1
|
Shen C, Zhang S, Di H, Wang S, Wang Y, Guan F. The Role of Triterpenoids in Gastric Ulcer: Mechanisms and Therapeutic Potentials. Int J Mol Sci 2025; 26:3237. [PMID: 40244034 PMCID: PMC11990034 DOI: 10.3390/ijms26073237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Gastric ulcer (GU) is a prevalent gastrointestinal disorder impacting millions worldwide, with complex pathogenic mechanisms that may progress to severe illnesses. Conventional therapies relying on anti-secretory agents and antibiotics are constrained by drug abuse and increased bacterial resistance, highlighting the urgent need for safer therapeutic alternatives. Natural medicinal compounds, particularly triterpenoids derived from plants and herbs, have gained significant attention in recent years due to their favorable efficacy and reduced toxicity profiles. Emerging evidence indicates that triterpenoids exhibit potent anti-ulcer properties across various experimental models, modulating key pathways involved in inflammation, oxidative stress, apoptosis, and mucosal protection. Integrating current knowledge of these bioactive compounds facilitates the development of natural triterpenoids, addresses challenges in their clinical translation, deepens mechanistic understanding of GU pathogenesis, and drives innovation of therapeutic strategies for GU. This review comprehensively evaluates the progress of research on triterpenoids in GU treatment since 2000, discussing their biological sources, structural characteristics, pharmacological activities, and mechanisms of action, the animal models employed in the studies, current limitations, and the challenges associated with their clinical application.
Collapse
Affiliation(s)
- Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Han Di
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
2
|
Pal S, Arisha R, Mazumder PM. A systematic review of preclinical studies targeted toward the management of co-existing functional gastrointestinal disorders, stress, and gut dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:25-46. [PMID: 39096376 DOI: 10.1007/s00210-024-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Modern dietary habits and stressed lifestyle have escalated the tendency to develop functional gastrointestinal disorders (FGIDs) through alteration in the gut-brain-microbiome axis. Clinical practices use symptomatic treatments, neglect root causes, and prolong distress in patients. The past decade has seen the evolution of various interventions to attenuate FGIDs. But clinical translation of such studies is very rare mostly due to lack of awareness. The aim of this review is to meticulously integrate different studies and bridge this knowledge gap. Literature between 2013 and 2023 was retrieved from PubMed, ProQuest, and Web of Science. The data was extracted based on the PRISMA guidelines and using the SYRCLE's risk of bias and the Cochrane Risk of Bias tools, quality assessment was performed. The review has highlighted molecular insights into the coexistence of FGIDs, stress, and gut dysbiosis. Furthermore, novel interventions focusing on diet, probiotics, herbal formulations, and phytoconstituents were explored which mostly had a multitargeted approach for the management of the diseases. Scientific literature implied positive interactions between the interventions and the gut microbiome by increasing the relative abundance of beneficial bacteria and reducing stress-related hormones. Moreover, the interventions reduced intestinal inflammation and regulated the expression of epithelial tight junction proteins in different in vivo models. This systematic review delves deep into the preclinical interventions to manage coexisting FGIDs, stress, and gut dysbiosis. However, in most of the discussed studies, long-term risks and toxicity profile of the interventions are lacking. So, it is necessary to highlight them for improved clinical outcomes.
Collapse
Affiliation(s)
- Shreyashi Pal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ruhi Arisha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Soydan M, Arabaci G, Utlu N, Halici MB, Aktas Senocak E, Kiliçlioglu M. Indomethacin-Induced Gastric Ulcer in Rats: Gastroprotectivity of Muscari neglectum in Water. Pharmaceuticals (Basel) 2024; 18:7. [PMID: 39861070 PMCID: PMC11769145 DOI: 10.3390/ph18010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background and Objectives: The plant Muscari Mill. is employed in both raw and cooked forms for the treatment of gastric diseases, as an expectorant, and for the treatment of warts and the enhancement of urine. A review of the scientific literature revealed no studies investigating the effect of Muscari neglectum (MN) water extract on gastric diseases. The objective of this study was to determine the effect of a water extract of the MN plant on indomethacin-induced gastric ulcer in rats, using a series of biochemical (SOD, CAT, GSH and MDA levels) and histopathological parameters. Methods: 60 male Sprague Dawley rats were utilized for the purposes of evaluating the acute toxicity and gastric ulcer models, with a total of 36 rats employed for these experiments (n = 6). The rats were divided into six groups: intact; indomethacin; famotidine; indomethacin and MN (100, 200, 400 mg/kg). Results: The Gastric tissue examinations at biochemical, macroscopic and pathological levels showed that MN extracts effectively prevented indo-methacin-induced gastric mucosal damage. The 400 mg/kg dose exhibited the most effective antiulcer effect, with a 69% protective efficacy. This dose caused an increase in the SOD, CAT and GSH levels and a decrease in the MDA levels compared to the IND group. Furthermore, an LC-MS/MS analysis was conducted on the water extract of MN, resulting in the identification of 14 phenolic compounds. Conclusions: Biochemical analyses and histopathological examinations demonstrated that the water extract of MN exhibited a beneficial protective effect against gastric ulceration due to its high antioxidant content.
Collapse
Affiliation(s)
- Menekse Soydan
- Institute of Natural Sciences, Sakarya University, Sakarya 54187, Türkiye;
| | - Gulnur Arabaci
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya 54187, Türkiye
| | - Necati Utlu
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Türkiye; (N.U.); (M.B.H.)
| | - Mesut Bünyami Halici
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Türkiye; (N.U.); (M.B.H.)
| | | | - Metin Kiliçlioglu
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Türkiye;
| |
Collapse
|
4
|
Xu Y, Lin L, Zheng H, Xu S, Hong X, Cai T, Xu J, Zhang W, Mai Y, Li J, Huang B, Liu Z, Guo S. Protective effect of Amauroderma rugosum ethanol extract and its primary bioactive compound, ergosterol, against acute gastric ulcers based on LXR-mediated gastric mucus secretions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155236. [PMID: 38016383 DOI: 10.1016/j.phymed.2023.155236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with a wide range of medicinal values. Our previous publication demonstrated the therapeutic effects of the water extract of A. rugosum (WEA) against gastric ulcers. However, the protective effects of the ethanol extract of A. rugosum (EEA) on gastric mucosa and its major active constituents have not yet been elucidated. PURPOSE This study aims to evaluate the gastroprotective effects and underlying mechanisms of EEA and its fat-soluble constituent, ergosterol, in acute gastric ulcers. STUDY DESIGN AND METHOD SD rats were pre-treated with EEA (50, 100, and 200 mg/kg) or ergosterol (5, 10, and 20 mg/kg), and acute gastric ulcer models were constructed using ethanol, gastric mucus secretion inhibitor (indomethacin) or pyloric-ligation. The gastric ulcer area, histological structure alterations (H&E staining), and mucus secretion (AB-PAS staining) were recorded. Additionally, Q-PCR, western blotting, immunohistochemistry, ELISA, molecular docking, molecular dynamics simulations, MM-GBSA analysis, and surface plasmon resonance assay (SPR) were used to investigate the underlying mechanisms of the gastroprotective effect. RESULT Compared with WEA, which primarily exerts its anti-ulcer effects by inhibiting inflammation, EEA containing fat-soluble molecules showed more potent gastroprotective effect through the promotion of gastric mucus secretion, as the anti-ulcer activity was partly blocked by indomethacin. Meanwhile, EEA exhibited anti-inflammatory effects by suppressing the production of IL-6, IL-1β, TNF-α, and NO, thereby inhibiting the MAPK pathway. Significantly, ergosterol (20 mg/kg), the bioactive water-insoluble compound in EEA, exhibited a gastroprotective effect comparable to that of lansoprazole (30 mg/kg). The promotion of gastric mucus secretion contributed to the effects of ergosterol, as indomethacin can completely block it. The upregulations of COX1-PGE2 and C-fos, an activator protein 1 (AP-1) transcription factor, were observed after the ergosterol treatment. Ergosterol acted as an LXRβ agonist via van der Waals binding and stabilizing the LXRβ protein without compromising its flexibility, thereby inducing the upregulation of AP-1 and COX-1. CONCLUSION EEA and its primary bioactive compound, ergosterol, exert anti-ulcer effects by promoting gastric mucus secretion through the LXRβ/C-fos/COX-1/PGE2 pathway.
Collapse
Affiliation(s)
- Yifei Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Linsun Lin
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Huantian Zheng
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Siyuan Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Xinxin Hong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Tiantian Cai
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Jianqu Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Weijian Zhang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yanzhen Mai
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Jingwei Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Bin Huang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zhu Liu
- School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Shaoju Guo
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China.
| |
Collapse
|
5
|
Côco LZ, Aires R, Carvalho GR, Belisário EDS, Yap MKK, Amorim FG, Conde-Aranda J, Nogueira BV, Vasquez EC, Pereira TDMC, Campagnaro BP. Unravelling the Gastroprotective Potential of Kefir: Exploring Antioxidant Effects in Preventing Gastric Ulcers. Cells 2023; 12:2799. [PMID: 38132119 PMCID: PMC10742242 DOI: 10.3390/cells12242799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Collapse
Affiliation(s)
- Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Glaucimeire Rocha Carvalho
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Eduarda de Souza Belisário
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | | | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil;
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Thiago de Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| |
Collapse
|
6
|
Jia X, He Y, Li L, Xu D. Pharmacological targeting of gastric mucosal barrier with traditional Chinese medications for repairing gastric mucosal injury. Front Pharmacol 2023; 14:1091530. [PMID: 37361204 PMCID: PMC10285076 DOI: 10.3389/fphar.2023.1091530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: The gastric mucosa (GM) is the first barrier and vital interface in the stomach that protects the host from hydrochloric acid in gastric juice and defends against exogenous insults to gastric tissues. The use of traditional Chinese medications (TCMs) for the treatment of gastric mucosal injury (GMI) has long-standing history and a good curative effect. Whereas there are poor overall reports on the intrinsic mechanisms of these TCM preparations that pharmacology uses to protect body from GMI, which is crucial to treating this disease. These existing reviews have deficiencies that limit the clinical application and development of both customary prescriptions and new drugs. Methods: Further basic and translational studies must be done to elucidate the intrinsic mechanisms of influence of these TCM preparations. Moreover, well-designed and well-conducted experiences and clinical trials are necessary to ascertain the efficacy and mechanisms of these agents. Therefore, this paper presents a focused overview of currently published literature to assess how TCMs action that facilitates the cures for GMI. It offers a whole train of current state of pharmacological evidence, identifies the pharmacological mechanisms of TCMs on GM, and highlights that remarkable capacity of TCMs to restore GM after damage. Results: These TCMs preparations promote the repair of multicomponent targets such as the gastric mucus, epithelial layer, blood flow (GMBF) and lamina propria barrier. Summary: Overall, this study has summarized the essential regulatory mechanisms and pharmacological efficacy of TCMs on new and productive therapeutic targets. Discussion: This review provides an avenue for studying various drugs with potentially promising effects on mucosal integrity, as well as subsequent pharmacological studies, clinical applications, and new drug development.
Collapse
Affiliation(s)
- Xueyan Jia
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| | - Yihuai He
- Department of Infectious Diseases, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
The regulatory mechanism of HSP70 in endoplasmic reticulum stress in pepsin-treated laryngeal epithelium cells and laryngeal cancer cells. Aging (Albany NY) 2022; 14:8486-8497. [DOI: 10.18632/aging.204356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
|