1
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
2
|
Ríos-Castro R, Romero A, Aranguren R, Pallavicini A, Banchi E, Novoa B, Figueras A. High-Throughput Sequencing of Environmental DNA as a Tool for Monitoring Eukaryotic Communities and Potential Pathogens in a Coastal Upwelling Ecosystem. Front Vet Sci 2021; 8:765606. [PMID: 34805343 PMCID: PMC8595318 DOI: 10.3389/fvets.2021.765606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
The marine environment includes diverse microeukaryotic organisms that play important functional roles in the ecosystem. With molecular approaches, eukaryotic taxonomy has been improved, complementing classical analysis. In this study, DNA metabarcoding was performed to describe putative pathogenic eukaryotic microorganisms in sediment and marine water fractions collected in Galicia (NW Spain) from 2016 to 2018. The composition of eukaryotic communities was distinct between sediment and water fractions. Protists were the most diverse group, with the clade TSAR (Stramenopiles, Alveolata, Rhizaria, and Telonemida) as the primary representative organisms in the environment. Harmful algae and invasive species were frequently detected. Potential pathogens, invasive pathogenic organisms as well as the causative agents of harmful phytoplanktonic blooms were identified in this marine ecosystem. Most of the identified pathogens have a crucial impact on the aquacultural sector or affect to relevant species in the marine ecosystem, such as diatoms. Moreover, pathogens with medical and veterinary importance worldwide were also found, as well as pathogens that affect diatoms. The evaluation of the health of a marine ecosystem that directly affects the aquacultural sector with a zoonotic concern was performed with the metabarcoding assay.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Inmunology and Genomics, Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Alejandro Romero
- Inmunology and Genomics, Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Raquel Aranguren
- Inmunology and Genomics, Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Division of Oceanography, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Elisa Banchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Division of Oceanography, National Institute of Oceanography and Applied Geophysics, Trieste, Italy
| | - Beatriz Novoa
- Inmunology and Genomics, Marine Research Institute (IIM-CSIC), Vigo, Spain
| | - Antonio Figueras
- Inmunology and Genomics, Marine Research Institute (IIM-CSIC), Vigo, Spain
| |
Collapse
|
3
|
Xavier R, Mazzei R, Pérez-Losada M, Rosado D, Santos JL, Veríssimo A, Soares MC. A Risky Business? Habitat and Social Behavior Impact Skin and Gut Microbiomes in Caribbean Cleaning Gobies. Front Microbiol 2019; 10:716. [PMID: 31024495 PMCID: PMC6467100 DOI: 10.3389/fmicb.2019.00716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
The broadstripe cleaning goby Elacatinus prochilos has two alternative ecotypes: sponge-dwellers, which live in large groups and feed mainly upon nematode parasites; and coral-dwellers, that live in small groups or in solitude and behave as cleaners. Recent studies focusing on the skin and gut microbiomes of tropical fish showed that microbial communities are influenced mainly by diet and host species. Here, we compare the skin and gut microbiomes of the Caribbean broadstripe cleaning goby E. prochilos alternative ecotypes (cleaners and non-cleaners) from Barbados and predict that different habitat use and behavior (cleaning vs. non-cleaning) will translate in different bacterial profiles between the two ecotypes. We found significant differences in both alpha- and beta-diversity of skin and gut microbiomes belonging to different ecotypes. Importantly, the skin microbiome of obligate cleaners showed greater intra-sample diversity and harbored a significantly higher prevalence of potential fish pathogens. Likewise, potential pathogens were also more prevalent in the gut of obligate cleaners. We suggest that habitat use, diet, but also direct contact with potential diseased clientele during cleaning, could be the cause for these patterns.
Collapse
Affiliation(s)
- Raquel Xavier
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Renata Mazzei
- Laboratoire d’Eco-Ethologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Marcos Pérez-Losada
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
- Computational Biology Institute, Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Ashburn, VA, United States
| | - Daniela Rosado
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Joana L. Santos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Ana Veríssimo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| | - Marta C. Soares
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods. Symbiosis 2017. [DOI: 10.1007/s13199-017-0518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Work TM, Aeby GS. Skin pathology in Hawaiian goldring surgeonfish, Ctenochaetus strigosus (Bennett). JOURNAL OF FISH DISEASES 2014; 37:357-362. [PMID: 23617760 DOI: 10.1111/jfd.12112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Twenty-eight goldring surgeonfish, Ctenochaetus strigosus (Bennett), manifesting skin lesions and originating from the north-western and main Hawaiian Islands were examined. Skin lesions were amorphous and ranged from simple dark or light discolouration to multicoloured tan to white sessile masses with an undulant surface. Skin lesions covered 2-66% of the fish surface, and there was no predilection for lesions affecting a particular part of the fish. Males appeared over-represented. Microscopy revealed the skin lesions to be hyperplasia, melanophoromas or iridophoromas. The presence of skin tumours in a relatively unspoiled area of Hawaii is intriguing. Explaining their distribution, cause and impact on survivorship of fish all merit further study because C. strigosus is an economically important fish in the region.
Collapse
Affiliation(s)
- T M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI, USA; Hawaii Institute of Marine Biology, Kane'ohe, HI, USA
| | | |
Collapse
|
6
|
Keirstead ND, Brake JW, Griffin MJ, Halliday-Simmonds I, Thrall MA, Soto E. Fatal septicemia caused by the zoonotic bacterium Streptococcus iniae during an outbreak in Caribbean reef fish. Vet Pathol 2013; 51:1035-41. [PMID: 24078005 DOI: 10.1177/0300985813505876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An outbreak of Streptococcus iniae occurred in the early months of 2008 among wild reef fish in the waters of the Federation of St Kitts and Nevis, lasting almost 2 months. Moribund and dead fish were collected for gross, histological, bacteriological, and molecular analysis. Necropsy findings included diffuse fibrinous pericarditis, pale friable livers, and serosal petechiation. Cytological and histological analysis revealed granulocytic and granulomatous inflammation with abundant coccoid bacterial organisms forming long chains. Necrosis, inflammation, and vasculitis were most severe in the pericardium, meninges, liver, kidneys, and gills. Bacterial isolates revealed β-hemolytic, Gram-positive coccoid bacteria identified as S. iniae by amplification and 16S ribosomal RNA gene sequencing. Results from biochemical and antimicrobial susceptibility analysis, together with repetitive element palindromic polymerase chain reaction fingerprinting, suggest that a single strain was responsible for the outbreak. The inciting cause for this S. iniae-associated cluster of mortalities is unknown.
Collapse
Affiliation(s)
- N D Keirstead
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies Innovative Medicines DSM, AstraZeneca Pharmaceuticals LP, Waltham, MA, USA
| | - J W Brake
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies
| | - M J Griffin
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Stoneville, MS, USA
| | - I Halliday-Simmonds
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies
| | - M A Thrall
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies
| | - E Soto
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St Kitts, West Indies
| |
Collapse
|
7
|
Murray AG. Using simple models to review the application and implications of different approaches used to simulate transmission of pathogens among aquatic animals. Prev Vet Med 2008; 88:167-77. [PMID: 18930326 DOI: 10.1016/j.prevetmed.2008.09.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 07/25/2008] [Accepted: 09/03/2008] [Indexed: 11/28/2022]
Abstract
Disease is an important issue affecting aquatic animal populations. Aquatic pathogens may be transmitted in ways that could result in qualitatively different impacts to those of terrestrial diseases. I analyse simple SIR epidemic models with different functions to describe transmission. Four forms of transmission are applied: density-dependent, density-independent, non-linear density-dependent and constant infection pressure; the first two are similar to terrestrial systems, the second two are based on specifically aquatic modes of transmission. Observed diseases and existing models are reviewed in terms of these simple forms. The significance of mode of transmission to host populations, to strategies to prevent or control diseases, and to wild-farm interactions are analysed. Different diseases are simulated by different transmission models, for example furunculosis depends on host density, while spread of phocine distemper virus is density-independent, and sea lice infestation pressure may result from open transmission processes that are not dependent on local infested hosts. Appropriate transmission model may also depend on the scale of interest (inter- or intra-population). These different models result in very different responses to intervention strategies, for example culling may be effective for controlling density-dependent disease but may be counter-productive when pathogens depend on open recruitment. It is therefore important for management that appropriate models (whether existing or novel) be selected and this paper aims to provide a basic framework for cataloguing and management of aquatic diseases.
Collapse
Affiliation(s)
- Alexander G Murray
- Fisheries Research Service Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK.
| |
Collapse
|
8
|
Detection and discovery of crustacean parasites in blue crabs (Callinectes sapidus) by using 18S rRNA gene-targeted denaturing high-performance liquid chromatography. Appl Environ Microbiol 2008; 74:4346-53. [PMID: 18502913 DOI: 10.1128/aem.02132-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we described a novel denaturing high-performance liquid chromatography (DHPLC) approach useful for initial detection and identification of crustacean parasites. Because this approach utilizes general primers targeted to conserved regions of the 18S rRNA gene, a priori genetic sequence information on eukaryotic parasites is not required. This distinction provides a significant advantage over specifically targeted PCR assays that do not allow for the detection of unknown or unsuspected parasites. However, initial field evaluations of the DHPLC assay suggested that because of PCR-biased amplification of dominant host genes it was not possible to detect relatively rare parasite genes in infected crab tissue. Here, we describe the use of a peptide nucleic acid (PNA) PCR hybridization blocking probe in association with DHPLC (PNA-PCR DHPLC) to overcome inherent PCR bias associated with amplification of rare target genes by use of generic primers. This approach was utilized to detect infection of blue crabs (Callinectes sapidus) by the parasitic dinoflagellate Hematodinium sp. Evaluation of 76 crabs caught in Wassaw Sound, GA, indicated a 97% correspondence between detection of the parasite by use of a specific PCR diagnostic assay and that by use of PNA-PCR DHPLC. During these studies, we discovered one crab with an association with a previously undescribed protist symbiont. Phylogenetic analysis of the amplified symbiont 18S rRNA gene indicated that it is most closely related to the free-living kinetoplastid parasite Procryptobia sorokini. To our knowledge, this is the first report of this parasite group in a decapod crab and of this organism exhibiting a presumably parasitic life history.
Collapse
|
9
|
Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 2007; 9:2707-19. [DOI: 10.1111/j.1462-2920.2007.01383.x] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|