1
|
Xinyue-Cheng, Wenjing-Gu, Xuewei-Li, Liang Y, Dehong-Liu, Hongwei-Zhou. Advances in diagnostic imaging and interventional treatment of aphasia after basal ganglia stroke. Neuroscience 2025; 564:160-170. [PMID: 39557188 DOI: 10.1016/j.neuroscience.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Post-stroke basal ganglia aphasia is an unusual and transient form of aphasia resulting from basal ganglia damage. It is commonly believed that the generation of language function primarily resides in regular language regions of the brain; however, recent findings indicate a prevalence of basal ganglia stroke aphasia as high as 22%. Subcortical structures (e.g., basal ganglia) also play an important role in language processing. Aphasia seriously affects the quality of life and functional outcomes of patients, and early diagnosis and intervention are important for the prognosis of and rehabilitation from aphasia after basal ganglia stroke. In recent years, the main diagnostic methods for basal ganglia aphasia include diffusion tensor imaging, diffusion spectral imaging, and functional magnetic resonance imaging, which explore the changes in patients with basal ganglia aphasia compared to those without from the perspectives of fiber tract imaging and brain function alteration, respectively, and are able to predict the recovery of patients before and after treatment. Treatment for post-stroke basal ganglia aphasia includes transcranial magnetic stimulation, a recent emerging therapeutic technique, in addition to conventional medications and speech rehabilitation. Consequently, understanding this condition is crucial. This review delves into its causes, imaging methods, and therapeutic interventions, offering a systematic and comprehensive analysis of these aspects.
Collapse
Affiliation(s)
- Xinyue-Cheng
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Wenjing-Gu
- Department of Otorlaryngology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Xuewei-Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Yuchen Liang
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Dehong-Liu
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Hongwei-Zhou
- Department of Radiology, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Li XY, Hu R, Lou TX, Liu Y, Ding L. Global research trends in transcranial magnetic stimulation for stroke (1994-2023): promising, yet requiring further practice. Front Neurol 2024; 15:1424545. [PMID: 39268062 PMCID: PMC11390666 DOI: 10.3389/fneur.2024.1424545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Scholars have been committed to investigating stroke rehabilitation strategies over many years. Since its invention, transcranial magnetic stimulation (TMS) has been increasingly employed in contemporary stroke rehabilitation research. Evidence has shown the significant potential of TMS in stroke research and treatment. Objective This article reviews the research conducted on the use of TMS in stroke from 1994 to 2023. This study applied bibliometric analysis to delineate the current research landscape and to anticipate future research hotspots. Method The study utilized the Web of Science Core Collection to retrieve and acquire literature data. Various software tools, including VOSviewer (version 1.6.19), CiteSpace (version 6.3.R1), Scimago Graphica (version 1.0.36), and WPS (version 11572), were used for data analysis and visualization. The review included analyses of countries, institutions, authors, journals, articles, and keywords. Results A total of 3,425 articles were collected. The top three countries in terms of publication output were the United States (953 articles), China (546 articles), and Germany (424 articles). The United States also had the highest citation counts (56,764 citations), followed by Germany (35,211 citations) and the United Kingdom (32,383 citations). The top three institutions based on the number of publications were Harvard University with 138 articles, the University of Auckland with 81 articles, and University College London with 80 articles. The most prolific authors were Abo, Masahiro with 54 articles, Fregni, Felipe with 53 articles, and Pascual-Leone, Alvaro with 50 articles. The top three journals in terms of article count were Neurorehabilitation and Neural Repair with 139 articles, Clinical Neurophysiology with 128 articles, and Frontiers in Neurology with 110 articles. The most frequently occurring keywords were stroke (1,275 occurrences), transcranial magnetic stimulation (1,119 occurrences), and rehabilitation (420 occurrences). Conclusion The application of TMS in stroke research is rapidly gaining momentum, with the USA leading in publications. Prominent institutions, such as Harvard University and University College London, show potential for collaborative research. The key areas of focus include post-stroke cognitive impairment, aphasia, and dysphagia, which are expected to remain significant hotspots in future research. Future research should involve large-scale, randomized, and controlled trials in these fields. Additionally, identifying more effective combined therapies with rTMS should be a priority.
Collapse
Affiliation(s)
- Xin-Yu Li
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Rong Hu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Tian-Xiao Lou
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Yang Liu
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| | - Ling Ding
- Department of Rehabilitation and Traditional Chinese Medicine, Institute of Rehabilitation and Health Care, Hunan College of Traditional Chinese Medicine, Zhu Zhou, China
| |
Collapse
|
3
|
Alduais A, Alarifi HS, Alfadda H. Using Biosensors to Detect and Map Language Areas in the Brain for Individuals with Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1535. [PMID: 39061672 PMCID: PMC11275263 DOI: 10.3390/diagnostics14141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The application of biosensors in neurolinguistics has significantly advanced the detection and mapping of language areas in the brain, particularly for individuals with brain trauma. This study explores the role of biosensors in this domain and proposes a conceptual model to guide their use in research and clinical practice. The researchers explored the integration of biosensors in language and brain function studies, identified trends in research, and developed a conceptual model based on cluster and thematic analyses. Using a mixed-methods approach, we conducted cluster and thematic analyses on data curated from Web of Science, Scopus, and SciSpace, encompassing 392 articles. This dual analysis facilitated the identification of research trends and thematic insights within the field. The cluster analysis highlighted Functional Magnetic Resonance Imaging (fMRI) dominance and the importance of neuroplasticity in language recovery. Biosensors such as the Magnes 2500 watt-hour (WH) neuromagnetometer and microwire-based sensors are reliable for real-time monitoring, despite methodological challenges. The proposed model synthesizes these findings, emphasizing biosensors' potential in preoperative assessments and therapeutic customization. Biosensors are vital for non-invasive, precise mapping of language areas, with fMRI and repetitive Transcranial Magnetic Stimulation (rTMS) playing pivotal roles. The conceptual model serves as a strategic framework for employing biosensors and improving neurolinguistic interventions. This research may enhance surgical planning, optimize recovery therapies, and encourage technological advancements in biosensor precision and application protocols.
Collapse
Affiliation(s)
- Ahmed Alduais
- Department of Human Sciences (Psychology), University of Verona, 37129 Verona, Italy
| | - Hessah Saad Alarifi
- Department of Educational Administration, College of Education, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hind Alfadda
- Department of Curriculum and Instruction, College of Education, King Saud University, Riyadh 11362, Saudi Arabia;
| |
Collapse
|
4
|
Liu Q, Li W, Chen Y, Zhang S, Sun Z, Yang Y, Lv P, Yin Y. Effects of repetitive transcranial magnetic stimulation combined with music therapy in non-fluent aphasia after stroke: A randomised controlled study. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:1211-1222. [PMID: 38088533 DOI: 10.1111/1460-6984.12991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/11/2023] [Indexed: 05/09/2024]
Abstract
BACKGROUND Although existing studies have shown that both repetitive transcranial magnetic stimulation (rTMS) and music therapy have advantages in the treatment of non-fluent aphasia, the efficacy of the combination of these two methods remains to be investigated. AIMS To investigate the clinical efficacy of low-frequency rTMS combined with music therapy on language function and depression in patients with non-fluent aphasia after stroke. METHODS & PROCEDURES A single-blind parallel randomised controlled trial was conducted. Sixty patients (mean duration = 93.78 days) with non-fluent aphasia after stroke were randomly divided into a traditional therapy group (n = 20), a music therapy group (n = 20) and a combined therapy group (n = 20, 1 Hz). The language function and depression were evaluated before and 3 weeks after treatment with the Chinese version of the Western Aphasia Battery scale, Boston Diagnostic Aphasia Examination scale and Stroke Aphasic Depression Questionnaire Hospital Version scale. OUTCOMES & RESULTS The combined therapy group was significantly better in all outcomes than the traditional therapy group and was significantly better in depression than the music therapy group. The music therapy group was significantly better in repetition and depression than the traditional therapy group. Language improvement was positively correlated with depression improvement. For adverse events, only two patients in the combined therapy group showed slight dizziness during rTMS treatment and their symptoms improved after rest. CONCLUSIONS & IMPLICATIONS Our preliminary randomised controlled study indicates that low-frequency rTMS combined with music therapy is feasible and safe in improving language function and depression in non-fluent aphasia patients after stroke. WHAT THIS PAPER ADDS What is already known on this subject Repetitive transcranial magnetic stimulation (rTMS) and music therapy respectively have advantages in the treatment of non-fluent aphasia after stroke, but whether the combination of the two methods is more effective is still unknown. What this paper adds to the existing knowledge This is one of the first randomised control trials to investigate whether the clinical efficacy of low-frequency rTMS combined music therapy for non-fluent aphasia is better. The findings show that low-frequency rTMS combined music therapy is superior to traditional therapy in spontaneous speech, auditory comprehension, repetition, naming, aphasia quotient, functional language level and depression, and superior to music therapy in depression, while music therapy is superior to traditional therapy in repetition and depression. What are the potential or actual clinical implications of this work? Low-frequency rTMS combined music therapy may be a better method for treatment of non-fluent aphasia.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Rehabilitation Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanwu Chen
- Department of Rehabilitation Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Shaohua Zhang
- The Eighth People's Hospital of Hebei Province, Shijiazhuang, China
| | - Zengxin Sun
- Department of Rehabilitation Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Yuhui Yang
- Department of Rehabilitation Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Peiyuan Lv
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Yu Yin
- Department of Rehabilitation Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| |
Collapse
|
5
|
Papageorgiou G, Kasselimis D, Laskaris N, Potagas C. Unraveling the Thread of Aphasia Rehabilitation: A Translational Cognitive Perspective. Biomedicines 2023; 11:2856. [PMID: 37893229 PMCID: PMC10604624 DOI: 10.3390/biomedicines11102856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Translational neuroscience is a multidisciplinary field that aims to bridge the gap between basic science and clinical practice. Regarding aphasia rehabilitation, there are still several unresolved issues related to the neural mechanisms that optimize language treatment. Although there are studies providing indications toward a translational approach to the remediation of acquired language disorders, the incorporation of fundamental neuroplasticity principles into this field is still in progress. From that aspect, in this narrative review, we discuss some key neuroplasticity principles, which have been elucidated through animal studies and which could eventually be applied in the context of aphasia treatment. This translational approach could be further strengthened by the implementation of intervention strategies that incorporate the idea that language is supported by domain-general mechanisms, which highlights the impact of non-linguistic factors in post-stroke language recovery. Here, we highlight that translational research in aphasia has the potential to advance our knowledge of brain-language relationships. We further argue that advances in this field could lead to improvement in the remediation of acquired language disturbances by remodeling the rationale of aphasia-therapy approaches. Arguably, the complex anatomy and phenomenology of aphasia dictate the need for a multidisciplinary approach with one of its main pillars being translational research.
Collapse
Affiliation(s)
- Georgios Papageorgiou
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Psychology, Panteion University of Social and Political Sciences, 17671 Athens, Greece
| | - Nikolaos Laskaris
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Industrial Design and Production Engineering, School of Engineering, University of West Attica, 12241 Athens, Greece
| | - Constantin Potagas
- Neuropsychology and Language Disorders Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
6
|
Zheng K, Xu X, Ji Y, Fang H, Gao F, Huang G, Su B, Bian L, Zhang G, Ren C. Continuous theta burst stimulation-induced suppression of the right fronto-thalamic-cerebellar circuit accompanies improvement in language performance in poststroke aphasia: A resting-state fMRI study. Front Aging Neurosci 2023; 14:1079023. [PMID: 36711202 PMCID: PMC9877515 DOI: 10.3389/fnagi.2022.1079023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Background Continuous theta burst stimulation (cTBS) is a specific paradigm of repetitive transcranial magnetic stimulation (rTMS) with an inhibitory effect on cortical excitability for up to 60 min after less than 1 min of stimulation. The right posterior superior temporal gyrus (pSTG), homotopic to Wernicke's area in the left hemisphere, may be a potential stimulation target based on its critical role in semantic processing. The objective of this study was to explore whether cTBS over the right pSTG can promote language improvements in aphasic patients and the underlying mechanism. Methods A total of 34 subjects with aphasia were randomly assigned to undergo 15 sessions of either 40-s inhibitory cTBS over the right pSTG (the cTBS group) or sham stimulation (the sham group), followed by 30 min of speech and language therapy. Subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI), and the aphasia quotient (AQ) of the Chinese version of the Western Aphasia Battery (WAB) was calculated before and after the intervention. This randomized controlled trial was registered in the Chinese Clinical Trial Registry (No. ChiCTR210052962). Results After treatment, the language performance of the cTBS group was higher than that of the sham group in terms of the WAB-AQ score (p = 0.010) and the WAB scores for auditory comprehension (p = 0.022) and repetition (p = 0.035). The fractional amplitude of low-frequency fluctuations (fALFF) was significantly decreased in the pars triangularis of the inferior frontal gyrus (IFG), right middle frontal gyrus, right thalamus, and left cerebellar crus I. Clusters in the left orbitofrontal cortex exhibited increased fALFF. The change in WAB comprehension scores were significantly correlated with the change in the fALFF of the right IFG pars triangularis in both groups. Greatly increased functional connectivity was observed between the right pars triangularis and left paracingulate gyrus and between the right pSTG and right angular gyrus and the posterior cingulate gyrus with pre-and post-treatment between the two groups. Conclusion Our findings indicate that cTBS of the right pSTG may improve language production by suppressing intrinsic activity of the right fronto-thalamic-cerebellar circuit and enhancing the involvement of the right temporoparietal region.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Xinlei Xu
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Ji
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Fang
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Fanglan Gao
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Guilan Huang
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Bin Su
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Li Bian
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China
| | - Guofu Zhang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China,Guofu Zhang, ✉
| | - Caili Ren
- Department of Neurorehabilitation, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Caili Ren, ✉
| |
Collapse
|
7
|
Low TA, Lindland K, Kirton A, Carlson HL, Harris AD, Goodyear BG, Monchi O, Hill MD, Dukelow SP. Repetitive transcranial magnetic stimulation (rTMS) combined with multi-modality aphasia therapy for chronic post-stroke non-fluent aphasia: A pilot randomized sham-controlled trial. BRAIN AND LANGUAGE 2023; 236:105216. [PMID: 36525719 DOI: 10.1016/j.bandl.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) shows promise in improving speech production in post-stroke aphasia. Limited evidence suggests pairing rTMS with speech therapy may result in greater improvements. Twenty stroke survivors (>6 months post-stroke) were randomized to receive either sham rTMS plus multi-modality aphasia therapy (M-MAT) or rTMS plus M-MAT. For the first time, we demonstrate that rTMS combined with M-MAT is feasible, with zero adverse events and minimal attrition. Both groups improved significantly over time on all speech and language outcomes. However, improvements did not differ between rTMS or sham. We found that rTMS and sham groups differed in lesion location, which may explain speech and language outcomes as well as unique patterns of BOLD signal change within each group. We offer practical considerations for future studies and conclude that while combination therapy of rTMS plus M-MAT in chronic post-stroke aphasia is safe and feasible, personalized intervention may be necessary.
Collapse
Affiliation(s)
- Trevor A Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Lindland
- Department of Allied Health, Alberta Health Services, Calgary, Alberta, Canada
| | - Adam Kirton
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Helen L Carlson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ashley D Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Hill
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Lee IT, Huang CC, Hsu PC, Lin CP, Tsai PY. Resting-State Network Changes Following Transcranial Magnetic Stimulation in Patients With Aphasia—A Randomized Controlled Study. Neuromodulation 2022; 25:528-537. [DOI: 10.1016/j.neurom.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022]
|
9
|
Comeau N, Monetta L, Schneider C. Noninvasive stimulation of the unlesioned hemisphere and phonological treatment in a case of chronic anomia post-stroke. Neurocase 2022; 28:206-217. [PMID: 35580361 DOI: 10.1080/13554794.2022.2068374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic lexical anomia after left hemisphere (LH) stroke improves under personalized phonological treatment (PT). Cortical linking between language and hand motor areas (hand_M1) questioned whether PT-related improvement relies on the unlesioned hemisphere (UH) plasticity when LH is dysfunctional. Our 70-yo-woman case study showed that 10 sessions of excitatory stimulation of UH_hand-M1 combined with PT hastened oral picture naming improvement as compared to sham+PT and changes were maintained together with changes of untrained items andcorticomotor excitability increase. This supports a role of stimulation-induced plasticity of UH_hand M1 in language recovery, at least in the improvement of lexical anomia in chronic stroke.
Collapse
Affiliation(s)
- Noémie Comeau
- Neuroscience Division, Noninvasive Neurostimulation Laboratory, Research Center of CHU de Québec - Université Laval, Québec, Canada
| | - Laura Monetta
- Faculty of Medicine Université Laval, Quebec, Canada.,Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada.,CIRRIS Research Center, Quebec, Canada
| | - Cyril Schneider
- Neuroscience Division, Noninvasive Neurostimulation Laboratory, Research Center of CHU de Québec - Université Laval, Québec, Canada.,Faculty of Medicine Université Laval, Quebec, Canada.,Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
10
|
Lin BF, Yeh SC, Kao YCJ, Lu CF, Tsai PY. Functional Remodeling Associated With Language Recovery After Repetitive Transcranial Magnetic Stimulation in Chronic Aphasic Stroke. Front Neurol 2022; 13:809843. [PMID: 35330805 PMCID: PMC8940300 DOI: 10.3389/fneur.2022.809843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has shown promising efficacy in improving the language functions in poststroke aphasia. However, randomized controlled trials were lacking to investigate the rTMS-related neuroimaging changes underlying the therapeutic effects on language improvement in chronic aphasia. Objective In this study, we aimed to evaluate the effects of low-frequency rTMS (LF-rTMS) on chronic poststroke aphasia. We hypothesized that the deactivation of the right pars triangularis could restore the balance of interhemispheric inhibition and, hence, facilitated the functional remodeling of language networks in both the hemispheres. Furthermore, the rTMS-induced functional reorganization should underpin the language recovery after rTMS. Methods A total of 33 patients (22 males; age: 58.70 ± 13.77 years) with chronic stroke in the left hemisphere and nonfluent aphasia were recruited in this randomized double-blinded study. The ratio of randomization between the rTMS and sham groups is 17:16. All the patients received real 1-Hz rTMS or sham stimulation (placebo coil delivered < 5% of magnetic output with similar audible click-on discharge) at the right posterior pars triangularis for 10 consecutive weekdays (stroke onset to the first stimulation: 10.97 ± 10.35 months). Functional connectivity of language networks measured by resting-state fMRI was calculated and correlated to the scores of the Concise Chinese Aphasia Test by using the stepwise regression analysis. Results After LF-rTMS intervention, significant improvement in language functions in terms of comprehension and expression abilities was observed compared with the sham group. The rTMS group showed a significant decrease of coupling strength between right pars triangularis and pars opercularis with a strengthened connection between right pars orbitalis and angular gyrus. Furthermore, the LF-rTMS significantly enhanced the coupling strength associated with left Wernicke area. Results of regression analysis showed that the identified functional remodeling involving both the hemispheres could support and predict the language recovery after LF-rTMS treatment. Conclusion We reported the therapeutic effects of LF-rTMS and corresponding functional remodeling in chronic poststroke aphasia. Our results provided neuroimage evidence reflecting the rebalance of interhemispheric inhibition induced by LF-rTMS, which could facilitate future research in the refinement of rTMS protocol to optimize the neuromodulation efficacy and benefit the clinical management of patients with stroke.
Collapse
Affiliation(s)
- Bing-Fong Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Ching Yeh
- Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Yi Tsai
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
Chang WK, Park J, Lee JY, Cho S, Lee J, Kim WS, Paik NJ. Functional Network Changes After High-Frequency rTMS Over the Most Activated Speech-Related Area Combined With Speech Therapy in Chronic Stroke With Non-fluent Aphasia. Front Neurol 2022; 13:690048. [PMID: 35222235 PMCID: PMC8866644 DOI: 10.3389/fneur.2022.690048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) to the lesional hemisphere requires prudence in selecting the appropriate stimulation spot. Functional near-IR spectroscopy (fNIRS) can be used in both selecting the stimulation spot and assessing the changes of the brain network. This study aimed to evaluate the effect of HF-rTMS on the most activated spot identified with fNIRS and assess the changes of brain functional network in the patients with poststroke aphasia. METHODS A total of five patients received HF-rTMS to the most activated area on the lesional hemisphere, followed by 30 min of speech therapy for 10 days. The Korean version of the Western aphasia battery (K-WAB) and fNIRS evaluation were done 1 day before the treatment, 1 day and 1 month after the last treatment session. Changes of K-WAB and paired cortical interaction and brain network analysis using graph theory were assessed. RESULTS Aphasia quotient in K-WAB significantly increased after the treatment (P = 0.043). The correlation analysis of cortical interactions showed increased connectivity between language production and processing areas. Clustering coefficients of the left hemisphere were increased over a sparsity range between 0.45 and 0.58 (0.015 < p < 0.031), whereas the clustering coefficients of the right hemisphere, decreased over a sparsity range 0.15-0.87 (0.063 < p < 0.095). The global efficiency became lower over a network sparsity range between 0.47 and 0.75 (0.015 < p < 0.063). CONCLUSION Improvement of language function and changes of corticocortical interaction between language-related cortical areas were observed after HF-rTMS on the most activated area identified by fNIRS with combined speech therapy in the patients with poststroke aphasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nam-Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| |
Collapse
|
12
|
Chou TY, Wang JC, Lin MY, Tsai PY. Low-Frequency vs. Theta Burst Transcranial Magnetic Stimulation for the Treatment of Chronic Non-fluent Aphasia in Stroke: A Proof-of-Concept Study. Front Aging Neurosci 2022; 13:800377. [PMID: 35095477 PMCID: PMC8795082 DOI: 10.3389/fnagi.2021.800377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Although low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) has shown promise in the treatment of poststroke aphasia, the efficacy of high-frequency rTMS (HF-rTMS) has yet to be determined. PURPOSE We investigated the efficacy of intermittent theta burst stimulation (iTBS) in ameliorating chronic non-fluent aphasia and compared it with that of LF-rTMS. METHODS We randomly assigned patients with poststroke non-fluent aphasia to an ipsilesional iTBS (n = 29), contralesional 1-Hz rTMS (n = 27), or sham (n = 29) group. Each group received the rTMS protocol executed in 10 daily sessions over 2 weeks. We evaluated language function before and after the intervention by using the Concise Chinese Aphasia Test (CCAT). RESULTS Compared with the sham group, the iTBS group exhibited significant improvements in conversation, description, and expression scores (P = 0.0004-0.031), which characterize verbal production, as well as in auditory comprehension, reading comprehension, and matching scores (P < 0.01), which characterize language perception. The 1-Hz group exhibited superior improvements in expression, reading comprehension, and imitation writing scores compared with the sham group (P < 0.05). The iTBS group had significantly superior results in CCAT total score, matching and auditory comprehension (P < 0.05) relative to the 1-Hz group. CONCLUSION Our study findings contribute to a growing body of evidence that ipsilesional iTBS enhances the language recovery of patients with non-fluent aphasia after a chronic stroke. Auditory comprehension was more preferentially enhanced by iTBS compared with the 1-Hz protocol. Our findings highlight the importance of ipsilesional modulation through excitatory rTMS for the recovery of non-fluent aphasia in patients with chronic stroke. CLINICAL TRIAL REGISTRATION [www.ClinicalTrials.gov], identifier [NCT03059225].
Collapse
Affiliation(s)
- Ting-Yu Chou
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Chi Wang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Yun Lin
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yi Tsai
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
13
|
Duncan ES, Shereen AD, Gentimis T, Small SL. Identifiable Patterns of Trait, State, and Experience in Chronic Stroke Recovery. Neurorehabil Neural Repair 2020; 35:158-168. [PMID: 33353461 DOI: 10.1177/1545968320981953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Considerable evidence indicates that the functional connectome of the healthy human brain is highly stable, analogous to a fingerprint. OBJECTIVE We investigated the stability of functional connectivity across tasks and sessions in a cohort of individuals with chronic stroke using a supervised machine learning approach. METHODS Twelve individuals with chronic stroke underwent functional magnetic resonance imaging (fMRI) seven times over 18 weeks. The middle 6 weeks consisted of intensive aphasia therapy. We collected fMRI data during rest and performance of 2 tasks. We calculated functional connectivity metrics for each imaging run, then applied a support vector machine to classify data on the basis of participant, task, and time point (pre- or posttherapy). Permutation testing established statistical significance. RESULTS Whole brain functional connectivity matrices could be classified at levels significantly greater than chance on the basis of participant (87.1% accuracy; P < .0001), task (68.1% accuracy; P = .002), and time point (72.1% accuracy; P = .015). All significant effects were reproduced using only the contralesional right hemisphere; the left hemisphere revealed significant effects for participant and task, but not time point. Resting state data could also be used to classify task-based data according to subject (66.0%; P < .0001). While the strongest posttherapy changes occurred among regions outside putative language networks, connections with traditional language-associated regions were significantly more positively correlated with behavioral outcome measures, and other regions had more negative correlations and intrahemispheric connections. CONCLUSIONS Findings suggest the profound importance of considering interindividual variability when interpreting mechanisms of recovery in studies of functional connectivity in stroke.
Collapse
|
14
|
Wu XL, Liu LX, Yang LY, Zhang T. Comprehensive rehabilitation in a patient with corpus callosum syndrome after traumatic brain injury: Case report. Medicine (Baltimore) 2020; 99:e21218. [PMID: 32664173 PMCID: PMC7360258 DOI: 10.1097/md.0000000000021218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Corpus callosum syndrome is a rare consequence of traumatic brain injuries. We provide a case of a patient with typical corpus callosum syndrome following a traumatic brain injury, and demonstrate neural reorganization and significant neural regeneration after comprehensive rehabilitation, using diffusion tensor imaging fiber bundle tracking. PATIENT CONCERNS We found typical clinical manifestations of damage to the corpus callosum. DIAGNOSES, INTERVENTIONS, AND OUTCOMES We diagnosed a Traumatic Brain Injury (diffuse axonal injury and rupture of corpus callosum). The patient underwent a comprehensive multifaceted rehabilitation program including drug therapy, integrated physical therapy, occupational therapy, acupuncture, music therapy, computer-aided cognitive rehabilitation training, transcranial magnetic stimulation, and hyperbaric oxygen therapy. This rehabilitation program resulted in greatly improved physical and communication ability. LESSONS Comprehensive rehabilitation can significantly improve the function of patients with corpus callosum syndrome and may cause neural remodeling, as seen on diffusion tensor imaging.
Collapse
Affiliation(s)
- Xiao-Li Wu
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | | | | | | |
Collapse
|
15
|
Versace V, Schwenker K, Langthaler PB, Golaszewski S, Sebastianelli L, Brigo F, Pucks-Faes E, Saltuari L, Nardone R. Facilitation of Auditory Comprehension After Theta Burst Stimulation of Wernicke's Area in Stroke Patients: A Pilot Study. Front Neurol 2020; 10:1319. [PMID: 31969857 PMCID: PMC6960103 DOI: 10.3389/fneur.2019.01319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022] Open
Abstract
Introduction: Single-pulse transcranial magnetic stimulation (TMS) and high-frequency repetitive TMS (rTMS) over Wernicke's area were found to facilitate language functions in right-handed healthy subjects. We aimed at investigating the effects of excitatory rTMS, given as intermittent theta burst stimulation (iTBS) over left Wernicke's area, on auditory comprehension in patients suffering from fluent aphasia after stroke of the left temporal lobe. Methods: We studied 13 patients with chronic fluent aphasia after an ischemic stroke involving Wernicke's area. iTBS was applied in random order to Wernicke's area, the right-hemisphere homologous of Wernicke's area, and the primary visual cortex. Auditory comprehension was blind assessed using the Token test before (T0), 5 (T1), and 40 min (T2) after a single session of iTBS. Results: At the first evaluation (T1) after iTBS on left Wernike's area, but not on the contralateral homologous area nor on the primary visual cortex, the scores on the Token test were significantly increased. No significant effects were observed at T2. Conclusion: We demonstrated that a single session of excitatory iTBS over Wernicke's area was safe and led to a transient facilitation of auditory comprehension in chronic stroke patients with lesions in the same area. Further studies are needed to establish whether TBS-induced modulation can be enhanced and transformed into longer-lasting effects by means of repeated TBS sessions and by combining TBS with speech and language therapy.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hopsital of Vipiteno-Sterzing, Vipiteno-Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Patrick B Langthaler
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hopsital of Vipiteno-Sterzing, Vipiteno-Sterzing, Italy.,Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | | | - Leopold Saltuari
- Research Unit for Neurorehabilitation of South Tyrol, Bolzano, Italy.,Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.,Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria.,Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| |
Collapse
|
16
|
Sul B, Lee KB, Hong BY, Kim JS, Kim J, Hwang WS, Lim SH. Association of Lesion Location With Long-Term Recovery in Post-stroke Aphasia and Language Deficits. Front Neurol 2019; 10:776. [PMID: 31396146 PMCID: PMC6668327 DOI: 10.3389/fneur.2019.00776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Recovery from post-stroke aphasia is important for performing the activities of daily life, returning to work, and quality of life. We investigated the association between specific brain lesions and the long-term outcome of four dimensions of aphasia: fluency, comprehension, naming, and repetition 12 months after onset in patients with stroke. Methods: Our retrospective cross-sectional observational study investigated the relationship between the Korean version of the Western Aphasia Battery scores in 31 stroke patients 1 year after the onset of stroke and stroke lesion location. Brain lesions were assessed using voxel-based lesion symptom mapping (VLSM) in conjunction with magnetic resonance imaging. Results: Damage to the Rolandic cortex, Heschl's gyrus, the posterior corona radiata, supramarginal cortex, superior longitudinal fasciculus, superior temporal gyrus, and insula was associated with a low total AQ score. Lesions in the inferior triangularis and inferior operculum of the frontal cortex, supramarginal cortex, and insula were associated with a poor fluency outcome. Damage to the parietal cortex, angular cortex, temporal middle cortex, sagittal stratum, and temporal superior cortex was associated with poor recovery of comprehension skills. Lesions in the angular cortex, supramarginal cortex, posterior corona radiata, superior longitudinal fasciculus, internal capsule, temporal superior cortex, and temporal middle cortex were associated with poor recovery of naming in patients with stroke. Damage to the superior temporal cortex, posterior corona radiata, and superior longitudinal fasciculus was associated with poor recovery of repetition component. Conclusions: We identified specific brain lesions associated with long-term outcomes in four dimensions of aphasia, in patients with post-stroke aphasia. Our findings may be useful for advancing understanding for the pathophysiology of aphasia in stroke patients.
Collapse
Affiliation(s)
- Bomi Sul
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Bo Lee
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Joon Sung Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jaewon Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Woo Seop Hwang
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
17
|
Bucur M, Papagno C. Are transcranial brain stimulation effects long-lasting in post-stroke aphasia? A comparative systematic review and meta-analysis on naming performance. Neurosci Biobehav Rev 2019; 102:264-289. [DOI: 10.1016/j.neubiorev.2019.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/12/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
18
|
Heikkinen PH, Pulvermüller F, Mäkelä JP, Ilmoniemi RJ, Lioumis P, Kujala T, Manninen RL, Ahvenainen A, Klippi A. Combining rTMS With Intensive Language-Action Therapy in Chronic Aphasia: A Randomized Controlled Trial. Front Neurosci 2019; 12:1036. [PMID: 30778280 PMCID: PMC6369187 DOI: 10.3389/fnins.2018.01036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation technologies, such as transcranial magnetic stimulation (TMS), are promising tools for neurorehabilitation, aphasia therapy included, but not yet in common clinical use. Combined with behavioral techniques, in particular treatment-efficient Intensive Language-Action Therapy (ILAT, previously CIAT or CILT), TMS could substantially amplify the beneficial effect of such behavioral therapy alone (Thiel et al., 2013; Martin et al., 2014; Mendoza et al., 2016; Kapoor, 2017). In this randomized study of 17 subjects with post-stroke aphasia in the chronic stage, we studied the combined effect of ILAT and 1-Hz placebo-controlled navigated repetitive TMS (rTMS) to the right-hemispheric inferior frontal cortex—that is, to the anterior part of the non-dominant hemisphere's homolog Broca's area (pars triangularis). Patients were randomized to groups A and B. Patients in group A received a 2-week period of rTMS during naming training where they named pictures displayed on the screen once every 10 s, followed by 2 weeks of rTMS and naming combined with ILAT. Patients in group B received the same behavioral therapy but TMS was replaced by sham stimulation. The primary outcome measures for changes in language performance were the Western Aphasia Battery's aphasia quotient AQ; the secondary outcome measures were the Boston naming test (BNT) and the Action naming test (Action BNT, ANT). All subjects completed the study. At baseline, no statistically significant group differences were discovered for age, post-stroke time or diagnosis. ILAT was associated with significant improvement across groups, as documented by both primary and secondary outcome measures. No significant effect of rTMS could be documented. Our results agree with previous results proving ILAT's ability to improve language in patients with chronic aphasia. In contrast with earlier claims, however, a beneficial effect of rTMS in chronic post-stroke aphasia rehabilitation was not detected in this study. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03629665
Collapse
Affiliation(s)
- Paula H Heikkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Medical Imaging Center University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pantelis Lioumis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Teija Kujala
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta-Leena Manninen
- BioMag Laboratory, HUS Medical Imaging Center University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Ahvenainen
- BioMag Laboratory, HUS Medical Imaging Center University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anu Klippi
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Haghighi M, Mazdeh M, Ranjbar N, Seifrabie MA. Further Evidence of the Positive Influence of Repetitive Transcranial Magnetic Stimulation on Speech and Language in Patients with Aphasia after Stroke: Results from a Double-Blind Intervention with Sham Condition. Neuropsychobiology 2018; 75:185-192. [PMID: 29402816 DOI: 10.1159/000486144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND After a stroke, up to 20% of patients suffer from aphasia. The preferred treatment for stroke-related aphasia (SRA) is regular speech and language training (SLT). In the present study, we investigated to what extent adjuvant repetitive transcranial magnetic stimulation (rTMS) might enhance recovery. While there is growing evidence of the positive effect of adjuvant rTMS on aphasia, no study has yet been based on an Iranian sample. METHOD A total of 12 patients (mean age: 55 years; right-handed; 7 women) underwent treatment for SRA 1 month after stroke. The standard treatment consisted of regular 45-min SLT sessions 5 times a week for 2 consecutive weeks. Additionally, patients were randomly assigned either to adjuvant rTMS (5 times a week for 30 min) or to a sham condition (5 times a week for 30 min). At baseline and after 2 weeks of intervention, the degree of aphasia was assessed with the Farsi version of the Western Aphasia Battery. rTMS was applied to the inferior posterior frontal gyrus of the right hemisphere. RESULTS Speech and language improved over time, but more so in the rTMS than in the sham condition. Large effect sizes were observed for content, fluency, and the aphasia quotient; medium effect sizes were observed for command comprehension and repetition, while effect sizes were small for auditory comprehension and naming. CONCLUSIONS Among patients with SRA, compared to a sham condition, adjuvant rTMS improved speech and language skills. The present results add to the accumulating evidence that rTMS as a neuromodulation technique has the capacity to enhance the effect of conventional SLT.
Collapse
Affiliation(s)
- Mohammad Haghighi
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdokht Mazdeh
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nazila Ranjbar
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
20
|
Baek A, Park EJ, Kim SY, Nam BG, Kim JH, Jun SW, Kim SH, Cho SR. High-Frequency Repetitive Magnetic Stimulation Enhances the Expression of Brain-Derived Neurotrophic Factor Through Activation of Ca 2+-Calmodulin-Dependent Protein Kinase II-cAMP-Response Element-Binding Protein Pathway. Front Neurol 2018; 9:285. [PMID: 29867712 PMCID: PMC5949612 DOI: 10.3389/fneur.2018.00285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/12/2018] [Indexed: 12/12/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can be used in various neurological disorders. However, neurobiological mechanism of rTMS is not well known. Therefore, in this study, we examined the global gene expression patterns depending on different frequencies of repetitive magnetic stimulation (rMS) in both undifferentiated and differentiated Neuro-2a cells to generate a comprehensive view of the biological mechanisms. The Neuro-2a cells were randomly divided into three groups—the sham (no active stimulation) group, the low-frequency (0.5 Hz stimulation) group, and high-frequency (10 Hz stimulation) group—and were stimulated 10 min for 3 days. The low- and high-frequency groups of rMS on Neuro-2a cells were characterized by transcriptome array. Differentially expressed genes were analyzed using the Database of Annotation Visualization and Integrated Discovery program, which yielded a Kyoto Encyclopedia of Genes and Genomes pathway. Amphetamine addiction pathway, circadian entrainment pathway, long-term potentiation (LTP) pathway, neurotrophin signaling pathway, prolactin signaling pathway, and cholinergic synapse pathway were significantly enriched in high-frequency group compared with low-frequency group. Among these pathways, LTP pathway is relevant to rMS, thus the genes that were involved in LTP pathway were validated by quantitative real-time polymerase chain reaction and western blotting. The expression of glutamate ionotropic receptor N-methyl d-aspartate 1, calmodulin-dependent protein kinase II (CaMKII) δ, and CaMKIIα was increased, and the expression of CaMKIIγ was decreased in high-frequency group. These genes can activate the calcium (Ca2+)–CaMKII–cAMP-response element-binding protein (CREB) pathway. Furthermore, high-frequency rMS induced phosphorylation of CREB, brain-derived neurotrophic factor (BDNF) transcription via activation of Ca2+–CaMKII–CREB pathway. In conclusion, high-frequency rMS enhances the expression of BDNF by activating Ca2+–CaMKII–CREB pathway in the Neuro-2a cells. These findings may help clarify further therapeutic mechanisms of rTMS.
Collapse
Affiliation(s)
- Ahreum Baek
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jee Park
- Department of Rehabilitation Medicine, The Graduate School Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Soo Yeon Kim
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Bae-Geun Nam
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sang Woo Jun
- Department of Biomedical Clinical Engineering, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea.,Yonsei Stem Cell Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|