1
|
Kamila S, Dey KK, Chattopadhyay A. Arsenic and Chromium Induced Toxicity on Zebrafish Kidney: Mixture Effects on Oxidative Stress and Involvement of Nrf2-Keap1-ARE, DNA Repair, and Intrinsic Apoptotic Pathways. J Appl Toxicol 2025; 45:387-399. [PMID: 39402722 DOI: 10.1002/jat.4709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 02/11/2025]
Abstract
In polluted water, cooccurrences of two carcinogens, arsenic (As) and chromium (Cr), are extensively reported. Individual effects of these heavy metals have been reported in kidney of fishes, but underlying molecular mechanisms are not well established. There is no report on combined exposure of As and Cr in kidney. Thus, the present study investigated and compared individual and combined effects of As and Cr on zebrafish (Danio rerio) kidney treating at their environmentally relevant concentrations for 15, 30, and 60 days. Increased ROS levels, lipid peroxidation, GSH level, and decreased catalase activity implied oxidative stress in treated zebrafish kidney. Damage in histoarchitecture in treated groups was also noticed. The current study involved gene expression study of Nrf2, an important transcription factor of cellular stress responses along with its negative regulator Keap1 and downstream antioxidant genes nqo1 and ho1. Results indicated activation of Nrf2-Keap1 pathway after combined exposure. Expression pattern of ogg1, apex1, polb, and creb1 revealed the inhibition of base excision repair pathway in treatments. mRNA expression of tumor suppressor genes p53 and brca2 was also altered. Expressional alteration in bax, bcl2, caspase9, and caspase 3 indicated apoptosis (intrinsic pathway) induction, which was maximum in combined group. Inhibition of DNA repair and induction of apoptosis indicated that the activated antioxidant system was not enough to overcome the damage caused by As and Cr. Overall, this study revealed additive effects of As and Cr in zebrafish kidney after chronic exposure focusing cellular antioxidant and DNA damage responses.
Collapse
Affiliation(s)
- Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
2
|
Liu WJ, Wang L, Sun FL, Zhou FM, Zhang RK, Liu J, Zhao M, Wang LH, Qin YR, Zhao YQ, Qiu JG, Jiang BH. Hexavalent chromium induced metabolic reprogramming, carcinogenesis and tumor progression through PDK1 upregulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117341. [PMID: 39550876 DOI: 10.1016/j.ecoenv.2024.117341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Lung cancer is the leading factor of cancer-related death in the worldwide. Hexavalent chromium [Cr(VI)] is a potential carcinogen for inducing lung cancers. To understand new mechanism of Cr(VI)-induced tumorigenesis and cancer development, we identified that PDK1 expression levels were greatly increased in chromium-transformed cells (Cr-T) compared to the parental BEAS-2B (B2B) cells by proteomic profiling and Western blotting; PDK1 levels were also induced in lung cancer cell lines and in lung samples of mice exposed to Cr(VI). Cr(VI) increased Warburg effect, cell migration, proliferation and colony formation through PDK1 upregulation. To identify the mechanism of PDK1 induction, we performed miRNA-seq analysis of Cr-T and B2B cells, and found miR-493 levels was significantly suppressed by Cr(VI). PDK1 was induced by miR-493 suppression, and was a direct target of miR-493. Interestingly, we also found HIF-1α was directly targeting by miR-493 and was induced by miR-493 downregulation. HIF-1α expression levels were upregulated in lung samples of mice with Cr(VI)-exposure. PDK1 was induced by HIF-1α, showing miR-493 suppression can directly induce PDK1 as well as through HIF-1α induction. MiR-493 overexpression was sufficient to suppress tumor growth, PDK1 and HIF-1α expression in vivo. We also showed that levels of miR-493 suppression, HIF-1α and PDK1 elevations were strongly correlated with poor prognosis of lung cancer subjects. These results demonstrate both HIF-1α and PDK1 expression are induced by Cr(VI)-mediated miR-493 suppression, and MiR-493/HIF-1α/PDK1 axis is a new pathway in Cr(VI)-inducing carcinogenesis and tumor growth.
Collapse
Affiliation(s)
- Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lin Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Fan-Li Sun
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Feng-Mei Zhou
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Rui-Ke Zhang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jie Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Min Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Li-Hong Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan-Ru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan China
| | - Yan-Qiu Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jian-Ge Qiu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Bing-Hua Jiang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
3
|
Manjarres-Suarez A, Bozack A, Cardenas A, Olivero-Verbel J. DNA methylation is associated with hair trace elements in female adolescents from two vulnerable populations in the Colombian Caribbean. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae008. [PMID: 39525284 PMCID: PMC11548963 DOI: 10.1093/eep/dvae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024]
Abstract
Exposure to trace elements (TEs) influences DNA methylation patterns, which may be associated with disease development. Vulnerable populations, such as adolescents undergoing maturity, are susceptible to the effects of TE exposure. The aim of this study was to analyze the association of hair TE concentration with DNA methylation in a sample from female adolescents living in two communities in the Colombian Caribbean coast. Hair and blood samples were obtained from 45 females, between 13 and 16 years of age. Seventeen TEs were quantified in hair samples. DNA methylation was measured in leukocytes using the Infinium MethylationEPIC BeadChip. Linear models were employed to identify differentially methylated positions (DMPs) adjusting for age, body mass index, mother's education, and cell type composition. Among the tested elements, vanadium, chromium, nickel, copper, zinc, yttrium, tin, and barium were significantly associated with DMPs (false discovery rate < 0.05), registering 225, 1, 2, 184, 1, 209 189, and 104 hits, respectively. Most of the DMPs were positively associated with TEs and located in open sea regions. The greatest number of DMPs was annotated to the HOXA3 and FOXO3 genes, related to regulation of gene expression and oxidative stress, respectively. These findings suggest that DNA methylation may be involved in linking exposure to TEs among female adolescents to downstream health risks.
Collapse
Affiliation(s)
- Alejandra Manjarres-Suarez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
4
|
Qin Y, Xu H, Xi Y, Feng L, Chen J, Xu B, Dong X, Li Y, Jiang Z, Lou J. Effects of the SEMA4B gene on hexavalent chromium [Cr(VI)]-induced malignant transformation of human bronchial epithelial cells. Toxicol Res (Camb) 2024; 13:tfae030. [PMID: 38464415 PMCID: PMC10919774 DOI: 10.1093/toxres/tfae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 03/12/2024] Open
Abstract
Our previous study identified the potential of SEMA4B methylation level as a biomarker for hexavalent chromium [Cr(VI)] exposure. This study aimed to investigate the role of the SEMA4B gene in Cr(VI)-mediated malignant transformation of human bronchial epithelial (BEAS-2B) cells. In our population survey of workers, the geometric mean [95% confidence intervals (CIs)] of Cr in blood was 3.80 (0.42, 26.56) μg/L. Following treatment with various doses of Cr(VI), it was found that 0.5 μM had negligible effects on the cell viability of BEAS-2B cells. The expression of SEMA4B was observed to decrease in BEAS-2B cells after 7 days of treatment with 0.5 μM Cr(VI), and this downregulation continued with increasing passages of Cr(VI) treatment. Chronic exposure to 0.5 μM Cr(VI) enhanced the anchorage-independent growth ability of BEAS-2B cells. Furthermore, the use of a methylation inhibitor suppressed the Cr(VI)-mediated anchorage-independent growth in BEAS-2B cells. Considering that Cr levels exceeding 0.5 μM can be found in human blood due to occupational exposure, the results suggested a potential carcinogenic risk associated with occupational Cr(VI) exposure through the promotion of malignant transformation. The in vitro study further demonstrated that Cr(VI) exposure might inhibit the expression of the SEMA4B gene to promote the malignant transformation of BEAS-2B cells.
Collapse
Affiliation(s)
- Yao Qin
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Yongyong Xi
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Biao Xu
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, No. 182, Tianmushan Road, West Lake District, Hangzhou, Zhejiang 310013, China
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, and the First Affiliated Hospital, Huzhou University, No. 158, Square Back Road, Wuxing District, Huzhou, Zhejiang 313000, China
| |
Collapse
|
5
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
6
|
Hong S, Zhang Y, Hu G, Jia G. Exploration of Whole Blood Chromium as Biomarker of Hexavalent Chromium Exposure: Based on Literature Review and Monte Carlo Simulation. Biol Trace Elem Res 2023; 201:2274-2283. [PMID: 35859210 DOI: 10.1007/s12011-022-03360-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Hexavalent chromium (Cr(VI)) is a sort of common industrial poison and environmental pollutant posing great health threat to the population. Appropriate biomarkers are indispensable indicative tools in the biological monitoring and health risk assessment of Cr(VI). In this study, we explored the rationality and feasibility of whole blood Cr serving as the biomarker of internal exposure with corroboration drawn from literature review and Monte Carlo simulation. It was indicated that the whole blood Cr had practical operability in the large-scale population researches and robust biological significance with broad association with various Cr(VI)-related effect indices. The simulated distribution of whole blood Cr concentration in exposed populations was about three times higher than that of the control (13.52 ± 24.99 vs. 4.25 ± 11.37 μg/L, P < 0.05; 6.73 ± 10.92 μg/L vs. 1.96 ± 2.05 μg/L in China, P < 0.05), which suggested a great discriminatory ability that might be supported as evidence for its reasonable application.
Collapse
Affiliation(s)
- Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
- School of Engineering Medicine and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
7
|
Zhang Y, Long C, Hu G, Hong S, Su Z, Zhang Q, Zheng P, Wang T, Yu S, Jia G. Two-week repair alleviates hexavalent chromium-induced hepatotoxicity, hepatic metabolic and gut microbial changes: A dynamic inhalation exposure model in male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159429. [PMID: 36243064 DOI: 10.1016/j.scitotenv.2022.159429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hexavalent chromium [Cr(VI)] has been identified as a "Group I human carcinogen" with multisystem and multiorgan toxicity. A dynamic inhalation exposure model in male mice, coupled with the hepatic metabolome and gut microbiome, was used to explore hepatotoxicity, and hepatic metabolic and gut microbial changes under the exposure scenarios in the workspace and general environment. The present study set up an exposure group (EXP) that inhaled 150 μg Cr/m3 for 13 weeks, a control group (CONT) that inhaled purified air, as well as a two-week repair group (REXP) after 13 weeks of exposure and the corresponding control group (RCONT). Cr(VI) induced elevation of hepatic Cr accumulation, the ratio of ALT and AST, and folate in serum. Inflammatory infiltration in the liver and abnormal mitochondria in hepatocytes were also induced by Cr(VI). Glutathione, ascorbate, folic acid, pantetheine, 3'-dephospho-CoA and citraconic acid were the key metabolites affected by Cr(VI) that were associated with significant pathways such as pantothenate and CoA biosynthesis, hypoxia-inducible factor-1 signaling pathway, antifolate resistance, alpha-linolenic acid metabolism and one carbon pool by folate. g_Allobaculum was identified as a sensitive biomarker of Cr(VI) exposure because g_Allobaculum decreased under Cr(VI) exposure but increased after repair. The gut microbiota might be involved in the compensation of hepatotoxicity by increasing short-chain fatty acid-producing bacteria, including g_Lachnospiraceae_NK4A136_group, g_Blautia, and f_Muribaculaceae. After the two-week repair, the differential metabolites between the exposed and control groups were reduced from 73 to 29, and the KEGG enrichment pathways and differential microbiota also decreased. The mechanism for repair was associated with reversion of lipid peroxidation and energy metabolism, as well as activation of protective metabolic pathways, such as the AMPK signaling pathway, longevity regulating pathway, and oxidative phosphorylation. These findings might have theoretical and practical implications for better health risk assessment and management.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China; School of Public Health and Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China
| | - Guiping Hu
- School of Engineering Medicine, Beihang University, Beijing 100191, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, China.
| | - Shiyi Hong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Zekang Su
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Qiaojian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Clinical Laboratory, Third Hospital of Peking University, Beijing 100083, China
| | - Shanfa Yu
- Henan Institute for Occupational Medicine, Zhengzhou City, Henan Province 450052, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100083, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China.
| |
Collapse
|
8
|
Zhao L, Islam R, Wang Y, Zhang X, Liu LZ. Epigenetic Regulation in Chromium-, Nickel- and Cadmium-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235768. [PMID: 36497250 PMCID: PMC9737485 DOI: 10.3390/cancers14235768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.
Collapse
|
9
|
Li T, Zheng Y, Li T, Guo M, Wu X, Liu R, Liu Q, You X, Zeng W, Lv Y. Potential dual protective effects of melatonin on spermatogonia against hexavalent chromium. Reprod Toxicol 2022; 111:92-105. [DOI: 10.1016/j.reprotox.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
|
10
|
Zhao Y, Zhang H, Hao D, Wang J, Zhu R, Liu W, Liu C. Selenium regulates the mitogen-activated protein kinase pathway to protect broilers from hexavalent chromium-induced kidney dysfunction and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113629. [PMID: 35576799 DOI: 10.1016/j.ecoenv.2022.113629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/27/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a common environmental pollutant. Although selenium (Se) can antagonize the toxicity of Cr (VI), the specific underlying mechanism has not been identified. To investigate this mechanism, we used potassium dichromate (K2Cr2O7) and selenium-rich yeast (SeY) to construct single Cr (VI)- and combined Se/Cr (VI)-exposed broiler models during a 42-day period. Broilers were randomly assigned to the control (C), SeY (Se), SeY + Cr (VI) (Se/Cr), and Cr (VI) (Cr) groups. The antagonistic mechanisms of Se and Cr (VI) were evaluated using histopathological evaluation, serum and tissue biochemical tests, real-time fluorescence quantitative polymerase chain reaction, and western blotting. The results suggested that Se alleviated the morphological and structural damage to renal tubules and glomeruli, while reducing the organ index, creatinine levels, and blood urea nitrogen levels in the kidneys of Cr (VI)-exposed broilers. Furthermore, Cr (VI) reduced the levels of superoxide dismutase and glutathione, and increased the levels of malondialdehyde, in broiler kidney tissues. However, Se alleviated Cr (VI)-induced oxidative stress by increasing the levels of superoxide dismutase and glutathione, and decreasing the levels of malondialdehyde, within a certain range. Compared to the C group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly increased, whereas those of ERK, p-ERK, and p-ERK/ERK decreased, in the Cr group. Compared to the Cr group, the levels of p38, JNK, p-p38, p-JNK, p-p38/p38, and p-JNK/JNK significantly decreased, whereas those of ERK, p-ERK, and p-ERK/ERK increased, in the Se/Cr group. Furthermore, the levels of p53, c-Myc, Bax, Cyt-c, caspase-9, and caspase-3 significantly increased, and those of Bcl-2 and Bcl-2/Bax significantly decreased, following Cr (VI) exposure, while Se restored the expression of these genes. In conclusion, our findings suggest that SeY can protect against Cr (VI)-induced dysfunction and apoptosis by regulating the mitogen-activated protein kinase pathway activated by oxidative stress in broiler kidney tissues.
Collapse
Affiliation(s)
- Yanbing Zhao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huan Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Dezheng Hao
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jingqiu Wang
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ruixin Zhu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Weina Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ci Liu
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
11
|
Role of Sulfate Transporters in Chromium Tolerance in Scenedesmus acutus M. (Sphaeropleales). PLANTS 2022; 11:plants11020223. [PMID: 35050111 PMCID: PMC8780407 DOI: 10.3390/plants11020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is essential for the synthesis of important defense compounds and in the scavenging potential of oxidative stress, conferring increased capacity to cope with biotic and abiotic stresses. Chromate can induce a sort of S-starvation by competing for uptake with SO42− and causing a depletion of cellular reduced compounds, thus emphasizing the role of S-transporters in heavy-metal tolerance. In this work we analyzed the sulfate transporter system in the freshwater green algae Scenedesmus acutus, that proved to possess both H+/SO42− (SULTRs) and Na+/SO42− (SLTs) plasma membrane sulfate transporters and a chloroplast-envelope localized ABC-type holocomplex. We discuss the sulfate uptake system of S. acutus in comparison with other taxa, enlightening differences among the clade Sphaeropleales and Volvocales/Chlamydomonadales. To define the role of S transporters in chromium tolerance, we analyzed the expression of SULTRs and SULPs components of the chloroplast ABC transporter in two strains of S. acutus with different Cr(VI) sensitivity. Their differential expression in response to Cr(VI) exposure and S availability seems directly linked to Cr(VI) tolerance, confirming the role of sulfate uptake/assimilation pathways in the metal stress response. The SULTRs up-regulation, observed in both strains after S-starvation, may directly contribute to enhancing Cr-tolerance by limiting Cr(VI) uptake and increasing sulfur availability for the synthesis of sulfur-containing defense molecules.
Collapse
|
12
|
Ha F, Li N, Long C, Zheng P, Hu G, Jia G, Wang T. The Effect of Global DNA Methylation on PDCD5 Expression in the PBMC of Occupational Chromate Exposed Workers. J Occup Environ Med 2021; 63:600-608. [PMID: 34184653 DOI: 10.1097/jom.0000000000002192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the alteration of protein of programmed cell death 5 (PDCD5) in peripheral blood mononuclear cells (PBMC) and DNA methylation caused by hexavalent chromium exposure. METHODS There were 112 workers and 56 controls in this study. The chromium in RBC and urine, PBMC with PDCD5+, DNA methylation, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and score of DNA damage were measured. RESULTS In chromate exposed workers, the percent of PBMC with PDCD5+, urine 8-OHdG, and score of DNA damage were significantly higher, whereas global DNA methylation was significantly lower. The binary logistic regression and generalized linear mixed model analysis showed that the percent of PBMC with PDCD5+ was significantly associated with global DNA hypomethylation. CONCLUSIONS The aberrant DNA hypomethylation plays an important role in PBMC apoptosis of occupational hexavalent chromium exposure.
Collapse
Affiliation(s)
- Feizai Ha
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China (Ms Ha, Ms Li, and Dr Wang); Department of Occupational and Environmental Health, School of Public Health, Peking University, Beijing, China (Dr Long, Dr Zheng, Dr Hu, and Dr Jia)
| | | | | | | | | | | | | |
Collapse
|