1
|
Lin PC, Hsu WY, Lee PY, Hsu SH, Chiou SS. Insights into Hepatocellular Carcinoma in Patients with Thalassemia: From Pathophysiology to Novel Therapies. Int J Mol Sci 2023; 24:12654. [PMID: 37628834 PMCID: PMC10454908 DOI: 10.3390/ijms241612654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Thalassemia is a heterogeneous congenital hemoglobinopathy common in the Mediterranean region, Middle East, Indian subcontinent, and Southeast Asia with increasing incidence in Northern Europe and North America due to immigration. Iron overloading is one of the major long-term complications in patients with thalassemia and can lead to organ damage and carcinogenesis. Hepatocellular carcinoma (HCC) is one of the most common malignancies in both transfusion-dependent thalassemia (TDT) and non-transfusion-dependent thalassemia (NTDT). The incidence of HCC in patients with thalassemia has increased over time, as better chelation therapy confers a sufficiently long lifespan for the development of HCC. The mechanisms of iron-overloading-associated HCC development include the increased reactive oxygen species (ROS), inflammation cytokines, dysregulated hepcidin, and ferroportin metabolism. The treatment of HCC in patients with thalassemia was basically similar to those in general population. However, due to the younger age of HCC onset in thalassemia, regular surveillance for HCC development is mandatory in TDT and NTDT. Other supplemental therapies and experiences of novel treatments for HCC in the thalassemia population were also reviewed in this article.
Collapse
Affiliation(s)
- Pei-Chin Lin
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wan-Yi Hsu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Po-Yi Lee
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; (P.-C.L.); (W.-Y.H.); (P.-Y.L.)
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Division of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
| |
Collapse
|
2
|
Nizami ZN, Aburawi HE, Semlali A, Muhammad K, Iratni R. Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence. Antioxidants (Basel) 2023; 12:1159. [PMID: 37371889 DOI: 10.3390/antiox12061159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are metabolic byproducts that regulate various cellular processes. However, at high levels, ROS induce oxidative stress, which in turn can trigger cell death. Cancer cells alter the redox homeostasis to facilitate protumorigenic processes; however, this leaves them vulnerable to further increases in ROS levels. This paradox has been exploited as a cancer therapeutic strategy with the use of pro-oxidative drugs. Many chemotherapeutic drugs presently in clinical use, such as cisplatin and doxorubicin, induce ROS as one of their mechanisms of action. Further, various drugs, including phytochemicals and small molecules, that are presently being investigated in preclinical and clinical studies attribute their anticancer activity to ROS induction. Consistently, this review aims to highlight selected pro-oxidative drugs whose anticancer potential has been characterized with specific focus on phytochemicals, mechanisms of ROS induction, and anticancer effects downstream of ROS induction.
Collapse
Affiliation(s)
- Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Hanan E Aburawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire-Université Laval, Quebec, QC G1V 0A6, Canada
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Liu JX, Ma DY, Zhi XY, Wang MW, Zhao JY, Qin Y. MiR-125b attenuates retinal pigment epithelium oxidative damage via targeting Nrf2/HIF-1α signal pathway. Exp Cell Res 2022; 410:112955. [PMID: 34875217 DOI: 10.1016/j.yexcr.2021.112955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
The retinal pigment epithelium cells (RPE) are sensitive to oxidative stimuli due to long-term exposure to various environmental stimuli. Thus, the oxidative injury of RPE cells caused by the imbalance of redox homeostasis is one of the main pathogenic factors of age-related macular degeneration (AMD). But the sophisticated mechanisms linking AMD to oxidative stress are not fully elucidated. Activation of Nrf2 signal pathway can protect RPE cells from oxidative damage. The present study investigated the regulating mechanism of miR-125b in Nrf2 cascade and evaluated its antioxidant capacity. The in vitro studies indicated that overexpression of miR-125b substantially inhibited Keap1 expression, enhanced Nrf2 expression and induced Nrf2 nuclear translocation. Importantly, functional studies demonstrated that forced expression of miR-125b could significantly elevate cell proliferation and superoxide dismutase (SOD) levels while reduce reactive oxygen species (ROS) overproduction and malondialdehyde (MDA) formation. Further studies showed that miR-125b had no effect when Nrf2 was silenced in ARPE-19 cells. Additionally, the results identified that Nrf2 silence induced ROS accumulation enhances HIF-1α protein expression, while miR-125b could offset this effect via promoting HIF-1α protein degradation. Subsequent in vivo studies demonstrated that sodium iodate induced outer retina thinner was reversed with exogenous supplementation of miR-125b, which was cancelled in Nrf2 knockout mice. In conclusion, this study illustrated that miR-125b can protect RPE from oxidative damage via targeting Nrf2/HIF-1α signal pathway and potentially may serve as a therapeutic agent of AMD.
Collapse
Affiliation(s)
- Jin-Xia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Dong-Yue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xin-Yu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Ming-Wu Wang
- Department of Ophthalmology and Vision Science, University of Arizona College of Medicine, Tucson, AZ 85710, USA; NeuVision Medical Institute, Tucson, AZ 85718, USA
| | - Jiang-Yue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
4
|
Kim SJ, Cho NC, Hahn YI, Kim SH, Fang X, Surh YJ. STAT3 as a Potential Target for Tumor Suppressive Effects of 15-Deoxy-Δ 12,14-prostaglandin J 2 in Triple Negative Breast Cancer. J Cancer Prev 2021; 26:207-217. [PMID: 34703823 PMCID: PMC8511581 DOI: 10.15430/jcp.2021.26.3.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
STAT3 plays a prominent role in proliferation and survival of tumor cells. Thus, STAT3 has been considered to be a prime target for development of anti-cancer therapeutics. The electrophilic cyclopentenone prostaglandin,15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has been well recognized for its capability to modulate intracellular signaling pathways involved in cancer cell growth and progression. We previously reported that 15d-PGJ2 had potent cytotoxicity against harvey-ras transformed human mammary epithelial cells through direct interaction with STAT3. In this study, we have attempted to verify the inhibitory effects of 15d-PGJ2 on STAT3 signaling in human breast tumor cells. The triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468 displaying constitutive phosphorylation of STAT3 on the tyrosine 705 (Tyr705) residue, underwent apoptosis upon inhibition of STAT3 by 15d-PGJ2. In contrast, estrogen receptor positive MCF-7 breast cancer cells that do not exhibit elevated STAT3 phosphorylation were much less susceptible to 15d-PGJ2-induced apoptosis as assessed by PARP cleavage. Furthermore, 15d-PGJ2 inhibited interleukin-6-induced tyrosine phosphorylation of STAT3 in LNCaP cells. According to molecular docking studies, 15d-PGJ2 may preferentially bind to the cysteine 259 residue (Cys259) present in the coiled-coil domain of STAT3. Site-directed mutagenesis of STAT3 identified Cys259 to be the critical amino acid for the 15d-PGJ2-induced apoptosis as well as epithelial-to-mesenchymal transition. Taken together, these findings suggest STAT3 inactivation through direct chemical modification of its Cys259 as a potential therapeutic approach for treatment of triple negative breast cancer treatment.
Collapse
Affiliation(s)
- Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Nam-Chul Cho
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Young-Il Hahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Soulère L, Barbier T, Queneau Y. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 M Pro by targeting the cysteine 145. Comput Biol Chem 2021; 92:107463. [PMID: 33677227 PMCID: PMC7896498 DOI: 10.1016/j.compbiolchem.2021.107463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 which has infected millions of people worldwide. The main protease of SARS-CoV-2 (MPro) has been recognized as a key target for the development of antiviral compounds. Taking advantage of the X-ray crystal complex with reversible covalent inhibitors interacting with the catalytic cysteine 145 (Cys145), we explored flexible docking studies to select alternative compounds able to target this residue as covalent inhibitors. First, docking studies of three known electrophilic compounds led to results consistent with co-crystallized data validating the method for SARS-CoV-2 MPro covalent inhibition. Then, libraries of soft electrophiles (overall 41 757 compounds) were submitted to docking-based virtual screening resulting in the identification of 17 molecules having their electrophilic group close to the Cys145 residue. We also investigated flexible docking studies of a focused approved covalent drugs library including 32 compounds with various electrophilic functional groups. Among them, the calculations resulted in the identification of four compounds, namely dimethylfumarate, fosfomycin, ibrutinib and saxagliptin, able first, to bind to the active site of the protein and second, to form a covalent bond with the catalytic cysteine.
Collapse
Affiliation(s)
- Laurent Soulère
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France.
| | - Thibaut Barbier
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| | - Yves Queneau
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CPE Lyon, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| |
Collapse
|
6
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
7
|
Suh J, Kim DH, Kim EH, Park SA, Park JM, Jang JH, Kim SJ, Na HK, Kim ND, Kim NJ, Suh YG, Surh YJ. 15-Deoxy-Δ 12,14-prostaglandin J 2 activates PI3K-Akt signaling in human breast cancer cells through covalent modification of the tumor suppressor PTEN at cysteine 136. Cancer Lett 2018; 424:30-45. [PMID: 29550515 DOI: 10.1016/j.canlet.2018.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022]
Abstract
15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the terminal products of cyclooxygenase-2-catalized arachidonic acid metabolism, has been shown to stimulate breast cancer cell proliferation and migration through Akt activation, but the underlying mechanisms remain poorly understood. In the present study, we investigated the effects of 15d-PGJ2 on the activity of PTEN, the inhibitor of the phosphoinositide 3-kinase (PI3K)-Akt axis, in human breast cancer (MCF-7) cells. Since the α,β-unsaturated carbonyl moiety in the cyclopentenone ring of 15d-PGJ2 is electrophilic, we hypothesized that 15d-PGJ2-induced Akt phosphorylation might result from the covalent modification and subsequent inactivation of PTEN that has several critical cysteine residues. When treated to MCF-7 cells, 15d-PGJ2 bound to PTEN, and this was abolished in the presence of the thiol-reducing agent dithiothreitol. A mass spectrometric analysis by using recombinant and endogenous PTEN protein revealed that the cysteine 136 residue (Cys136) of PTEN is covalently modified upon treatment with 15d-PGJ2. Notably, the ability of 15d-PGJ2 to covalently bind to PTEN as well as to induce Akt phosphorylation was abolished in the cells expressing a mutant form of PTEN in which Cys136 was replaced by serine (C136S-PTEN). The present study demonstrates for the first time that electrophilic 15d-PGJ2 directly binds to cysteine 136 of PTEN and provides new insight into PTEN loss in cancer progression associated with chronic inflammation. These observations suggest that 15d-PGJ2 can undergo nucleophilic addition to PTEN, presumably at Cys136, thereby inactivating this tumor suppressor protein with concomitant Akt activation.
Collapse
Affiliation(s)
- Jinyoung Suh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Do-Hee Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun-Hee Kim
- College of Pharmacy, CHA University, Pocheon-si 11160, Gyeonggi-do, South Korea
| | - Sin-Aye Park
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jong-Min Park
- College of Pharmacy, CHA University, Pocheon-si 11160, Gyeonggi-do, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowedge-Based Services Engineering, Sungshin Women's University, Seoul 02844, South Korea
| | - Nam-Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Nam-Jung Kim
- Department of Pharmacy, Kyung Hee University, Seoul 02453, South Korea
| | - Young Ger Suh
- College of Pharmacy, CHA University, Pocheon-si 11160, Gyeonggi-do, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Assi M. The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol 2017; 313:R646-R653. [DOI: 10.1152/ajpregu.00247.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 12/31/2022]
Abstract
The large doses of vitamins C and E and β-carotene used to reduce reactive oxygen species (ROS) production and oxidative damages in cancerous tissue have produced disappointing and contradictory results. This therapeutic conundrum was attributed to the double-faced role of ROS, notably, their ability to induce either proliferation or apoptosis of cancer cells. However, for a ROS-inhibitory approach to be effective, it must target ROS when they induce proliferation rather than apoptosis. On the basis of recent advances in redox biology, this review underlined a differential regulation of prooxidant and antioxidant system, respective to the stage of cancer. At early precancerous and neoplastic stages, antioxidant activity decreases and ROS appear to promote cancer initiation via inducing oxidative damage and base pair substitution mutations in prooncogenes and tumor suppressor genes, such as RAS and TP53, respectively. Whereas in late stages of cancer progression, tumor cells escape apoptosis by producing high levels of intracellular antioxidants, like NADPH and GSH, via the pentose phosphate pathway to buffer the excessive production of ROS and related intratumor oxidative injuries. Therefore, antioxidants should be prohibited in patients with advanced stages of cancer and/or undergoing anticancer therapies. Interestingly, the biochemical and biophysical properties of some polyphenols allow them to selectively recognize tumor cells. This characteristic was exploited to design and deliver nanoparticles coated with low doses of polyphenols and containing chemotherapeutic drugs into tumor-bearing animals. First results are encouraging, which may revolutionize the conventional use of antioxidants in cancer.
Collapse
Affiliation(s)
- Mohamad Assi
- Laboratory “Movement, Sport and Health Sciences,” University of Rennes II-Ecole Normale Superieur Rennes, France
| |
Collapse
|
9
|
Ungsurungsie M, Surh YJ, Toyokuni S, Davies MJ. Special issue for the 7th Biennial Meeting of Society for Free Radical Research-Asia (SFRR-Asia 2015 Thailand). Free Radic Res 2017; 50:1045-1046. [PMID: 27733067 DOI: 10.1080/10715762.2016.1245859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|