1
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Chavan DD, Bhosale RR, Thorat VM, Shete AS, Patil SJ, Tiwari DD. Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors. Cureus 2024; 16:e70312. [PMID: 39469411 PMCID: PMC11513206 DOI: 10.7759/cureus.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The purpose of nanotechnology-based drug delivery systems or novel drug delivery systems is to improve the effectiveness of therapy, and their promising properties have led to their increasing significance in the management of cancer. The researchers have primarily focused on designing novel nanocarriers, like nanoparticles (NPs), that can effectively deliver drugs to target cells and respond specifically to conditions particular to cancer. Whether passive or active targeting, these nanocarriers can deliver therapeutic cargoes to the tumor site to release the drug from the drug delivery systems. The purpose of this study is to provide recent scientific literature and key findings to researchers as well as the scientific community from the medical and pharmaceutical domains by reporting current advancements in the development of NPs for the treatment of different malignant solid tumors, such as colorectal, pancreatic, prostate, and cervical cancer.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| |
Collapse
|
3
|
Protective role of Decylubiquinone against secondary melanoma at lung in B16F10 induced mice by reducing E-cadherin expression and ameliorating ROCKII-Limk1/2-Cofiliin mediated metastasis. Cell Signal 2023; 101:110486. [PMID: 36208704 DOI: 10.1016/j.cellsig.2022.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Melanoma is one of the most consequential skin cancer with a rising death incidences. Silent but belligerent nature of metastatic sprouting is the leading cause of melanoma related mortality. Invasion of metastatic cells and re-expression of E-Cadherin play the crucial role in the establishment of secondary tumor at distal sites. Thus, manipulation of tumor cell invasion in parallel to regulation of E-Cadherin expression can be considered as potential anti-metastatic strategy. Evidences suggested key role of reactive oxygen species associated ROCK activities in the modulation of metastatic invasion via F-actin stabilization. Here, we first-time report Decylubiquinone, a dietary Coenzyme Q10 analog, as an effective attenuator of pulmonary metastatic melanoma in C57BL/6 mice. Current study depicted detailed molecular interplay associated with Decylubiquinone mediated phosphorylation of ROCKII at Tyr722 along with reduced phosphorylation of ROCKII Ser1366 leading to suppression of Limk1/2-Cofilin-F-actin stabilization axis that finally restricted B16F10 melanoma cell invasion at metastatic site. Analysis further deciphered the role of HNF4α as its nuclear translocation modulated E-Cadherin expression, the effect of reactive oxygen species dependent ROCKII activity in secondarily colonized B16F10 melanoma cells at lungs. Thus unbosoming of related signal orchestra represented Decylubiquinone as a potential remedial agent against secondary lung melanoma.
Collapse
|
4
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
5
|
Gao D, Asghar S, Ye J, Zhang M, Hu R, Wang Y, Huang L, Yuan C, Chen Z, Xiao Y. Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer. Carbohydr Polym 2022; 294:119785. [DOI: 10.1016/j.carbpol.2022.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
6
|
Chen D, Zhang P, Li M, Li C, Lu X, Sun Y, Sun K. Hyaluronic acid-modified redox-sensitive hybrid nanocomplex loading with siRNA for non-small-cell lung carcinoma therapy. Drug Deliv 2022; 29:574-587. [PMID: 35156491 PMCID: PMC8856077 DOI: 10.1080/10717544.2022.2032874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A novel hyaluronic acid (HA)-modified hybrid nanocomplex HA-SeSe-COOH/siR-93C@PAMAM, which could efficiently deliver siRNA into tumor cells via a redox-mediated intracellular disassembly, was constructed for enhanced antitumor efficacy. Thereinto, siR-93C (siRNA) and positive PAMAM were firstly mixed into the electrostatic nano-intermediate, and then diselenide bond (-SeSe-)-modified HA was coved to shield excessive positive charges. This hybrid nanocomplex displayed uniform dynamic sizes, high stability, controlled zeta potential and narrow PDI distribution. Moreover, the -SeSe- linkage displayed GSH/ROS dual responsive properties, improving intracellular trafficking of siRNA. In vitro assays in A549 cell line presented that HA-SeSe-COOH/siR-93C@PAMAM has low cytotoxicity, rapid lysosomal escape and significant transfection efficiency; besides, an efficient proliferation inhibition ability and enhanced apoptosis. Furthermore, in animal studies, this negative-surfaced hybrid nanocomplex showed a prolonged circulation in blood and improved inhibition of tumor growth. All these results verified our hypothesis in this study that diselenide bonds-modified HA could promote not only stability and safety of nanoparticles in vivo but also intracellular behavior of siRNA via redox-dual sensitive properties; furthermore, this hybrid nanocomplex provided a visible potential approach for siRNA delivery in the antitumor field.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Minghui Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Congcong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Xiaoyan Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Yiying Sun
- Shandong International Biotechnology Park Development Co. Ltd, Yantai, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| |
Collapse
|
7
|
Mundekkad D, Cho WC. Nanoparticles in Clinical Translation for Cancer Therapy. Int J Mol Sci 2022; 23:1685. [PMID: 35163607 PMCID: PMC8835852 DOI: 10.3390/ijms23031685] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
The advent of cancer therapeutics brought a paradigm shift from conventional therapy to precision medicine. The new therapeutic modalities accomplished through the properties of nanomaterials have extended their scope in cancer therapy beyond conventional drug delivery. Nanoparticles can be channeled in cancer therapy to encapsulate active pharmaceutical ingredients and deliver them to the tumor site in a more efficient manner. This review enumerates various types of nanoparticles that have entered clinical trials for cancer treatment. The obstacles in the journey of nanodrug from clinic to market are reviewed. Furthermore, the latest developments in using nanoparticles in cancer therapy are also highlighted.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
8
|
Wang R, Zhang Z, Liu B, Xue J, Liu F, Tang T, Liu W, Feng F, Qu W. Strategies for the design of nanoparticles: starting with long-circulating nanoparticles, from lab to clinic. Biomater Sci 2021; 9:3621-3637. [PMID: 34008587 DOI: 10.1039/d0bm02221g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Short half-life is one of the main causes of drug attrition in clinical development, which also leads to the failure of many leading compounds and hits to become drug candidates. Nowadays, nanomaterials have been applied to drug development to address this problem. In fact, the clinical application of nanoparticles (NPs) is severely limited due to their rapid elimination by the reticuloendothelial system (RES) in vivo. In this paper, we aim to summarize representative strategies on prolonging the circulation time for bridging the gap between excellent pharmaceutics and proper half-life and encourage clinical translation.
Collapse
Affiliation(s)
- Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Bowen Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Jingwei Xue
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China and Taian City institute of Digestive Disease, Taian City Central Hospital, Taian, 271000, China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital, Taian City Central Hospital, Taian, 271000, China and Pharmaceutical Department, Taian City Central Hospital, Taian, 271000, China
| | - Tongzhong Tang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China. and Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
9
|
Zhang Y, Khan AR, Yang X, Fu M, Wang R, Chi L, Zhai G. Current advances in versatile metal-organic frameworks for cancer therapy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Guan Q, Zhou L, Lv F, Li W, Li Y, Dong Y. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO
3
for Synergistic Tumor Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Le‐Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Fan‐Hong Lv
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Wen‐Yan Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yan‐An Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yu‐Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
11
|
Guan Q, Zhou L, Lv F, Li W, Li Y, Dong Y. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO
3
for Synergistic Tumor Therapy. Angew Chem Int Ed Engl 2020; 59:18042-18047. [DOI: 10.1002/anie.202008055] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Le‐Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Fan‐Hong Lv
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Wen‐Yan Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yan‐An Li
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| | - Yu‐Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Key Laboratory of Molecular and Nano Probes Ministry of Education Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|