1
|
Shen L, Chen C, Xie J. Development and characterization of starch/polyvinyl alcohol active films with slow-release property by utilizing Mucorracemosus Fresenius mycelium to load with clove essential oil. Int J Biol Macromol 2025; 295:139610. [PMID: 39793829 DOI: 10.1016/j.ijbiomac.2025.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The controlled release active packaging film represents a novel technology that always can effectively slow down the release of active agents, extending their efficacy. Mucorracemosus Fresenius (MF) mycelium was prepared and used as an adsorption carrier to load clove essential oil (CEO). The CEO/MF complexes were incorporated into the starch/polyvinyl alcohol (Starch/PVA) matrix to develop active films. The effects of MF content on the films' properties were investigated. MF exhibited the internal hollow structure with diaphragm inside and showed antioxidant activity. The adsorption rate of MF on CEO was 238.09 %. As MF increased, the tensile strength, water contact angle and gas barrier properties (water vapor and oxygen) of the films containing CEO enhanced. The release rate of CEO from the films into food simulant (10 % ethanol) slowed down significantly with increasing of MF. Compared to the film without MF, the film with highest MF delayed 33 h to reach equilibrium. The films with different content of MF showed different antioxidant and antibacterial activities, and different preservation effects on shrimp. It showed a great prospect to develop controlled release active films by utilizing MF mycelium as an adsorption material, which enriched the technical solutions for developing controlled release active packaging films.
Collapse
Affiliation(s)
- Lan Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
2
|
Damian-Buda AI, Unalan I, Boccaccini AR. Combining Mesoporous Bioactive Glass Nanoparticles (MBGNs) with Essential Oils to Tackle Bacterial Infection and Oxidative Stress for Bone Regeneration Applications. ACS Biomater Sci Eng 2024; 10:6860-6873. [PMID: 39418395 DOI: 10.1021/acsbiomaterials.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bacterial infectious diseases remain one of the significant challenges in the field of bone regeneration applications. Despite the development of new antibiotics, their improper administration has led to the development of multiresistant bacterial strains. In this study, we proposed a novel approach to tackle this problem by loading clove oil (CLV), a natural antibacterial compound, into amino-functionalized mesoporous bioactive glass nanoparticles (MBGNs). The scanning electron microscopy images (SEM) revealed that amino-functionalization and CLV loading did not affect the shape and size of the MBGNs. The successful grafting of the amino groups on the MBGNs' surface and the presence of CLV in the material were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and zeta potential measurements. The increased CLV concentration led to a higher loading capacity, encapsulation efficiency, and antioxidant activity. The in vitro CLV release profile exhibited an initial burst release, followed by a controlled release over 14 days. The loading of CLV into MBGNs led to a stronger antibacterial effect against E. coli and S. aureus, while MG-63 osteoblast-like cell viability was enhanced with no morphological changes compared to the control group. In conclusion, the CLV-MBGNs nanocarriers showed promising properties in vitro as novel drug delivery systems, exploiting essential oils for treating bone infections and oxidative stress.
Collapse
Affiliation(s)
- Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, Erlangen 91058, Germany
| |
Collapse
|
3
|
Siddique A, Naeem J, Ang KL, Abid S, Xu Z, Khawar MT, Saleemi S, Abdullah M, Adeel. Cinnamon and Eucalyptus Extracts: A Promising Natural Approach for Durable Mosquito-Repellent Fabrics with Multifunctionality. ACS OMEGA 2024; 9:41468-41479. [PMID: 39398144 PMCID: PMC11465543 DOI: 10.1021/acsomega.4c04910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Mosquitoes are highly important carriers of diseases, such as malaria, dengue, chikungunya, and various other life-threatening illnesses. Traditionally, many chemicals, such as plant extracts, oils, and smoke, have been employed for the purpose of repelling mosquitoes. Various plants possess essential oils and chemicals that have been proven to be good insect repellents and are commonly regarded as weeds. The present study focused on the development of eco-friendly, nonhazardous mosquito-repellent fabrics using cinnamon and eucalyptus extracts. First, eucalyptus and cinnamon extracts were produced separately using ethanol and water as solvents with and without heating. Forty-eight different fabric samples were prepared by applying these extracts at three levels of process application temperature. A steam dye bath sampling machine was utilized to execute the extraction application process on fabric samples. The mosquito repellency performances of all of the samples were evaluated using the cage test method. The cage test revealed that all of the samples of eucalyptus and cinnamon extract-applied fabrics showed mosquito repellency performance at some level. However, the fabric samples treated with the heated extract of eucalyptus ethanol (EE-H) at 60 °C showed the best results in terms of mosquito repellency (85.56%) among all combinations. In addition to repellency, the impact of washing durability, UV shielding, and antibacterial performance was also evaluated. This research demonstrated a new method for creating a fabric that repels mosquitoes and has effective antibacterial properties as well as promising ultraviolet protection factor (UPF) rating. This fabric protects the wearer from the significant health risks posed by mosquitoes and harmful UV radiation while also maintaining its cleanliness. Moreover, the utilization and implementation of plant-derived coatings on textiles contribute to the advancement of sustainable methods (SDG 9 and SDG 12) in the chemical processing industry of textiles, ultimately leading to a reduction in their environmental footprint.
Collapse
Affiliation(s)
- Amna Siddique
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Jawad Naeem
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Kiang Long Ang
- Faculty
of Engineering and Quantity Surveying, INTI
International University, Nilai 71800, Malaysia
| | - Sharjeel Abid
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Zhiwei Xu
- School
of Textile Science and Engineering, Tiangong
University, Tianjin 300387, China
| | - Muhammad Tauseef Khawar
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Sidra Saleemi
- Institute
of Polymers and Textile Engineering, University
of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Abdullah
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Adeel
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| |
Collapse
|
4
|
Aizaz A, Nawaz MH, Ismat MS, Zahid L, Zahid S, Ahmed S, Abbas M, Vayalpurayil T, Rehman MAU. Development and characterization of polyethylene oxide and guar gum-based hydrogel; a detailed in-vitro analysis of degradation and drug release kinetics. Int J Biol Macromol 2024; 273:132824. [PMID: 38857736 DOI: 10.1016/j.ijbiomac.2024.132824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Herein, we synthesized hydrogel films from crosslinked polyethylene oxide (PEO) and guar gum (GG) which can offer hydrophilicity, antibacterial efficacy, and neovascularization. This study focuses on synthesis and material/biological characterization of rosemary (RM) and citric acid (CA) loaded PEO/GG hydrogel films. Scanning Electron Microscopy images confirmed the porous structure of the developed hydrogel film matrix (PEO/GG) and the dispersion of RM and CA within it. This porous structure promotes moisture adsorption, cell attachment, proliferation, and tissue layer formation. Fourier Transform Infrared Spectroscopy (FTIR) further validated the crosslinking of the PEO/GG matrix, as confirmed by the appearance of C-O-C linkage in the FTIR spectrum. PEO/GG and PEO/GG/RM/CA revealed similar degradation and release kinetics in Dulbecco's Modified Eagle Medium, Simulated Body Fluid, and Phosphate Buffer Saline (degradation of ∼55 % and release of ∼60 % RM in 168 h.). The developed hydrogel film exhibited a zone of inhibition against Escherichia. coli (2 mm) and Staphylococcus. aureus (9 mm), which can be attributed to the presence of RM in the hydrogel film. Furthermore, incorporating CA in the hydrogel film promoted neovascularization, as confirmed by the Chorioallantoic Membrane Assay. The developed RM and CA-loaded PEO/GG-based hydrogel films offered suitable in-vitro properties that may aid in potential wound healing applications.
Collapse
Affiliation(s)
- Aqsa Aizaz
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Muhammad Sameet Ismat
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Laiba Zahid
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Sidra Zahid
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan
| | - Mohamed Abbas
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Thafasalijyas Vayalpurayil
- Central Labs, King Khalid University, AlQura'a, Abha, P.O. Box 960, Saudi Arabia; Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Department of Materials Science and Engineering Government College University Lahore, 54000, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad, 44000, Pakistan.
| |
Collapse
|
5
|
Hernández-Tanguma A, Ariza-Castolo A. Dynamics of eugenol included in β-cyclodextrin by nuclear magnetic resonance and molecular simulations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:505-511. [PMID: 38369602 DOI: 10.1002/mrc.5439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Eugenol-β-cyclodextrin complex has been widely used because of the enhanced stability and conservation of the properties of eugenol. Applications in food and health sciences have been shown previously, which makes this complex an excellent model to understand and develop methodologies for the analysis and prediction of physical properties. In this work, the dynamics of eugenol incorporated into β-cyclodextrin are presented, using NMR relaxation rates, and the predictive capabilities of molecular dynamics simulations are discussed. Results show a hindered rotation of eugenol around the principal inertial axes when located inside β-cyclodextrin. Moreover, a translational movement of the whole complex is demonstrated.
Collapse
Affiliation(s)
- Alejandro Hernández-Tanguma
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Armando Ariza-Castolo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Chilamakuri SN, Kumar A, Nath AG, Gupta A, Selvaraju S, Basrani S, Jadhav A, Gulbake A. Development and In-Vitro Evaluation of Eugenol-Based Nanostructured Lipid Carriers for Effectual Topical Treatment Against C. albicans. J Pharm Sci 2024; 113:772-784. [PMID: 38043682 DOI: 10.1016/j.xphs.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The main objective of the experiment is to develop and evaluate hydrogel-bearing nanostructured lipid carriers (NLCs) loaded with ketoconazole (KTZ) for the effective treatment of candidiasis. The eugenol was used as a liquid lipid (excipient) for the development of KTZ-loaded NLCs and was explored for anti-fungal effect. The production of NLCs involves high energy processes to generate spherical, uniform particles, having a higher percentage of entrapment efficiency (%EE) for KTZ with 89.83 ± 2.31 %. The data from differential scanning calorimeter (DSC), powder x-ray diffraction (PXRD), and attenuated total reflectance (ATR) demonstrated the KTZ dispersion in NLCs. The NLCs loaded hydrogel possessed optimum spreadability and exhibited shear thinning behavior, indicating the ease of application of the final formulation. The 6.41-fold higher transdermal flux (Jss) was governed for KTZ from KTZ-NLC than coarse-KTZ, which explains the usefulness of NLCs. The KTZ-NLCs exhibited significant 2.58 and 6.35-fold higher retention in the stratum corneum and viable epidermis of the skin. The cell cytotoxicity studies using human dermal fibroblast cell (HDFS) lines depicted the usefulness of NLCs in reducing cell toxicities for KTZ. The KTZ-NLCs were found to inhibit planktonic growth and hyphal transition and showed a larger zone of inhibition against C. albicans strains with a MIC-50 value of 0.39 μg/mL. The antibiofilm activity of KTZ-NLCs at lower concentrations, in contrast to plain KTZ, explained the interaction of developed NLCs with fungal membranes. The overall results depicted the effectiveness of the loading KTZ in the lipid matrix to achieve antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Sudarshan Naidu Chilamakuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - A Gowri Nath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Anshu Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sudhagar Selvaraju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sargun Basrani
- Department of Medical Biotechnology, CIR, DY Patil Education Society, Institution Deemed to be University, Kolhapur, India
| | - Ashwini Jadhav
- Department of Medical Biotechnology, CIR, DY Patil Education Society, Institution Deemed to be University, Kolhapur, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
7
|
Both J, Fülöp AP, Szabó GS, Katona G, Ciorîță A, Mureșan LM. Effect of the Preparation Method on the Properties of Eugenol-Doped Titanium Dioxide (TiO 2) Sol-Gel Coating on Titanium (Ti) Substrates. Gels 2023; 9:668. [PMID: 37623123 PMCID: PMC10454635 DOI: 10.3390/gels9080668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The focus of this study was the preparation of sol-gel titanium dioxide (TiO2) coatings, by the dip-coating technique, on Ti6Al4V (TiGr5) and specific Ti implant substrates. In order to confer antibacterial properties to the layers, Eugenol was introduced in the coatings in two separate ways: firstly by introducing the Eugenol in the sol (Eug-TiO2), and secondly by impregnating into the already deposed TiO2 coating (TiO2/Eug). Optimization of Eugenol concentration as well as long term were performed in orderboth short- and long-term Eugenol concentration was performed to investigate the prepared samples thoroughly. The samples were investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP). To investigate their resistance against Gram-negative Escherichia coli bacteria, microbiological analysis was performed on coatings prepared on glass substrates. Structural studies (FT-IR analysis, Raman spectroscopy) were performed to confirm Eugenol-TiO2 interactions. Coating thicknesses and adhesion were also determined for all samples. The results show that Eug-TiO2 presented with improved anticorrosive effects and significant antibacterial properties, compared to the other investigated samples.
Collapse
Affiliation(s)
- Julia Both
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Anita-Petra Fülöp
- Department of Chemistry and Chemical Engineering of Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Gabriella Stefania Szabó
- Department of Chemistry and Chemical Engineering of Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Gabriel Katona
- Department of Chemistry and Chemical Engineering of Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Department of Molecular Biology and Biotechnology, Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania
| | - Liana Maria Mureșan
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany J. St., 400028 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Ghodke J, Ekonomou SI, Weaver E, Lamprou D, Doran O, Stratakos AC. The Manufacturing and Characterisation of Eugenol-Enclosed Liposomes Produced by Microfluidic Method. Foods 2023; 12:2940. [PMID: 37569209 PMCID: PMC10418319 DOI: 10.3390/foods12152940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, liposomes enclosing eugenol were prepared using microfluidics. Two lipids-1,2-dimyristoyl-sn-glycero-3-phosphocholine, 18:0 (DSPC) and 2-dimyristoyl-sn-glycero-3-phosphocholine, 14:0 (DMPC)-and microfluidic chips with serpentine and Y-shaped micromixing designs were used for the liposomal formulation. Minimum bactericidal concentration (MBC) values indicated that eugenol was more effective against Gram-negative than Gram-positive bacteria. Four different flow-rate ratios (FRR 2:1, 3:1, 4:1, 5:1) were explored. All liposomes' encapsulation efficiency (EE) was determined: 94.34% for DSPC 3:1 and 78.63% for DMPC 5:1. The highest eugenol release of 99.86% was observed at pH 4, DMPC 3:1 (Y-shaped chip). Liposomes were physically stable at 4, 20 and 37 °C for 60 days as determined by their size, polydispersity index (PDI) and zeta potential (ZP). The most stable liposomes were observed at FRR 5:1 for DSPC. EE, stability, and eugenol release studies proved that the liposomal formulations produced can be used as delivery vehicles to increase food safety.
Collapse
Affiliation(s)
- Jessica Ghodke
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| | - Sotirios I. Ekonomou
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| | - Edward Weaver
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.W.); (D.L.)
| | - Dimitrios Lamprou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.W.); (D.L.)
| | - Olena Doran
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| | - Alexandros Ch. Stratakos
- College of Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK; (J.G.); (S.I.E.); (O.D.)
| |
Collapse
|
9
|
Tarhan İ. A robust method for simultaneous quantification of eugenol, eugenyl acetate, and β-caryophyllene in clove essential oil by vibrational spectroscopy. PHYTOCHEMISTRY 2021; 191:112928. [PMID: 34455289 DOI: 10.1016/j.phytochem.2021.112928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy in tandem with chemometrics was used for accurate quantification of total eugenol, eugenyl acetate, and β-caryophyllene compounds of clove oil (CO) using partial least squares (PLS) regression with various spectral derivatization methods. A set of six of the fifty-one CO samples was chosen to build up the calibration sets for the compounds, while the rest were selected as the prediction set. Data for total eugenol, eugenyl acetate, and β-caryophyllene was acquired by gas chromatography-mass spectrometry (GC-MS) and used as reference values for ATR-FTIR calibration. The best calibration results were achieved using raw spectra in the region 1560-1480, 1814-1700, and 2954-2780 cm-1 for total eugenol, eugenyl acetate, and β-caryophyllene with high regression coefficients (R-square) of 0.9999, 0.9966, and 0.9997, respectively and low root mean square error of prediction (RMSEP) values of 0.5054%, 0.2330%, and 0.4593%, respectively. The results of the study indicated that ATR-FTIR with PLS regression could be used for accurate and simultaneous quantification of total eugenol, eugenyl acetate, and β-caryophyllene compounds of COs without using any toxic chemicals or pretreatments.
Collapse
Affiliation(s)
- İsmail Tarhan
- Selçuk University, Faculty of Science, Department of Biochemistry, 42130, Selçuklu, Konya, Turkey.
| |
Collapse
|