1
|
Pandey A, Rath G, Chawala R, Goyal AK. A comprehensive review on liraglutide and novel nanocarrier-based systems for the effective delivery of liraglutide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03918-1. [PMID: 40014122 DOI: 10.1007/s00210-025-03918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) analogs are synthetic derivatives of the natural incretin hormone GLP-1, which plays a crucial role in glucose metabolism. These analogs mimic the function of endogenous GLP-1 by stimulating insulin secretion, suppressing glucagon release, delaying gastric emptying, and promoting satiety, making them effective for managing type 2 diabetes mellitus (T2DM) and obesity. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, has gained considerable attention for its potential in treating type 2 diabetes mellitus, obesity, and cardiovascular disorders. However, its therapeutic application is significantly hindered by poor absorption, a short biological half-life, and unintended off-target effects, necessitating advanced drug delivery strategies. To address these challenges, various nanocarrier-based systems-such as nanofibers, liposomes, polymeric nanoparticles, exosomes, hydrogels, and lipid nanoparticles-have been explored. These nanocarriers facilitate site-specific and sustained release of liraglutide, improving its bioavailability and therapeutic efficacy. This article provides a comprehensive overview of liraglutide's pharmacological properties, preclinical studies, and the potential of different nanocarrier-based approaches in optimizing its delivery for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Ajay Pandey
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Ruchi Chawala
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India, 221005
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
2
|
Zhang R, Yao X, Gao S, Xu T, Wang D, Sha L, Yang L. Sustained Delivery of Liraglutide Using Multivesicular Liposome Based on Mixed Phospholipids. Pharmaceutics 2025; 17:203. [PMID: 40006570 PMCID: PMC11859442 DOI: 10.3390/pharmaceutics17020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Although peptides are widely used in the clinical treatment of various diseases due to their strong biological activity, they usually require frequent injections owing to their poor in vivo half-life. Therefore, there is a strong clinical need for sustained peptide formulations. Methods: In this study, liraglutide (Lir) and biocompatible multivesicular liposomes (MVLs) were utilized as the model drug and sustained-release carriers, respectively. The drug release rate of Lir-MVLs was controlled by changing the ratio of SPC and DEPC with different phase transition temperatures (PTT, PTTSPC = -20 °C, PTTDEPC = 13 °C). Results: As the SPC ratio increased, Lir-MVLs had more flexible lipid membranes, poorer structural stabilization, and fewer internal vesicles with larger particle sizes, contributing to faster release of Lir. After subcutaneous injection of Lir-MVLs, the blood glucose concentration (BGC) of db/db mice decreased to different levels. When the SPC-DEPC ratio was greater than 85:15, the drug release rate was too fast; the BGC remained below 16 mM for only 2-4 days, while when the drug release rate was too slow, was the case when the SPC-DEPC ratio was less than 50:50, the BGC also remained below 16 mM for only 2-3 days. However, when the SPC-DEPC ratio was 75:25, the BGC could be maintained below 16 mM for 8 days, indicating that the release properties of this ratio best met the pharmacological requirements of Lir. Conclusions: This study investigated the effects of phospholipids with different PTT on the release characteristics of Lir-MVLs, and provided ideas for the design of sustained-release peptide preparations.
Collapse
Affiliation(s)
- Runpeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Xinyu Yao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Siqi Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Tingting Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Da Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| | - Luping Sha
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (X.Y.); (S.G.); (T.X.); (D.W.)
| |
Collapse
|
3
|
Gao Z, Wei Y, Ge J, Liu J, Qin Y, Gong F, Ma G. Development of 1 Month Sustained-Release Microspheres Containing Liraglutide for Type 2 Diabetes Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25869-25878. [PMID: 38728411 DOI: 10.1021/acsami.4c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus (T2DM), but its 11-15 h half-life resulted in daily administration, which led to poor patient compliance. This study aimed to solve this problem by developing liraglutide-loaded microspheres with a 1 month sustained release prepared by the W1/O/W2 method combined with the premix membrane emulsification technique to improve therapeutic efficacy. Remarkably, we found that the amphiphilic properties of liraglutide successfully reduced the oil-water interfacial tension, resulting in a stable primary emulsion and decreasing the level of drug leakage into the external water phase. As a result, exceptional drug loading (>8%) and encapsulation efficiency (>85%) of microspheres were achieved. Furthermore, the uniformity in microsphere size facilitated an in-depth exploration of the structural characteristics of liraglutide-loaded microspheres. The results indicated that the dimensions of the internal cavities of the microspheres were significantly influenced by the size of the inner water droplets in the primary emulsion. A denser and more uniform cavity structure decreased the initial burst release, improving the release process of liraglutide from the microspheres. To evaluate the release behavior of liraglutide from microspheres, a set of in vitro release assays and in vivo pharmacodynamics were performed. The liraglutide-loaded microspheres effectively decreased fasting blood glucose (FBG) levels and hemoglobin A1c (HbA1c) levels while enhancing the pancreatic and hepatic functions in db/db mice. In conclusion, liraglutide sustained-release microspheres showed the potential for future clinical applications in the management of T2DM and provided an effective therapeutic approach to overcoming patient compliance issues.
Collapse
Affiliation(s)
- Zejing Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jia Ge
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingxuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ying Qin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fangling Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Kumar A, Mazumder R, Rani A, Pandey P, Khurana N. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update. Curr Diabetes Rev 2024; 20:e051023221768. [PMID: 37888820 DOI: 10.2174/0115733998261903230921102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
Diabetes mellitus is an irreversible, chronic metabolic disorder indicated by hyperglycemia. It is now considered a worldwide pandemic. T2DM, a spectrum of diseases initially caused by tissue insulin resistance and slowly developing to a state characterized by absolute loss of secretory action of the β cells of the pancreas, is thought to be caused by reduced insulin secretion, resistance to tissue activities of insulin, or a combination of both. Insulin secretagogues, biguanides, insulin sensitizers, alpha-glucosidase inhibitors, incretin mimetics, amylin antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors are the main medications used to treat T2DM. Several of these medication's traditional dosage forms have some disadvantages, including frequent dosing, a brief half-life, and limited absorption. Hence, attempts have been made to develop new drug delivery systems for oral antidiabetics to ameliorate the difficulties associated with conventional dosage forms. In comparison to traditional treatments, this review examines the utilization of various innovative therapies (such as microparticles, nanoparticles, liposomes, niosomes, phytosomes, and transdermal drug delivery systems) to improve the distribution of various oral hypoglycemic medications. In this review, we have also discussed some new promising candidates that have been approved recently by the US Food and Drug Administration for the treatment of T2DM, like semaglutide, tirzepatide, and ertugliflozin. They are used as a single therapy and also as combination therapy with drugs like metformin and sitagliptin.
Collapse
Affiliation(s)
- Abhishek Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Gao Z, Wei Y, Ma G. A review of recent research and development on GLP-1 receptor agonists-sustained-release microspheres. J Mater Chem B 2023; 11:11184-11197. [PMID: 37975420 DOI: 10.1039/d3tb02207b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used in treating type 2 diabetes (T2D). However, owing to their limited oral bioavailability, most commercially available GLP-1 RAs are administered through frequent subcutaneous injections, which may result in poor patient compliance during clinical treatment. To improve patients' compliance, sustained-release GLP-1 RA-loaded microspheres have been explored. This review is an overview of recent progress and research in GLP-1 RA-loaded microspheres. First, the fabrication methods of GLP-1 RA-loaded microspheres including the coacervation method, emulsion-solvent evaporation method based on agitation, premix membrane emulsification technology, spray drying, microfluidic droplet technology, and supercritical fluid technology are summarized. Next, the strategies for maintaining GLP-1 RAs' stability and activity in microspheres by adding additives and PEGylation are reviewed. Finally, the effect of particle size, drug distribution, the internal structure of microspheres, and the hydrogel/microsphere composite strategy on improved release behavior is summarized.
Collapse
Affiliation(s)
- Zejing Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Sun Q, Liang J, Lin Y, Zhang Y, Yan F, Wu W. Preparation of nano-sized multi-vesicular vesicles (MVVs) and its application in co-delivery of doxorubicin and curcumin. Colloids Surf B Biointerfaces 2023; 229:113471. [PMID: 37523805 DOI: 10.1016/j.colsurfb.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Multi-vesicular vesicles (MVVs) offer structural advantages in terms of drug encapsulation and physiological stability. In this study, we address the challenge of preparing small-sized MVVs for drug delivery. The nano-sized MVVs (∼120 nm) loaded with doxorubicin (DOX) and curcumin (CUR) (DOX/CUR@MVVs) were successfully prepared using a glass bead combined with a thin film dispersion method. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the independent non-homocentric vesicle structures of DOX/CUR@MVVs with homogeneous particle sizes. The experimental results showed high encapsulation rates of DOX and CUR in DOX/CUR@MVVs, reaching 82.5 ± 0.75 % and 85.9 ± 0.69 %, respectively. Moreover, the MVVs exhibited good biosafety and sustained release properties. Notably, the bioavailability of DOX and CUR in DOX/CUR@MVVs was enhanced compared to free DOX and CUR, with increases of 4.2 and 2.1 times, respectively. And the half-life of DOX and CUR was extended by 10 times in DOX/CUR@MVVs. In vivo antitumor experiments demonstrated that nano-sized DOX/CUR@MVVs significantly improved the antitumor activity while reducing the toxic side effects of DOX. Overall, the successful preparation of nano-sized DOX/CUR@MVVs and their potent and low-toxic antitumor effects provide a critical experimental reference for the combined antitumor therapy of MVVs and liposomes.
Collapse
Affiliation(s)
- Qiankun Sun
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ju Liang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yang Lin
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yunyun Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Fuqing Yan
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
7
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Mahjoub MA, Dadashzadeh S, Haeri A, Shahhosseini S, Abbasian Z, Nowroozi F. Doxorubicin-Loaded Multivesicular Liposomes (DepoFoam) as a Sustained Release Carrier Intended for Locoregional Delivery in Cancer Treatment: Development, Characterization, and Cytotoxicity Evaluation. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e134190. [PMID: 36896322 PMCID: PMC9990514 DOI: 10.5812/ijpr-134190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/27/2023]
Abstract
Background Despite the advantages of direct intratumoral (IT) injection, the relatively rapid withdrawal of most anti-cancer drugs from the tumor due to their small molecular size limits the effectiveness of this method of administration. To address these limitations, recently, increasing attention has been directed to using slow-release biodegradable delivery systems for IT injection. Objectives This study aimed to develop and characterize a doxorubicin-loaded DepoFoam system as an efficient controlled-release carrier to be employed for locoregional drug delivery in cancer treatment. Methods Major formulation parameters, including the molar ratio of cholesterol to the main lipid [Chol/egg phosphatidylcholine (EPC)], triolein (TO) content, and lipid-to-drug molar ratio (L/D), were optimized using a two-level factorial design approach. The prepared batches were evaluated for encapsulation efficiency (EE) and percentage of drug release (DR) after 6 and 72 hours as dependent variables. The optimum formulation (named DepoDOX) was further evaluated in terms of particle size, morphology, zeta potential, stability, Fourier-transform infrared spectroscopy, in vitro cytotoxicity, and hemolysis. Results The analysis of factorial design indicated that TO content and L/D ratio had a negative effect on EE; between these two, TO content had the greatest effect. The TO content was also the most significant component, with a negative effect on the release rate. The ratio of Chol/EPC showed a dual effect on the DR rate. Using a higher percentage of Chol slowed down the initial release phase of the drug; nevertheless, it accelerated the DR rate in the later slow phase. DepoDOX were spherical and honeycomb-like structures (≈ 9.81 μm) with a desired sustained release profile, as DR lasted 11 days. Its biocompatibility was confirmed by the results of cytotoxicity and hemolysis assays. Conclusions The in vitro characterization of optimized DepoFoam formulation demonstrated its suitability for direct locoregional delivery. DepoDOX, as a biocompatible lipid-based formulation, showed appropriate particle size, high capability for encapsulating doxorubicin, superior physical stability, and a markedly prolonged DR rate. Therefore, this formulation could be considered a promising candidate for locoregional drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Ali Mahjoub
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasian
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nowroozi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li C, Wan L, Luo J, Jiang M, Wang K. Advances in Subcutaneous Delivery Systems of Biomacromolecular Agents for Diabetes Treatment. Int J Nanomedicine 2021; 16:1261-1280. [PMID: 33628020 PMCID: PMC7898203 DOI: 10.2147/ijn.s283416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is a major threat to human health. Both its incidence and prevalence have been rising steadily over the past few decades. Biomacromolecular agents such as insulin and glucagon-like peptide 1 receptor agonists are commonly used hypoglycemic drugs that play important roles in the treatment of diabetes. However, their traditional frequent administration may cause numerous side effects, such as pain, infection or local tissue necrosis. To address these issues, many novel subcutaneous delivery systems have been developed in recent years. In this review, we survey recent developments in subcutaneous delivery systems of biomacromolecular hypoglycemic drugs, including sustained-release delivery systems and stimuli-responsive delivery systems, and summarize the advantages and limitations of these systems. Future opportunities and challenges are discussed as well.
Collapse
Affiliation(s)
- Chen Li
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Long Wan
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Jie Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingyan Jiang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China.,School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, People's Republic of China
| |
Collapse
|
10
|
Abstract
The topical and transdermal routes of drug administration are long known to the field of pharmaceutics. These routes have been explored for the delivery of a wide range of therapeutic agents over centuries. However, the anatomy of the skin and the physicochemical properties of molecules limit their transport via these routes. To overcome these challenges, a nano-phospholipid carrier called liposome was developed in the 1960s. Liposomal delivery of drugs was reported to be limited to the upper layers of skin. This led to the development of self-regulating and self-adaptable vesicles known as transfersomes. This review critically evaluates the barriers in delivery across the skin, recent advancements in liposomes, transfersomes and their impact in the pharmaceutical field.
Collapse
|
11
|
Salehi B, Mishra AP, Nigam M, Kobarfard F, Javed Z, Rajabi S, Khan K, Ashfaq HA, Ahmad T, Pezzani R, Ramírez-Alarcón K, Martorell M, Cho WC, Ayatollahi SA, Sharifi-Rad J. Multivesicular Liposome (Depofoam) in Human Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:9-21. [PMID: 33224207 PMCID: PMC7667536 DOI: 10.22037/ijpr.2020.112291.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug development is a key point in the research of new therapeutic treatments for increasing maximum drug loading and prolonged drug effect. Encapsulation of drugs into multivesicular liposomes (DepoFoam) is a nanotechnology that allow delivery of the active constituent at a sufficient concentration during the entire treatment period. This guarantees the reduction of drug administration frequency, a very important factor in a prolonged treatment. Currently, diverse DepoFoam drugs are approved for clinical use against neurological diseases and for post-surgical pain management while other are under development for reducing surgical bleeding and for post-surgical analgesia. Also, on pre-clinical trials on cancer DepoFoam can improve bioavailability and stability of the drug molecules minimizing side effects by site-specific targeted delivery. In the current work, available literature on structure, preparation and pharmacokinetics of DepoFoam are reviewed. Moreover, we investigated approved DepoFoam formulations and preclinical studies with this nanotechnology.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, 246174, Uttarakhand, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, 246174, Uttarakhand, India
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeeshan Javed
- Office for Research innovation and commercialization (ORIC) Lahore garrison University, sector-c phase VI, DHA, Lahore Pakistan
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Hafiz Ahsan Ashfaq
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Toqeer Ahmad
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED), University of Padova, via Ospedale 105, Padova 35128, Italy.,AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepcion, Concepcion 4070386, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepcion, Concepcion 4070386, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 2020; 131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
|
13
|
Rahnfeld L, Luciani P. Injectable Lipid-Based Depot Formulations: Where Do We Stand? Pharmaceutics 2020; 12:E567. [PMID: 32575406 PMCID: PMC7356974 DOI: 10.3390/pharmaceutics12060567] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
The remarkable number of new molecular entities approved per year as parenteral drugs, such as biologics and complex active pharmaceutical ingredients, calls for innovative and tunable drug delivery systems. Besides making these classes of drugs available in the body, injectable depot formulations offer the unique advantage in the parenteral world of reducing the number of required injections, thus increasing effectiveness as well as patient compliance. To date, a plethora of excipients has been proposed to formulate depot systems, and among those, lipids stand out due to their unique biocompatibility properties and safety profile. Looking at the several long-acting drug delivery systems based on lipids designed so far, a legitimate question may arise: How far away are we from an ideal depot formulation? Here, we review sustained release lipid-based platforms developed in the last 5 years, namely oil-based solutions, liposomal systems, in situ forming systems, solid particles, and implants, and we critically discuss the requirements for an ideal depot formulation with respect to the used excipients, biocompatibility, and the challenges presented by the manufacturing process. Finally, we delve into lights and shadows originating from the current setups of in vitro release assays developed with the aim of assessing the translational potential of depot injectables.
Collapse
Affiliation(s)
| | - Paola Luciani
- Pharmaceutical Technology Research Group, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;
| |
Collapse
|
14
|
Orally deliverable nanoformulation of liraglutide against type 2 diabetic rat model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
He Z, Nie T, Hu Y, Zhou Y, Zhu J, Liu Z, Liu L, Leong KW, Chen Y, Mao HQ. A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes. J Control Release 2020; 318:86-97. [DOI: 10.1016/j.jconrel.2019.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
|
16
|
Wu C, Mu H. Lipid and PLGA Microparticles for Sustained Delivery of Protein and Peptide Drugs. Pharm Nanotechnol 2019; 8:22-32. [PMID: 31663483 DOI: 10.2174/2211738507666191029160944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Solid lipid particles have a great potential in sustained drug delivery, the lipid excipients are solid at room temperature with a slow degradation rate. Poly (D, L-lactic-coglycolic acid) (PLGA) has been successfully clinically applied for the sustained delivery of peptide drugs. A recent study showed the advantage of hybrid PLGA-lipid microparticles (MPs) over PLGA MPs for the sustained delivery of peptide drug in vivo. In this paper, we briefly present PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP prepared by the double emulsion method and the spray drying method and discuss the effects of excipients on encapsulation efficiency of protein and peptide drugs in the MPs. The pros and cons of PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP as carriers for sustained delivery of protein and peptide drugs are also discussed.
Collapse
Affiliation(s)
- Chengyu Wu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK 2100, Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK 2100, Copenhagen, Denmark
| |
Collapse
|
17
|
Manna S, Wu Y, Wang Y, Koo B, Chen L, Petrochenko P, Dong Y, Choi S, Kozak D, Oktem B, Xu X, Zheng J. Probing the mechanism of bupivacaine drug release from multivesicular liposomes. J Control Release 2018; 294:279-287. [PMID: 30576748 DOI: 10.1016/j.jconrel.2018.12.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/16/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022]
Abstract
The mechanism of drug release from complex dosage forms, such as multivesicular liposomes (MVLs), is complex and oftentimes sensitive to the release environment. This challenges the design and development of an appropriate in vitro release test (IVRT) method. In this study, a commercial bupivacaine MVL product was selected as a model product and an IVRT method was developed using a modified USP 2 apparatus in conjunction with reverse-dialysis membranes. This setup allowed the use of in situ UV-Vis probes to continuously monitor the drug concentration during release. In comparison to the traditional sample-and-separate methods, the new method allowed for better control of the release conditions allowing for study of the drug release mechanism. Bupivacaine (BPV) MVLs exhibited distinct tri-phasic release characteristics comprising of an initial burst release, lag phase and a secondary release. Temperature, pH, agitation speed and release media composition were observed to impact the mechanism and rate of BPV release from MVLs. The size and morphology of the MVLs as well as their inner vesicle compartments were analyzed using cryogenic-scanning electron microscopy (cryo-SEM), confocal laser scanning microscopy and laser diffraction, where the mean diameters of the MVLs and their inner "polyhedral" vesicles were found to be 23.6 ± 11.5 μm and 1.52 ± 0.44 μm, respectively. Cryo-SEM results further showed a decrease in particle size and loss of internal "polyhedral" structure of the MVLs over the duration of release, indicating erosion and rearrangement of the lipid layers. Based on these results a potential MVL drug release mechanism was proposed, which may assist with the future development of more biorelevant IVRT method for similar formulations.
Collapse
Affiliation(s)
- Soumyarwit Manna
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yan Wang
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bonhye Koo
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Lynn Chen
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Peter Petrochenko
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yixuan Dong
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Stephanie Choi
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Darby Kozak
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Berk Oktem
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Xiaoming Xu
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
18
|
Mu H, Wang Y, Chu Y, Jiang Y, Hua H, Chu L, Wang K, Wang A, Liu W, Li Y, Fu F, Sun K. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv 2018; 25:1372-1383. [PMID: 29869520 PMCID: PMC6058521 DOI: 10.1080/10717544.2018.1474967] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bevacizumab is an anti-vascular endothelial growth factor drug that can be used to treat choroidal neovascularization (CNV). Bevacizumab-loaded multivesicular liposomes (Bev-MVLs) have been designed and developed to increase the intravitreal retention time of bevacizumab and reduce the number of injection times. In this study, Bev-MVLs with high encapsulation efficiency were prepared by double emulsification technique, and antibody activity was determined. The results revealed that 10% of human serum albumin (HSA) could preserve the activity of bevacizumab. In vitro release of Bev-MVLs appeared to be in a more sustained manner, the underlying mechanisms of Bev-MVLs indicated that bevacizumab was released from MVLs through diffusion and erosion. Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that bevacizumab could retain its structural integrity after being released from MVLs in vitro. In vivo imaging was used to evaluate the retention time of antibody in rat eyes, while pharmacokinetic analysis was performed on rabbit eyes. These results indicated that Bev-MVLs exhibited sustained release effects as compared to bevacizumab solution (Bev-S). Bev-MVLs could effectively inhibit the thickness of CNV lesion as compared to Bev-S at 28 days after treatment. Furthermore, these data suggest that Bev-MVLs are biologically feasible to increase the retention time of bevacizumab in vitreous humor. This novel Bev-MVLs may therefore serve as a promising sustained release drug delivery system for the treatment of CNV.
Collapse
Affiliation(s)
- Hongjie Mu
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Yiyun Wang
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Yongchao Chu
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Ying Jiang
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Hongchen Hua
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Liuxiang Chu
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Kaili Wang
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Aiping Wang
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| | - Wanhui Liu
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Shandong Luye Pharmaceutical Co., Ltd. , Yantai , Shandong Province , People's Republic of China
| | - Youxin Li
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Shandong Luye Pharmaceutical Co., Ltd. , Yantai , Shandong Province , People's Republic of China
| | - Fenghua Fu
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China.,b State Key Laboratory of Long-Acting and Targeting Drug Delivery System , Shandong Luye Pharmaceutical Co., Ltd. , Yantai , Shandong Province , People's Republic of China
| | - Kaoxiang Sun
- a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education , Yantai University , Yantai , Shandong Province , People's Republic of China
| |
Collapse
|
19
|
Li WJ, Lian YW, Guan QS, Li N, Liang WJ, Liu WX, Huang YB, Cheng Y, Luo H. Liver-targeted delivery of liposome-encapsulated curcumol using galactosylated-stearate. Exp Ther Med 2018; 16:925-930. [PMID: 30112045 PMCID: PMC6090458 DOI: 10.3892/etm.2018.6210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Liver-targeted drug delivery improves the efficacy of anti-liver cancer agents and reduces systemic toxicity by limiting the bioavailability of these drugs to within tumors. Liver targeting reagents with galactose residues, which selectively combine to asialoglyco protein receptors, have previously been used to improve liposome-encapsulated drug accumulation within liver cells. They lead to a reduction in liver cancer cell growth and have been used to cure certain hepatic diseases. In the present study, curcumol, which is the primary active component of Chinese traditional medicine Rhizoma zedoariae, was encapsulated in galactosylated-liposomes to enhance its anti-liver cancer efficacy. Galactosylated-liposomes and normal liposomes were labeled with propidium iodide. Galactosylated-liposomes with increasing concentrations of galactosylated-stearate (Gal-s) had a notably increased level of uptake in HepG2 cells (hepatoblastoma) compared with SGC-7901 (gastric cancer) and A549 (non-small cell lung cancer) cells. When the percentage of Gal-s reached 20%, liposome uptake plateaued. In the in vitro anti-liver cancer experiment, the anti-liver cancer efficacy of galactosylated-curcumol-liposomes increased significantly more compared with normal curcumol liposomes and free curcumol as indicated by cell survival rate and lactate dehydrogenase release rate. Collectively, these results demonstrate that galactosylated-liposomes are able to enhance the in vitro liver-targeting effect and anti-liver cancer efficacy of curcumol.
Collapse
Affiliation(s)
- Wen-Jie Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - You-Wen Lian
- Laboratory Animal Center, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Quan-Sheng Guan
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wen-Jun Liang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Wen-Xin Liu
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yong-Bin Huang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yi Cheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hui Luo
- Chemistry Teaching and Research Section, The Key Laboratory of Zhanjiang for R&D Marine Microbial Resources in The Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
20
|
Chen C, Jie X, Ou Y, Cao Y, Xu L, Wang Y, Qi R. Nanoliposome improves inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Nanomedicine (Lond) 2017; 12:1791-1800. [DOI: 10.2217/nnm-2017-0119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: To prepare naringenin nanoliposome (NRG-Nanolipo) and investigate its inhibitory effects on nonalcoholic fatty liver disease (NAFLD). Materials & methods: NRG-Nanolipo was prepared by thin-film rehydration method. Its characterizations and effects on NAFLD in mice induced by methionine choline deficient diet were investigated. Results: NRG-Nanolipo had high-drug loading percentage and showed a sustained release profile. The nanoliposome formulation significantly increased oral absorption of naringenin (NRG). NRG-Nanolipo showed comparable inhibitory effects as NRG crude drug at a dose fourfold lower than the crude drug on NAFLD. Conclusion: It is the first study to report the inhibitory effects of NRG on NAFLD, and the NRG-Nanolipo significantly improved oral absorption of NRG, thus improved liver protective effects of NRG on NAFLD.
Collapse
Affiliation(s)
- Cong Chen
- Peking University Institute of Cardiovascular Sciences, Beijing Key Laboratory of Molecular Pharmaceutics & New Drug Delivery Systems, Peking University Health Science Center, Peking University, 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Xu Jie
- School of Pharmaceutical Sciences & Innovative Drug Research Center, Chongqing University, 55 Daxuecheng South Rd., Shapingba District, Chongqing 401331, China
| | - Yangjie Ou
- Peking University Institute of Cardiovascular Sciences, Beijing Key Laboratory of Molecular Pharmaceutics & New Drug Delivery Systems, Peking University Health Science Center, Peking University, 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Beijing Key Laboratory of Molecular Pharmaceutics & New Drug Delivery Systems, Peking University Health Science Center, Peking University, 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Lu Xu
- Peking University Institute of Cardiovascular Sciences, Beijing Key Laboratory of Molecular Pharmaceutics & New Drug Delivery Systems, Peking University Health Science Center, Peking University, 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Yunxia Wang
- Peking University Institute of Cardiovascular Sciences, Beijing Key Laboratory of Molecular Pharmaceutics & New Drug Delivery Systems, Peking University Health Science Center, Peking University, 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Beijing Key Laboratory of Molecular Pharmaceutics & New Drug Delivery Systems, Peking University Health Science Center, Peking University, 38 Xueyuan Rd., Haidian District, Beijing 100191, China
| |
Collapse
|