1
|
Aragón-Navas A, Rodrigo MJ, Munuera I, García-Herranz D, Subías M, Villacampa P, García-Feijoo J, Pablo L, Garcia-Martin E, Herrero-Vanrell R, Bravo-Osuna I. Multi-loaded PLGA microspheres as neuroretinal therapy in a chronic glaucoma animal model. Drug Deliv Transl Res 2025; 15:1660-1684. [PMID: 39361228 PMCID: PMC11968513 DOI: 10.1007/s13346-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 04/04/2025]
Abstract
This work focused on the co-encapsulation and simultaneous co-delivery of three different neuroprotective drugs in PLGA (poly(lactic-co-glycolic acid) microspheres for the treatment of glaucoma. For formulation optimization, dexamethasone (anti-inflammatory) and ursodeoxycholic acid (anti-apoptotic) were co-loaded by the solid-in-oil-in-water emulsion solvent extraction-evaporation technique as a first step. The incorporation of a water-soluble co-solvent (ethanol) and different amounts of dexamethasone resulted critical for the encapsulation of the neuroprotective agents and their initial release. The optimized formulation was obtained with 60 mg of dexamethasone and using an 80:20 dichloromethane:ethanol ratio. In the second step in the microencapsulation process, the incorporation of the glial cell line-derived neurotrophic factor (GDNF) was performed. The final prototype showed encapsulation efficiencies for each component above 50% with suitable properties for long-term application for at least 3 months. Physicochemical studies were performed by SEM, TEM, DSC, XRD, and gas chromatography. The evaluation of the kinetic release by the Gallagher-Corrigan analysis with Gorrasi correction helped to understand the influence of the co-microencapsulation on the delivery of the different actives from the optimized formulation. The final prototype was tested in a chronic glaucoma animal model. Rats received two intravitreal injections of the neuroprotective treatment within a 24-week follow-up study. The proposed formulation improved retinal ganglion cell (RGC) functionality examined by electroretinography. Also, it was able to maintain a neuroretinal thickness similar to that of healthy animals scanned by in vivo optical coherence tomography, and a higher RGC count on histology compared to glaucomatous animals at the end of the study.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Maria Jesus Rodrigo
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Inés Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga S/N, 08907, L'Hospitalet de Llobregat, Spain
| | - Julián García-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Luis Pablo
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
- Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - Elena Garcia-Martin
- National Ocular Research Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002), Carlos III Health Institute, Madrid, Spain
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
- University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
2
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Garcia-Herranz D, Garcia-Feijoo J, Herrero-Vanrell R, Pablo L, Bravo-Osuna I, Munuera I, Garcia-Martin E. Influence of sex on chronic steroid-induced glaucoma: 24-Weeks follow-up study in rats. Exp Eye Res 2024; 238:109736. [PMID: 38036216 DOI: 10.1016/j.exer.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The objective was to evaluate ocular changes based on sex in steroid-induced glaucoma models in rats comparing healthy controls, over 24 weeks follow-up. Eighty-nine Long-Evans rats (38 males and 51 females) with steroid-induced glaucoma were analysed. Two steroid-induced glaucoma models were generated by injecting poly-co-lactic-glycolic acid microspheres loaded with dexamethasone (MMDEX model) and dexamethasone-fibronectin (MMDEXAFIBRO model) into the ocular anterior chamber. Intraocular pressure was measured by rebound tonometer Tonolab®. Neuroretinal function was analysed using dark- and light-adapted electroretinography (Roland consult® RETIanimal ERG), and structure was analysed using optical coherence tomography (OCT Spectralis, Heidelberg® Engineering) using Retina Posterior Pole, Retinal Nerve Fibre Layer and Ganglion Cell Layer protocols over 24 weeks. Males showed statistically (p < 0.05) higher intraocular pressure measurements. In both sexes and models neuroretinal thickness tended to decrease over time. In the MMDEX model, males showed higher IOP values and greatest percentage thickness loss in the Ganglion Cell Layer (p = 0.015). Females receiving MMDEXAFIBRO experienced large fluctuations in thickness, a higher percentage loss (on average) in Retina Posterior Pole (p = 0.035), Retinal Nerve Fibre Layer and Ganglion Cell Layer than aged-matched males, and the highest thickness loss rate by mmHg. Although no difference was found by sex in dark- and light-adapted electroretinography, increased amplitude in photopic negative response was found in MMDEX males and MMDEXAFIBRO females at 12 weeks. Although both glaucoma models used dexamethasone, different intraocular pressure and neuroretinal changes were observed depending on sex and other influential cofactors (fibronectin). Both sex and the induced glaucoma model influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain
| | - T Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - M Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - S Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - D Garcia-Herranz
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain
| | - J Garcia-Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Ophthalmology, San Carlos Clinical Hospital, Complutense University of Madrid, Spain
| | - R Herrero-Vanrell
- National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - L Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - I Bravo-Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - I Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain.
| |
Collapse
|
3
|
Patel PD, Kodati B, Clark AF. Role of Glucocorticoids and Glucocorticoid Receptors in Glaucoma Pathogenesis. Cells 2023; 12:2452. [PMID: 37887296 PMCID: PMC10605158 DOI: 10.3390/cells12202452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
The glucocorticoid receptor (GR), including both alternative spliced isoforms (GRα and GRβ), has been implicated in the development of primary open-angle glaucoma (POAG) and iatrogenic glucocorticoid-induced glaucoma (GIG). POAG is the most common form of glaucoma, which is the leading cause of irreversible vision loss and blindness in the world. Glucocorticoids (GCs) are commonly used therapeutically for ocular and numerous other diseases/conditions. One serious side effect of prolonged GC therapy is the development of iatrogenic secondary ocular hypertension (OHT) and OAG (i.e., GC-induced glaucoma (GIG)) that clinically and pathologically mimics POAG. GC-induced OHT is caused by pathogenic damage to the trabecular meshwork (TM), a tissue involved in regulating aqueous humor outflow and intraocular pressure. TM cells derived from POAG eyes (GTM cells) have a lower expression of GRβ, a dominant negative regulator of GC activity, compared to TM cells from age-matched control eyes. Therefore, GTM cells have a greater pathogenic response to GCs. Almost all POAG patients develop GC-OHT when treated with GCs, in contrast to a GC responder rate of 40% in the normal population. An increased expression of GRβ can block GC-induced pathogenic changes in TM cells and reverse GC-OHT in mice. The endogenous expression of GRβ in the TM may relate to differences in the development of GC-OHT in the normal population. A number of studies have suggested increased levels of endogenous cortisol in POAG patients as well as differences in cortisol metabolism, suggesting that GCs may be involved in the development of POAG. Additional studies are warranted to better understand the molecular mechanisms involved in POAG and GIG in order to develop new disease-modifying therapies to better treat these two sight threatening forms of glaucoma. The purpose of this timely review is to highlight the pathological and clinical features of GC-OHT and GIG, mechanisms responsible for GC responsiveness, potential therapeutic options, as well as to compare the similar features of GIG with POAG.
Collapse
Affiliation(s)
| | | | - Abbot F. Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.D.P.); (B.K.)
| |
Collapse
|
4
|
Aragón-Navas A, Rodrigo MJ, Garcia-Herranz D, Martinez T, Subias M, Mendez S, Ruberte J, Pampalona J, Bravo-Osuna I, Garcia-Feijoo J, Pablo LE, Garcia-Martin E, Herrero-Vanrell R. Mimicking chronic glaucoma over 6 months with a single intracameral injection of dexamethasone/fibronectin-loaded PLGA microspheres. Drug Deliv 2022; 29:2357-2374. [PMID: 35904152 PMCID: PMC9341346 DOI: 10.1080/10717544.2022.2096712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To create a chronic glaucoma animal model by a single intracameral injection of biodegradable poly lactic-co-glycolic acid (PLGA) microspheres (Ms) co-loaded with dexamethasone and fibronectin (MsDexaFibro). MsDexaFibro were prepared by a water-in-oil-in-water emulsion method including dexamethasone in the organic phase and fibronectin in the inner aqueous phase. To create the chronic glaucoma model, an interventionist and longitudinal animal study was performed using forty-five Long Evans rats (4-week-old). Rats received a single intracameral injection of MsDexafibro suspension (10%w/v) in the right eye. Ophthalmological parameters such as clinical signs, intraocular pressure (IOP), neuro-retinal functionality by electroretinography (ERG), retinal structural analysis by optical coherence tomography (OCT), and histology were evaluated up to six months. According to the results obtained, the model proposed was able to induce IOP increasing in both eyes over the study, higher in the injected eyes up to 6 weeks (p < 0.05), while preserving the ocular surface. OCT quantified progressive neuro-retinal degeneration (mainly in the retinal nerve fiber layer) in both eyes but higher in the injected eye. Ganglion cell functionality decreased in injected eyes, thus smaller amplitudes in PhNR were detected by ERG. In conclusion, a new chronic glaucoma animal model was created by a single injection of MsDexaFibro very similar to open-angle glaucoma occurring in humans. This model would impact in different fields such as ophthalmology, allowing long period of study of this pathology; pharmacology, evaluating the neuroprotective activity of active compounds; and pharmaceutical technology, allowing the correct evaluation of the efficacy of long-term sustained ocular drug delivery systems.
Collapse
Affiliation(s)
- Alba Aragón-Navas
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - María J Rodrigo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - David Garcia-Herranz
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain
| | - Teresa Martinez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Manuel Subias
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Silvia Mendez
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Judit Pampalona
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Irene Bravo-Osuna
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Julian Garcia-Feijoo
- National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis E Pablo
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Elena Garcia-Martin
- Instituto de Investigación Sanitaria de Aragón, Hospital Universitario Miguel Servet, Universidad de Zaragoza, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Complutense University, Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid Spain, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Research Institute of the San Carlos Clinical Hospital (IdISSC), Grupo de Investigación Innovación Farmacéutica en Oftalmología, Madrid, Spain.,National Ocular Pathology Network (OFTARED) Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
5
|
Rodrigo MJ, Bravo-Osuna I, Subias M, Montolío A, Cegoñino J, Martinez-Rincón T, Mendez-Martinez S, Aragón-Navas A, Garcia-Herranz D, Pablo LE, Herrero-Vanrell R, del Palomar AP, Garcia-Martin E. Tunable degrees of neurodegeneration in rats based on microsphere-induced models of chronic glaucoma. Sci Rep 2022; 12:20622. [PMID: 36450772 PMCID: PMC9712621 DOI: 10.1038/s41598-022-24954-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study compares four different animal models of chronic glaucoma against normal aging over 6 months. Chronic glaucoma was induced in 138 Long-Evans rats and compared against 43 aged-matched healthy rats. Twenty-five rats received episcleral vein sclerosis injections (EPIm cohort) while the rest were injected in the eye anterior chamber with a suspension of biodegradable microspheres: 25 rats received non-loaded microspheres (N-L Ms cohort), 45 rats received microspheres loaded with dexamethasone (MsDexa cohort), and 43 rats received microspheres co-loaded with dexamethasone and fibronectin (MsDexaFibro cohort). Intraocular pressure, neuroretinal function, structure and vitreous interface were evaluated. Each model caused different trends in intraocular pressure, produced specific retinal damage and vitreous signals. The steepest and strongest increase in intraocular pressure was seen in the EPIm cohort and microspheres models were more progressive. The EPIm cohort presented the highest vitreous intensity and percentage loss in the ganglion cell layer, the MsDexa cohort presented the greatest loss in the retinal nerve fiber layer, and the MsDexaFibro cohort presented the greatest loss in total retinal thickness. Function decreased differently among cohorts. Using biodegradable microspheres models it is possible to generate tuned neurodegeneration. These results support the multifactorial nature of glaucoma based on several noxa.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Irene Bravo-Osuna
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Manuel Subias
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alberto Montolío
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Teresa Martinez-Rincón
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Silvia Mendez-Martinez
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Alba Aragón-Navas
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis Emilio Pablo
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- grid.4795.f0000 0001 2157 7667Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Amaya Pérez del Palomar
- grid.11205.370000 0001 2152 8769Biomaterials Group, Aragon Engineering Research Institute (I3a), University of Zaragoza, Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- grid.411106.30000 0000 9854 2756Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain ,grid.417198.20000 0000 8497 6529Thematic Research Network in Ophthalmology (Oftared), Carlos III National Institute of Health, Madrid, Spain ,grid.11205.370000 0001 2152 8769Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Zaragoza, Spain ,C/Padre Arrupe, Servicio de Oftalmología, Edificio de Consultas Externas, Planta 1, 50009 Zaragoza, Spain
| |
Collapse
|