplatin-Induced Ovarian Dysfunction via Altering Steroidogenesis, Inflammation, Apoptosis, Oxidative Stress, and PTEN/PI3K/Akt/mTOR/AMPK Signaling Pathway in Female Rats. Pharmaceutics 2022; 14:2769. [PMID: 36559263 PMCID: PMC9786155 DOI: 10.3390/pharmaceutics14122769] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Ovarian damage and fertility impairment are major side effects of chemotherapy in pre-menopausal cancer patients. Cisplatin is a widely used chemotherapeutic drug. The present study was designed to assess the ameliorative effects of melatonin as an adjuvant for fertility preservation. Thirty-two adult female Wistar rats were divided randomly into four equal groups: Control, Melatonin, Cisplatin (CP) treated, and CP + Melatonin treated. The cisplatin-treated group showed decreased body and ovarian weights, decreased serum E2 and AMH, increased serum LH and FSH, reduced ovarian levels of SOD, CAT, GSH, and TAC, and increased ovarian MDA. The histopathological examination of the cisplatin-treated group showed deleterious changes within ovarian tissue in the form of damaged follicles and corpus luteum, hemorrhage, and inflammatory infiltrates with faint PAS reaction in zona pellucida, increased ovarian collagen deposition, and marked expression of caspase-3 immune reaction in granulosa and theca cells, stroma, and oocytes. Alongside, there was a significant downregulation in the mRNA expression of steroidogenic enzymes, IL10, AMPK, PI3K, AKT, mTOR, and PTEN, while TGF-β1, IL1β, IL6, TNF-α, NF-Kβ, P53, p38-MAPK, JNK, and FOXO3 mRNA expressions were upregulated in cisplatin-treated rats' ovarian tissue. Coadministration of cisplatin-treated rats with melatonin reversed these changes significantly. In conclusion, melatonin's antioxidant, anti-inflammatory, and anti-apoptotic activities could modulate ovarian disturbances induced by cisplatin and preserve fertility.
Collapse
Affiliation(s)
- Amal Al-Shahat
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohey A. E. Hulail
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nada M. M. Soliman
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rania S. Moawad
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Shafiey SI, Abo-Saif AA, Abo-Youssef AM, Mohamed WR. Protective effects of rivaroxaban against cisplatin-induced testicular damage in rats: Impact on oxidative stress, coagulation, and p-NF-κB/VCAM-1 signaling. Food Chem Toxicol 2022; 169:113419. [PMID: 36122812 DOI: 10.1016/j.fct.2022.113419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Coagulation is a main pathway in various diseases pathogenesis including testicular damage. This study evaluated rivaroxaban (RVX) protective effects in testicular impairment by cisplatin (CP). Rats were randomly allocated into five groups: Control, RVX (7 mg/kg/day), CP (10 mg/kg), RVX 5 mg + CP and RVX 7 mg + CP. Serum testosterone and testicular ALT, AST, and ALP were assessed. Testicular oxidative stress and antioxidant parameters and inflammatory indicators including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were assessed. qRT-PCR was used to determine mRNA expression of 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and steroidogenic acute regulatory protein (stAR). Protein expressions of p-Nuclear factor kappa B (p- NF-κB) and vascular cell adhesion protein-1 (VCAM-1) were analyzed by Western blot analysis. Tissue factor (TF) expression was immunohistochemically analyzed. Results revealed that RVX significantly increased serum testosterone and sperm count while significantly reduced IL-1β and TNF-α. It significantly decreased tissue MDA and NO contents while increased SOD and GPx. In addition, RVX attenuated CP-induced histopathological aberrations and normalized TF. It also decreased the VCAM-1 and p-NF-κB expression and showed strong expression of 3β-HSD, 17β-HSD, and stAR, indicating improvement of steroidogenesis. In conclusion, RVX counteracted testicular damage by CP via suppressing oxidative stress, inflammation, and coagulation and downregulating p-NF-κB/VCAM-1 signaling.
Collapse
Affiliation(s)
- Sara I Shafiey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
6
|
Liu Z, Xu Y, Bai X, Guo L, Li X, Gao J, Teng Y, Yu P. Prediction of the mechanisms of action of Zhibai Dihaung Granule in cisplatin-induced acute kidney injury: A network pharmacology study and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115241. [PMID: 35351575 DOI: 10.1016/j.jep.2022.115241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhibai Dihuang Granule (ZDG) is known as traditional Chinese patent medicine with the functions of "Ziyin decrease internal heat" in Traditional Chinses medicine. In clinical, it is also used to treat various kidney diseases. AIM OF THE STUDY We aimed to provide a basis for the curative effect of ZDG on acute kidney injury induced by cisplatin (CIAKI). MATERIALS AND METHODS The active compounds and protein targets of ZDG, as well as the potential targets of the CIAKI were searched from the database. The protein-protein interaction (PPI) network diagram and the drug-compounds-targets-disease network were constructed. Enrichment analysis was performed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the effect of ZDG on the prevention and treatment of CIAKI was experimentally validated in vivo and in vitro. RESULTS From the database, we screened 22 active compounds of ZDG and 226 related targets. We obtained 498 gene targets related to CIAKI, among which 40 genes overlapped with ZDG-related targets. Go enrichment and KEGG analysis got 339 terms and 64 pathways, respectively. Based on the above study, we speculated that ZDG has the potential effect on treatment CIAKI, and the mechanism may be related to cell apoptosis and inflammation. The results in vitro experiments showed that ZDG reduced the cytotoxicity of cisplatin to HK-2 and 293T cells, but did not affect the antitumor effect of cisplatin. Moreover, in vivo experiments further proved that ZDG effectively controlled kidney damage caused by cisplatin in SD rats. The results showed that ZDG could regulate the expression of CASP3, p65 and MAPK pathway related proteins, suggesting that ZDG's prevention of CIAKI may be related to apoptosis and inflammatory response. CONCLUSIONS Our study showed that ZDG could prevent and treat CIAKI by inhibiting cell apoptosis and inflammation, which provided a new efficacy and clinical application for ZDG.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Ye Xu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinming Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Lvqian Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xinran Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
7
|
Sirajunnisa AR, Surendhiran D, Kozani PS, Kozani PS, Hamidi M, Cabrera-Barjas G, Delattre C. An overview on the role of microalgal metabolites and pigments in apoptosis induction against copious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Lee J, Nguyen QN, Park JY, Lee S, Hwang GS, Yamabe N, Choi S, Kang KS. Protective Effect of Shikimic Acid against Cisplatin-Induced Renal Injury: In Vitro and In Vivo Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1681. [PMID: 33271750 PMCID: PMC7759863 DOI: 10.3390/plants9121681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Nephrotoxicity is a serious side effect of cisplatin, which is one of the most frequently used drugs for cancer treatment. This study aimed to assess the renoprotective effect of Artemisia absinthium extract and its bioactive compound (shikimic acid) against cisplatin-induced renal injury. An in vitro assay was performed in kidney tubular epithelial cells (LLC-PK1) with 50, 100, and 200 µg/mL A. absinthium extract and 25 and 50 µM shikimic acid, and cytotoxicity was induced by 25 µM cisplatin. BALB/c mice (6 weeks old) were injected with 16 mg/kg cisplatin once and orally administered 25 and 50 mg/kg shikimic acid daily for 4 days. The results showed that the A. absinthium extract reversed the decrease in renal cell viability induced by cisplatin, whereas it decreased the reactive oxidative stress accumulation and apoptosis in LLC-PK1 cells. Shikimic acid also reversed the effect on cell viability but decreased oxidative stress and apoptosis in renal cells compared with the levels in the cisplatin-treated group. Furthermore, shikimic acid protected against kidney injury in cisplatin-treated mice by reducing serum creatinine levels. The protective effect of shikimic acid against cisplatin-mediated kidney injury was confirmed by the recovery of histological kidney injury in cisplatin-treated mice. To the best of our knowledge, this study is the first report on the nephroprotective effect of A. absinthium extract and its mechanism of action against cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Jinkyung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Quynh Nhu Nguyen
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Jun Yeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Korea;
| | - Sullim Lee
- College of Bio-Nano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Korea;
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.L.), (Q.N.N.); (G.S.H.); (N.Y.)
| |
Collapse
|
9
|
Fan L, Li L, Yu X, Liang Z, Cai T, Chen Y, Xu Y, Hu T, Wu L, Lin L. Jianpiyifei II Granules Suppress Apoptosis of Bronchial Epithelial Cells in Chronic Obstructive Pulmonary Disease via Inhibition of the Reactive Oxygen Species-Endoplasmic Reticulum Stress-Ca 2+ Signaling Pathway. Front Pharmacol 2020; 11:581. [PMID: 32425799 PMCID: PMC7204496 DOI: 10.3389/fphar.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Jianpiyifei II granules (JPYF II), a herbal formula, are used for the treatment of chronic obstructive pulmonary disease (COPD) in Guangdong Provincial Hospital of Chinese Medicine. The protective effects of JPYF II against bronchial epithelial cell apoptosis in mice exposed to cigarette smoke (CS) and apoptosis of human bronchial epithelial cell lines (BEAS-2B and 16-HBE) stimulated with cigarette smoke extract (CSE) were investigated. Mice were exposed to CS generated from four cigarettes/day for 30 days and administered a dose of JPYF II (0.75, 1.5, and 3 g/kg/d) from the 3rd week of CS exposure. In mice exposed to CS, JPYF II significantly inhibited CS-induced apoptosis and overexpression of endoplasmic reticulum (ER) stress-related markers in bronchial epithelial cells of the lung tissues. In CSE-stimulated BEAS-2B and 16-HBE cells, JPYF II attenuated apoptosis and cell cycle arrest in the G0/G1 phase. Mechanistically, CSE initially induced intracellular reactive oxygen species (ROS) production, which then triggered ER stress, leading to the release of Ca2+ from ER inositol trisphosphate receptor (IP3R)-mediated stores and finally cell death. Treatment with JPYF II resulted in a significant reduction in CSE-induced apoptosis through interruption of the ROS-ER stress-Ca2+ signaling pathway. Therefore, the results of this study have revealed the underlying mechanism of action of JPYF II in the treatment of COPD.
Collapse
Affiliation(s)
- Long Fan
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Leng Li
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuhua Yu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyao Liang
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tiantian Cai
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanbin Chen
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinji Xu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Hu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Lin
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|